首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary Time varying, individual covariates are problematic in experiments with marked animals because the covariate can typically only be observed when each animal is captured. We examine three methods to incorporate time varying, individual covariates of the survival probabilities into the analysis of data from mark‐recapture‐recovery experiments: deterministic imputation, a Bayesian imputation approach based on modeling the joint distribution of the covariate and the capture history, and a conditional approach considering only the events for which the associated covariate data are completely observed (the trinomial model). After describing the three methods, we compare results from their application to the analysis of the effect of body mass on the survival of Soay sheep (Ovis aries) on the Isle of Hirta, Scotland. Simulations based on these results are then used to make further comparisons. We conclude that both the trinomial model and Bayesian imputation method perform best in different situations. If the capture and recovery probabilities are all high, then the trinomial model produces precise, unbiased estimators that do not depend on any assumptions regarding the distribution of the covariate. In contrast, the Bayesian imputation method performs substantially better when capture and recovery probabilities are low, provided that the specified model of the covariate is a good approximation to the true data‐generating mechanism.  相似文献   

2.
Bonner SJ  Schwarz CJ 《Biometrics》2006,62(1):142-149
Recent developments in the Cormack-Jolly-Seber (CJS) model for analyzing capture-recapture data have focused on allowing the capture and survival rates to vary between individuals. Several methods have been developed in which capture and survival are functions of auxiliary variables that may be discrete, constant over time, or apply to the population as a whole, but the problem has not been solved for continuous covariates that vary with both time and individual. This article proposes a new method to handle such covariates by modeling changes over time via a diffusion process and using logistic functions to link the variable to the CJS capture and survival rates. Bayesian methods are used to estimate the model parameters. The method is applied to study the effect of body mass on the survival of the North American meadow vole, Microtus pennsylvanicus.  相似文献   

3.
King R  Brooks SP  Coulson T 《Biometrics》2008,64(4):1187-1195
SUMMARY: We consider the issue of analyzing complex ecological data in the presence of covariate information and model uncertainty. Several issues can arise when analyzing such data, not least the need to take into account where there are missing covariate values. This is most acutely observed in the presence of time-varying covariates. We consider mark-recapture-recovery data, where the corresponding recapture probabilities are less than unity, so that individuals are not always observed at each capture event. This often leads to a large amount of missing time-varying individual covariate information, because the covariate cannot usually be recorded if an individual is not observed. In addition, we address the problem of model selection over these covariates with missing data. We consider a Bayesian approach, where we are able to deal with large amounts of missing data, by essentially treating the missing values as auxiliary variables. This approach also allows a quantitative comparison of different models via posterior model probabilities, obtained via the reversible jump Markov chain Monte Carlo algorithm. To demonstrate this approach we analyze data relating to Soay sheep, which pose several statistical challenges in fully describing the intricacies of the system.  相似文献   

4.
1. Traditional estimation of age-specific survival and mortality rates in vertebrates is limited to individuals with known age. Although this subject has been studied extensively using effective capture-recapture and capture-recovery models, inference remains challenging because of large numbers of incomplete records (i.e. unknown age of many individuals) and because of the inadequate duration of the studies. 2. Here, we present a hierarchical model for capture-recapture/recovery (CRR) data sets with large proportions of unknown times of birth and death. The model uses a Bayesian framework to draw inference on population-level age-specific demographic rates using parametric survival functions and applies this information to reconstruct times of birth and death for individuals with unknown age. 3. We simulated a set of CRR data sets with varying study span and proportions of individuals with known age, and varying recapture and recovery probabilities. We used these data sets to compare our method to a traditional CRR model, which requires knowledge of individual ages. Subsequently, we applied our method to a subset of a long-term CRR data set on Soay sheep. 4. Our results show that this method performs better than the common CRR model when sample sizes are low. Still, our model is sensitive to the choice of priors with low recapture probability and short studies. In such cases, priors that overestimate survival perform better than those that underestimate it. Also, the model was able to estimate accurately ages at death for Soay sheep, with an average error of 0.94 years and to identify differences in mortality rate between sexes. 5. Although many of the problems in the estimation of age-specific survival can be reduced through more efficient sampling schemes, most ecological data sets are still sparse and with a large proportion of missing records. Thus, improved sampling needs still to be combined with statistical models capable of overcoming the unavoidable limitations of any fieldwork. We show that our approach provides reliable estimates of parameters and unknown times of birth and death even with the most incomplete data sets while being flexible enough to accommodate multiple recapture probabilities and covariates.  相似文献   

