首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
Sexual selection theory predicts that females should choose males that signal viability and quality. However, few studies have found fitness benefits among females mating with highly ornamented males. Here, we use Arctic charr (Salvelinus alpinus), a teleost fish with no parental care, to investigate whether females could gain fitness benefits by mating with highly ornamented and large-sized males. Carotenoid-based coloration signalled by males during spawning is believed to be an indicator of good genes for this species. Paternal effects on offspring size (body length and dry body mass) were examined experimentally by crossing eggs and sperm in vitro from 12 females and 24 males in a split-brood design and raising larvae to 30 days past hatching. We clearly demonstrated that there was a relationship between offspring size and paternal coloration. However, a negative interaction between paternal length and coloration was evident for offspring length, indicating that positive effects of paternal coloration were only present for smaller males. Thus, the red spawning coloration of the male Arctic charr seems to be an indicator of good genes, but the effect of paternal coloration on offspring length, an indicator of 'offspring quality', is size dependent.  相似文献   

3.
Knapp R  Neff BD 《Biology letters》2007,3(6):628-631
The proximate mechanisms underlying the evolution and maintenance of within-sex variation in mating behaviour are still poorly understood. Species characterized by alternative reproductive tactics provide ideal opportunities to investigate such mechanisms. Bluegill (Lepomis macrochirus) are noteworthy in this regard because they exhibit two distinct cuckolder (parasitic) morphs (called sneaker and satellite) in addition to the parental males that court females. Here we confirm previous findings that spawning cuckolder and parental males have significantly different levels of testosterone and 11-ketotestosterone. We also report, for the first time, that oestradiol and cortisol levels are higher in cuckolders than in parental males. The two cuckolder morphs did not differ in average levels of any of the four hormones. However, among satellite males which mimic females in appearance and behaviour, there was a strong negative relationship between oestradiol levels and body length, a surrogate for age. This finding suggests that for satellite males, oestradiol dependency of mating behaviour decreases with increasing mating experience. Although such decreased hormone dependence of mating behaviour has been reported in other taxa, our data represent the first suggestion of the relationship in fishes.  相似文献   

4.
We examined the effects of mating on reproductive investment and the timing of oogenesis in the flesh fly Sarcophaga crassipalpis by exposing females to males or not. All females exposed to males were mated within a few days and we found that mating affected reproductive investment. Virgin females not exposed to males produced a large clutch of eggs (∼91), but females exposed to males and mated produced 10% more. There was no effect of mating on egg length or mass. There was also no effect of mating on the timing of oogenesis. Females in both treatments provisioned their eggs at the same rate with yolk first becoming visible in the oocytes on day three of adulthood and complete provisioning of eggs occurring by the seventh day of adulthood. We examined the biochemical basis of egg provisioning by identifying the yolk proteins and quantifying their blood titer during the oogenic period in both, females exposed to males and mated and those not exposed to males. There was no difference in the timing of the first appearance, peak titer, or disappearance of yolk proteins in the blood between the two treatments. However, consistent with our observation of greater egg production in mated females, these females contained a greater peak yolk protein titer.  相似文献   

5.
《Animal behaviour》1988,36(6):1796-1808
Mating behaviour of B. americanus was observed from 1985 to 1987. The population contained 38–45 males and 11–26 females, depending on the year. The breeding season of this ‘explosive breeder’ usually encompassed less than 48 h. Male reproductive success varied from zero to two matings per season and zero to an estimated 15 126 zygotes per season. All females mated once per season and variation in their zygote production was estimated to be 4017–11 624 zygotes per season. Body length explained 76% of the variation in zygote production of females. However, male body length was only weakly correlated with mating success in two of three seasons, and with zygote production in one of three seasons. Male arm length was predicted to correlate with male mating success because longer arms should facilitate remaining clasped to females when challenged by rival males. However, mating males did not differ from non-mating males in arm length, and the relationship between arm length and body length was the same for the sexes. Various male behaviours were measured using focal-animal sampling but only call rate correlated with male mating success. The pattern of size dimorphism (females larger than males) is consistent with the observed sex-specific relationships between reproductive success and body size.  相似文献   