5.
Capture-recapture models were developed to estimate survival using data arising from marking and monitoring wild animals over time. Variation in survival may be explained by incorporating relevant covariates. We propose nonparametric and semiparametric regression methods for estimating survival in capture-recapture models. A fully Bayesian approach using Markov chain Monte Carlo simulations was employed to estimate the model parameters. The work is illustrated by a study of Snow petrels, in which survival probabilities are expressed as nonlinear functions of a climate covariate, using data from a 40-year study on marked individuals, nesting at Petrels Island, Terre Adélie.  相似文献   

6.
The diagnosis/prognosis problem has already been introduced by the authors in previous papers as a classification problem for survival data. In this paper, the specific aspects of the estimation of the survival functions in diagnostic classes and the evaluation of the posterior probabilities of the diagnostic classes are addressed; a latent random variable Z is defined to denote the classification of censored and uncensored individuals, where early censored individuals cannot be immediately classified as Z is not observed. Parameter estimation of the mixture survival model thus derived is carried out using a proper version of the EM algorithm with given prior probabilities on Z and diagnostic/prognostic information provided by the observable covariates is also included into the model. Numerical examples using AIDS data and a simulation study are used to better outline the main features of the model and of the estimation methodology.  相似文献   

7.
In capture–recapture models, survival and capture probabilities can be modelled as functions of time‐varying covariates, such as temperature or rainfall. The Cormack–Jolly–Seber (CJS) model allows for flexible modelling of these covariates; however, the functional relationship may not be linear. We extend the CJS model by semi‐parametrically modelling capture and survival probabilities using a frequentist approach via P‐splines techniques. We investigate the performance of the estimators by conducting simulation studies. We also apply and compare these models with known semi‐parametric Bayesian approaches on simulated and real data sets.  相似文献   

8.
Royle JA 《Biometrics》2009,65(1):267-274
Summary .  I consider the analysis of capture–recapture models with individual covariates that influence detection probability. Bayesian analysis of the joint likelihood is carried out using a flexible data augmentation scheme that facilitates analysis by Markov chain Monte Carlo methods, and a simple and straightforward implementation in freely available software. This approach is applied to a study of meadow voles ( Microtus pennsylvanicus ) in which auxiliary data on a continuous covariate (body mass) are recorded, and it is thought that detection probability is related to body mass. In a second example, the model is applied to an aerial waterfowl survey in which a double-observer protocol is used. The fundamental unit of observation is the cluster of individual birds, and the size of the cluster (a discrete covariate) is used as a covariate on detection probability.  相似文献   

9.
This paper introduces a flexible and adaptive nonparametric method for estimating the association between multiple covariates and power spectra of multiple time series. The proposed approach uses a Bayesian sum of trees model to capture complex dependencies and interactions between covariates and the power spectrum, which are often observed in studies of biomedical time series. Local power spectra corresponding to terminal nodes within trees are estimated nonparametrically using Bayesian penalized linear splines. The trees are considered to be random and fit using a Bayesian backfitting Markov chain Monte Carlo (MCMC) algorithm that sequentially considers tree modifications via reversible-jump MCMC techniques. For high-dimensional covariates, a sparsity-inducing Dirichlet hyperprior on tree splitting proportions is considered, which provides sparse estimation of covariate effects and efficient variable selection. By averaging over the posterior distribution of trees, the proposed method can recover both smooth and abrupt changes in the power spectrum across multiple covariates. Empirical performance is evaluated via simulations to demonstrate the proposed method's ability to accurately recover complex relationships and interactions. The proposed methodology is used to study gait maturation in young children by evaluating age-related changes in power spectra of stride interval time series in the presence of other covariates.  相似文献   