6.
ABSTRACT In ungulates, big males with large weapons typically outcompete other males over access to estrous females. In many species, rapid early growth leads to large adult mass and weapon size. We compared males in one hunted and one protected population of Alpine chamois (Rupicapra rupicapra) to examine the relationship between horn length and body mass. We assessed whether early development and hunter selectivity affected age-specific patterns of body and horn size and whether sport hunting could be an artificial selection pressure favoring smaller horns. Adult horn length was mostly independent of body mass. For adult males, the coefficient of variation of horn length (0.06) was <50% of that for body mass (0.16), suggesting that horn length presents a lower potential for selection and may be less important for male mating success than is body mass. Surprisingly, early development did not affect adult mass because of apparent compensatory growth. We found few differences in body and horn size between hunted and protected populations, suggesting the absence of strong effects of hunting on male phenotype. If horn length has a limited role in male reproductive success, hunter selectivity for males with longer horns is unlikely to lead to an artificial selective pressure on horn size. These results imply that the potential evolutionary effects of selective hunting depend on how the characteristics selected by hunters affect individual reproductive success.  相似文献   

7.
Narwhal and beluga whales are important species to Arctic ecosystems, including subsistence hunting by Inuit, and little is understood about their mating ecology. Reproductive tract metrics vary across species in relation to mating strategy, and have been used to infer mating ecology. Reproductive tracts from beluga and narwhal were collected between 1997 and 2008 from five beluga stocks and two narwhal stocks across the Canadian Arctic. Tract length for males and females, relative testes mass for males, and tusk length for male narwhal were measured. We assessed variation relative to species, body size, stock, maturity, and season. Significant variation was found in testes mass across month and stock for beluga, and no significant difference between stock or date of harvest for narwhal. Beluga had significantly larger testes relative to body size than narwhal, suggesting they were more promiscuous than narwhal. A significant relationship was found between narwhal tusk length and testes mass, indicating the tusk may be important in female mate choice. No significant differences were found between narwhal and beluga reproductive tract length for males or females. The mating systems suggested for narwhal and belugas by our results mean the two species may respond differently to climate change.  相似文献   

8.
Mating systems are a central component in the evolution of animal life histories and in conservation genetics. The patterns of male reproductive skew and of paternal shares in batches of offspring, for example, affect genetic effective population size. A prominent characteristic of mating systems of sea turtles seem to be a considerable intra- and interspecific variability in the degree of polyandry. Because of the difficulty of observing the mating behaviour of sea turtles directly in the open sea, genetic paternity analysis is particularly useful for gaining insights into this aspect of their reproductive behaviour. We investigated patterns of multiple paternity in clutches of loggerhead sea turtles in the largest Mediterranean rookery using four highly variable microsatellite loci. Furthermore, we tested for a relationship between the number of fathers detected in clutches and body size of females. More than one father was detected in the clutches of 14 out of 15 females, with two clutches revealing the contribution of at least five males. In more than half the cases, the contributions of different fathers to a clutch did not depart from equality. The number of detected fathers significantly increased with increasing female body size. This relationship indicates that males may prefer to mate with large, and therefore productive, females. Our results suggest that polyandry is likely to increase effective population size compared to a population in which females would mate with only one male; male reproductive contributions being equal.  相似文献   