10.
Summary : Recent studies have shown that grassland birds are declining more rapidly than any other group of terrestrial birds. Current methods of estimating avian age‐specific nest survival rates require knowing the ages of nests, assuming homogeneous nests in terms of nest survival rates, or treating the hazard function as a piecewise step function. In this article, we propose a Bayesian hierarchical model with nest‐specific covariates to estimate age‐specific daily survival probabilities without the above requirements. The model provides a smooth estimate of the nest survival curve and identifies the factors that are related to the nest survival. The model can handle irregular visiting schedules and it has the least restrictive assumptions compared to existing methods. Without assuming proportional hazards, we use a multinomial semiparametric logit model to specify a direct relation between age‐specific nest failure probability and nest‐specific covariates. An intrinsic autoregressive prior is employed for the nest age effect. This nonparametric prior provides a more flexible alternative to the parametric assumptions. The Bayesian computation is efficient because the full conditional posterior distributions either have closed forms or are log concave. We use the method to analyze a Missouri dickcissel dataset and find that (1) nest survival is not homogeneous during the nesting period, and it reaches its lowest at the transition from incubation to nestling; and (2) nest survival is related to grass cover and vegetation height in the study area.  相似文献   

11.
In this article, we develop a latent class model with class probabilities that depend on subject-specific covariates. One of our major goals is to identify important predictors of latent classes. We consider methodology that allows estimation of latent classes while allowing for variable selection uncertainty. We propose a Bayesian variable selection approach and implement a stochastic search Gibbs sampler for posterior computation to obtain model-averaged estimates of quantities of interest such as marginal inclusion probabilities of predictors. Our methods are illustrated through simulation studies and application to data on weight gain during pregnancy, where it is of interest to identify important predictors of latent weight gain classes.  相似文献   

12.
In many longitudinal studies, it is of interest to characterize the relationship between a time-to-event (e.g. survival) and several time-dependent and time-independent covariates. Time-dependent covariates are generally observed intermittently and with error. For a single time-dependent covariate, a popular approach is to assume a joint longitudinal data-survival model, where the time-dependent covariate follows a linear mixed effects model and the hazard of failure depends on random effects and time-independent covariates via a proportional hazards relationship. Regression calibration and likelihood or Bayesian methods have been advocated for implementation; however, generalization to more than one time-dependent covariate may become prohibitive. For a single time-dependent covariate, Tsiatis and Davidian (2001) have proposed an approach that is easily implemented and does not require an assumption on the distribution of the random effects. This technique may be generalized to multiple, possibly correlated, time-dependent covariates, as we demonstrate. We illustrate the approach via simulation and by application to data from an HIV clinical trial.  相似文献   

13.
This paper presents a novel semiparametric joint model for multivariate longitudinal and survival data (SJMLS) by relaxing the normality assumption of the longitudinal outcomes, leaving the baseline hazard functions unspecified and allowing the history of the longitudinal response having an effect on the risk of dropout. Using Bayesian penalized splines to approximate the unspecified baseline hazard function and combining the Gibbs sampler and the Metropolis–Hastings algorithm, we propose a Bayesian Lasso (BLasso) method to simultaneously estimate unknown parameters and select important covariates in SJMLS. Simulation studies are conducted to investigate the finite sample performance of the proposed techniques. An example from the International Breast Cancer Study Group (IBCSG) is used to illustrate the proposed methodologies.  相似文献   