9.
Most animals concentrate their movement into certain hours of the day depending on drivers such as photoperiod, ambient temperature, inter‐ or intraspecific competition, and predation risk. The main activity periods of many mammal species, especially in human‐dominated landscapes, are commonly set at dusk, dawn, and during nighttime hours. Large carnivores, such as brown bears, often display great flexibility in diel movement patterns throughout their range, and even within populations, striking between individual differences in movement have been demonstrated. Here, we evaluated how seasonality and reproductive class affected diel movement patterns of brown bears of the Dinaric‐Pindos and Carpathian bear populations in Serbia. We analyzed the movement distances and general probability of movement of 13 brown bears (8 males and 5 females) equipped with GPS collars and monitored over 1–3 years. Our analyses revealed that movement distances and probability of bear movement differed between seasons (mating versus hyperphagia) and reproductive classes. Adult males, solitary females, and subadult males showed a crepuscular movement pattern. Compared with other reproductive classes, females with offspring were moving significantly less during crepuscular hours and during the night, particularly during the mating season, suggesting temporal niche partitioning among different reproductive classes. Adult males, solitary females, and in particular subadult males traveled greater hourly distances during the mating season in May‐June than the hyperphagia in July–October. Subadult males significantly decreased their movement from the mating season to hyperphagia, whereas females with offspring exhibited an opposite pattern with almost doubling their movement from the mating to hyperphagia season. Our results provide insights into how seasonality and reproductive class drive intrapopulation differences in movement distances and probability of movement in a recovering, to date little studied, brown bear population in southeastern Europe.  相似文献   

10.
Assortative mating refers to the non-random nature of mating patterns between certain males and females. Thus, males and females may associate negative- or positively, based on different traits. Amongst these associations, assortative mating by size is one of the most common patterns found in natural populations of animals. Two main hypotheses have been proposed to account for the occurrence of assortative mating by size. First, it may be the result of mechanical, temporal, or physiological constraints. Second, it may occur in response to direct or indirect selection on mating preferences. Here we investigate whether the American rubyspot damselfly exhibits true assortative mating by size. Males of this species exhibit high levels of male-male competition, as they compete over territories, to which females are attracted for copulation. There is a documented large male body size advantage: the largest males are better able to hold their territories and thus secure more copulations. Our major results show that i) mated males are more likely to be larger than unmated males, whereas mated and unmated females tend to have similar body sizes; ii) H. americana exhibits true assortative mating by size; as such, this pattern is not driven by seasonal changes in the body sizes of males and females. We suggest that this mating pattern occurs in this species given the advantages of large male size, and the advantages of large female body size (i.e. higher fecundity). We believe that males may be able to evaluate a female’s reproductive value and exert mate choice.  相似文献   

11.
Elasmobranch fishes exhibit a series of complex courtship and mating behaviours in which males inflict significant bite wounds to the body of female mates. However, the variety and frequency of mating wounds are not known across a full reproductive season for any species. We examined the distribution and abundance of dermal wounds in adult Atlantic stingrays, Dasyatis sabina, which have a protracted and defined mating season to determine (1) if dermal wounds can be used as indicators of mating activity, (2) whether different categories of bite wounds can be associated with specific mating behaviours, and (3) whether the skin thickness in females is sexually dimorphic. Adults of both sexes showed fresh wounds during the full duration of the mating season (October–June) and there was no relationship between ray size and wound density. Females had more total wounds than males in every month with a maximum average of 20.2 wounds per female in April. Mating wounds were categorized into five distinct forms: single track, double track, bite, margin abrasion and excision. Wounds were randomly distributed over the body of males but concentrated on the posterior half of the disc in females. Each wound type occurred in approximately equal proportions among sexes with the exception of the precopulatory and copulatory-induced margin abrasions which accounted for 13.7% of the total wounds in females but only 3.1% in males. We suggest that the pronounced and concurrent appearance of single track, double track and bite wounds among males results from random premating courtship attacks by males because females cannot be visually discriminated. However, the concentration of wounds on the posterior disc of females is consistent with the possible presence of olfactory cues (e.g. pheromones) that are released at the cloaca. The pectoral fin dermis of females was 50% thicker than that of males, which eliminated the excision of margins during male grasping and functions to reduce female injury. The temporal occurrence of wounds from October through June and peak in April is consistent with previous reproductive studies that show fresh sperm in the reproductive tract of females over the protracted mating period and also ovulation in late March or early April. The importance of social reproductive biting is discussed in relation to the reproductive induction hypothesis proposed to possibly explain the protracted mating of this species. Monitoring of dermal wounds provides a useful non-invasive technique to determine reproductive activity and a means for inference of social relationships in elasmobranch populations.  相似文献   

12.
In some poeciliid fishes, variation in male size is accompanied by differences in mating behavior. Large males are preferred by females and perform courtship displays followed by copulatory thrusts, whereas small males perform copulatory thrusts with few or no displays. This phenomenon has been described in only a few genera and little is known about mating behavior in other poeciliids. Although Phallichthys quadripunctatus males display size dimorphism that has a genetic component, mating behavior of this species has not been documented. We conducted experiments using socially experienced and socially naive males to characterize the mating behavior of this species and to evaluate potential size-dependent differences in behavior. Males were tested with postpartum (presumably receptive) and midcycle (presumably unreceptive) females in different social environments. Whereas neither size class of P. quadripunctatus males performed courtship displays or altered behavior based on female receptivity, large males performed several reproductive behaviors more frequently than small males. This trend was repeatable and occurred in all social environments examined. Some males also attempted to mate with other males, with small males showing a greater tendency to perform this behavior than large males. The manner in which differences in reproductive activity translate into differences in reproductive success must be examined before inferring sexual selection favoring large males in P. quadripunctatus.  相似文献   

13.
Male pregnancy in the family Syngnathidae (pipefishes, seahorses and seadragons) predisposes males to limit female reproductive success; sexual selection may then operate more strongly on females and female sexual signals may evolve (sex-role reversal). A bewildering array of female signals has evolved in Syngnathids, e.g. skin folds, large body size, colouration, markings on the body and elaborate courtship. These female sexual signals do not seem quantitatively or qualitatively different from those that evolve in males in species with conventional sex roles where males provide females or offspring with direct benefits. In several syngnathid species, males also evolve ornaments, females are choosy in addition to being competitive and males compete as well as choosing partners. Thus, sex roles form a continuum, spanning from conventional to reversed within this group of fishes. Cases are presented here suggesting that stronger sexual selection on females may be most extreme in species showing classical polyandry (one male mates with several females, such as many species where males brood their eggs on the trunk), intermediate in polygynandrous species (males and females both mate with more than one partner, as in many species where males brood their eggs on the tail) and least extreme, even exhibiting conventional sex roles, in monogamous species (one male mates solely with one female, as in many seahorses and tropical pipefishes). At the same time caution is needed before unanimously establishing this pattern: first, the connection between mating patterns, strength of sexual selection, sex roles and ornament expression is far from simple and straightforward, and second, knowledge of the actual morphology, ecology and behaviour of most syngnathid species is scanty. Basically only a few Nerophis, Syngnathus and Hippocampus species have been studied in any detail. It is known, however, that this group of fishes exhibits a remarkable variation in sex roles and ornamentation, making them an ideal group for the study of mating patterns, sexual selection and sexually selected signals.  相似文献   

14.
Reproductive ecology and ethology of 52 cichlid fishes were studied along the shore of Myako, east-middle coast of Lake Tanganyika. Seventeen species were substrate-brooders (guarders), 31 were mouthbrooders, and the remaining 4 were intermediate, performing prolonged biparental guarding of fry after mouthbrooding. Among the substrate-brooders maternal care (and polygyny) was seen about as frequently as biparental care. In most of the mouthbrooders only females took care of the brood, but in 3 species eggs and small larvae were mouthbrooded by females and larger fry by males. In most of the maternal mouthbrooders males defended mating territories which females visited to spawn. The mating system differed from lekking in that there was no concentration of territories and males fed within them. In the remaining maternal mouthbrooders males and overlapping home ranges and only temporarily defended courtship sites in each bout of spawning. Brood size, egg size, breeding site, and sexual differences in body size and color are described. The relationship between parentalcare patterns and mating systems within the family Cichlidae are discussed.  相似文献   

15.
The evolution and maintenance of female ornamentation has attracted increasing attention, because the previous explanation, that is a non‐functional copy of functional male ornamentation, seems insufficient to explain female ornamentation. A post‐mating sexual selection, differential allocation, may be more common than pre‐mating sexual selection, but few studies have investigated differential allocation by males. Here, we studied differential allocation of incubation investment by male barn swallows Hirundo rustica, a model species for the study of sexual selection, because our previous correlative study demonstrated a positive relationship between female tail length and male incubation investment. We manipulated the length of the outermost tail feathers in females after clutch completion and examined whether males adjust incubation investment according to female ornamentation. Because extra‐pair paternity is virtually absent in the study population, we were able to study differential allocation based on the tradeoff between current and future reproductive investments, rather than the tradeoff between current paternal investment and additional mating effort. The experimental treatment had no significant effect on male nest attentiveness, whereas female tail length before manipulation predicted male nest attentiveness. The observed pattern is consistent with differential access; that is, well‐ornamented individuals have greater access to mates with high reproductive (parental) ability, rather than differential allocation during incubation. Alternatively, males can directly assess eggs in their nests, and thus, as seen in other species, males might adjust their incubation investment based on the egg characteristics of long‐tailed females.  相似文献   

16.
Understanding the mating system and reproductive success of a species provides evidence for sexual selection. We examined the mating system and the reproductive success of captive adult black sea bream (Acanthopagrus schlegelii), using parentage assignment based on two microsatellites multiplex PCR systems, with 91.5% accuracy in a mixed family (29 sires, 25 dams, and 200 offspring). Based on the parentage result, we found that 93.1% of males and 100% of females participated in reproduction. A total of 79% of males and 92% of females mated with multiple partners (only 1 sire and 1 dam were monogamous), indicating that polygynandry best described the genetic mating system of black sea bream. For males, maximizing the reproductive success by multiple mating was accorded with the sexual selection theory while the material benefits hypothesis may contribute to explain the multiple mating for females. For both sexes, there was a significant correlation between mating success and reproductive success and the variance in reproductive success of males was higher than females. Variation in mating success is the greatest determinant to variation in reproductive success when the relationship is strongly positive. The opportunity for sexual selection of males was twice that of females, as well as the higher slope of the Bateman curve in males suggested that the intensity of intrasexual selection of males was higher than females. Thus, male–male competition would lead to the greater variation of mating success for males, which caused greater variation in reproductive success in males. The effective population number of breeders (Nb) was 33, and the Nb/N ratio was 0.61, slightly higher than the general ratio in polygynandrous fish populations which possibly because most individuals mated and had offspring with a low variance. The relatively high Nb contributes to the maintenance of genetic diversity in farmed black sea bream populations.  相似文献   

17.
Mating systems and patterns of reproductive success in fishes play an important role in ecology and evolution. While information on the reproductive ecology of many anadromous salmonids (Oncorhynchus spp.) is well detailed, there is less information for nonanadromous species including the Yellowstone Cutthroat Trout (O. clarkii bouvieri), a subspecies of recreational angling importance and conservation concern. Using data from a parentage‐based tagging study, we described the genetic mating system of a migratory population of Yellowstone Cutthroat Trout, tested for evidence of sexual selection, and identified predictors of mating and reproductive success. The standardized variance in mating success (i.e., opportunity for sexual selection) was significantly greater for males relative to females, and while the relationship between mating success and reproductive success (i.e., Bateman gradient) was significantly positive for both sexes, a greater proportion of reproductive success was explained by mating success for males (r 2 = 0.80) than females (r 2 = 0.59). Overall, the population displayed a polygynandrous mating system, whereby both sexes experienced variation in mating success due to multiple mating, and sexual selection was variable across sexes. Tests for evidence of sexual selection indicated the interaction between mating success and total length best‐predicted relative reproductive success. We failed to detect a signal of inbreeding avoidance among breeding adults, but the group of parents that produced progeny were on average slightly less related than adults that did not produce progeny. Lastly, we estimated the effective number of breeders (N b) and effective population size (N e) and identified while N b was lower than N e, both are sufficiently high to suggest Yellowstone Cutthroat Trout in Burns Creek represent a genetically stable and diverse population.  相似文献   

18.
For many species in nature, a sire's progeny may be distributed among a few or many dams. This poses logistical challenges--typically much greater across males than across females--for assessing means and variances in mating success (number of mates) and reproductive success (number of progeny). Here we overcome these difficulties by exhaustively analyzing a population of green swordtail fish (Xiphophorus helleri) for genetic paternity (and maternity) using a suite of highly polymorphic microsatellite loci. Genetic analyses of 1476 progeny from 69 pregnant females and 158 candidate sires revealed pronounced skews in male reproductive success both within and among broods. These skews were statistically significant, greater than in females, and correlated in males but not in females with mating success. We also compare the standardized variances in swordtail reproductive success to the few such available estimates for other taxa, notably several mammal species with varied mating systems and degrees of sexual dimorphism. The comparison showed that the opportunity for selection on male X. helleri is among the highest yet reported in fishes, and it is intermediate compared to estimates available for mammals. This study is one of a few exhaustive genetic assessments of joint-sex parentage in a natural fish population, and results are relevant to the operation of sexual selection in this sexually dimorphic, high-fecundity species.  相似文献   

19.
Positive size assortative mating can arise if either one or both sexes prefer bigger mates or if the success of larger males in contests for larger females leaves smaller males to mate with smaller females. Moreover, body size could not only influence pairing patterns before copulation but also the covariance between female size and size of ejaculate (number of spermatophores) transferred to a mate. In this field study, we examine the pre-copulatory mate choice, as well as insemination, patterns in the Cook Strait giant weta (Deinacrida rugosa). D. rugosa is a large orthopteran insect that exhibits strong female-biased sexual dimorphism, with females being nearly twice as heavy as males. Contrary to the general expectation of male preference for large females in insects with female-biased size dimorphism, we found only weak support for positive size assortative mating based on size (tibia length). Interestingly, although there was no correlation between male body size and the number of spermatophores transferred, we did find that males pass more spermatophores to lighter females. This pattern of sperm transfer does not appear to be a consequence of those males that mate heavier females being sperm depleted. Instead, males may provide lighter females with more spermatophores perhaps because these females pose less of a sperm competition risk to mates.  相似文献   

20.
Energy investment in reproduction and somatic growth was investigated for summer spawners of the Argentinean shortfin squid Illex argentinus in the southwest Atlantic Ocean. Sampled squids were examined for morphometry and intensity of feeding behavior associated with reproductive maturation. Residuals generated from length‐weight relationships were analyzed to determine patterns of energy allocation between somatic and reproductive growth. Both females and males showed similar rates of increase for eviscerated body mass and digestive gland mass relative to mantle length, but the rate of increase for total reproductive organ weight relative to mantle length in females was three times that of males. For females, condition of somatic tissues deteriorated until the mature stage, but somatic condition improved after the onset of maturity. In males, there was no correlation between somatic condition and phases of reproductive maturity. Reproductive investment decreased as sexual maturation progressed for both females and males, with the lowest investment occurring at the functionally mature stage. Residual analysis indicated that female reproductive development was at the expense of body muscle growth during the immature and maturing stages, but energy invested in reproduction after onset of maturity was probably met by food intake. However, in males both reproductive maturation and somatic growth proceeded concurrently so that energy allocated to reproduction was related to food intake throughout the process of maturation. For both males and females, there was little evidence of trade‐offs between the digestive gland and reproductive growth, as no significant correlation was found between dorsal mantle length‐digestive gland weight residuals. The role of the digestive gland as an energy reserve for gonadal growth should be reconsidered. Additionally, feeding intensity by both males and females decreased after the onset of sexual maturity, but feeding never stopped completely, even during spawning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号