14.
Modelling survival data from long‐term follow‐up studies presents challenges. The commonly used proportional hazards model should be extended to account for dynamic behaviour of the effects of fixed covariates. This work illustrates the use of reduced rank models in survival data, where some of the covariate effects are allowed to behave dynamically in time and some as fixed. Time‐varying effects of the covariates can be fitted by using interactions of the fixed covariates with flexible transformations of time based on b‐splines. To avoid overfitting, a reduced rank model will restrict the number of parameters, resulting in a more sensible fit to the data. This work presents the basic theory and the algorithm to fit such models. An application to breast cancer data is used for illustration of the suggested methods.  相似文献   

15.
Zhu H  Ibrahim JG  Chi YY  Tang N 《Biometrics》2012,68(3):954-964
Summary This article develops a variety of influence measures for carrying out perturbation (or sensitivity) analysis to joint models of longitudinal and survival data (JMLS) in Bayesian analysis. A perturbation model is introduced to characterize individual and global perturbations to the three components of a Bayesian model, including the data points, the prior distribution, and the sampling distribution. Local influence measures are proposed to quantify the degree of these perturbations to the JMLS. The proposed methods allow the detection of outliers or influential observations and the assessment of the sensitivity of inferences to various unverifiable assumptions on the Bayesian analysis of JMLS. Simulation studies and a real data set are used to highlight the broad spectrum of applications for our Bayesian influence methods.  相似文献   

16.
This paper considers the use of a multivariate binomial probit model for the analysis of correlated exchangeable binary data. The model can naturally accommodate both cluster and individual level covariates, while keeping a fairly flexible intracluster association structure. We discuss Bayesian estimation when a sample of independent clusters of varying sizes are available, and show how Gibbs sampling may be used to derive the posterior densities of parameters. The methodology is illustrated with two examples: the first involves epidemiological data from a study of familial disease aggregation; the second uses teratological data from a developmental toxicity application.  相似文献   

17.
Understanding drivers of temporal variation in demographic parameters is a central goal of mark-recapture analysis. To estimate the survival of migrating animal populations in migration corridors, space-for-time mark–recapture models employ discrete sampling locations in space to monitor marked populations as they move past monitoring sites, rather than the standard practice of using fixed sampling points in time. Because these models focus on estimating survival over discrete spatial segments, model parameters are implicitly integrated over the temporal dimension. Furthermore, modeling the effect of time-varying covariates on model parameters is complicated by unknown passage times for individuals that are not detected at monitoring sites. To overcome these limitations, we extended the Cormack–Jolly–Seber (CJS) framework to estimate temporally stratified survival and capture probabilities by including a discretized arrival time process in a Bayesian framework. We allow for flexibility in the model form by including temporally stratified covariates and hierarchical structures. In addition, we provide tools for assessing model fit and comparing among alternative structural models for the parameters. We demonstrate our framework by fitting three competing models to estimate daily survival, capture, and arrival probabilities at four hydroelectric dams for over 200 000 individually tagged migratory juvenile salmon released into the Snake River, USA.  相似文献   

18.
McKeague IW  Tighiouart M 《Biometrics》2000,56(4):1007-1015
This article introduces a new Bayesian approach to the analysis of right-censored survival data. The hazard rate of interest is modeled as a product of conditionally independent stochastic processes corresponding to (1) a baseline hazard function and (2) a regression function representing the temporal influence of the covariates. These processes jump at times that form a time-homogeneous Poisson process and have a pairwise dependency structure for adjacent values. The two processes are assumed to be conditionally independent given their jump times. Features of the posterior distribution, such as the mean covariate effects and survival probabilities (conditional on the covariate), are evaluated using the Metropolis-Hastings-Green algorithm. We illustrate our methodology by an application to nasopharynx cancer survival data.  相似文献   

19.
We investigate whether relative contributions of genetic and shared environmental factors are associated with an increased risk in melanoma. Data from the Queensland Familial Melanoma Project comprising 15,907 subjects arising from 1912 families were analyzed to estimate the additive genetic, common and unique environmental contributions to variation in the age at onset of melanoma. Two complementary approaches for analyzing correlated time-to-onset family data were considered: the generalized estimating equations (GEE) method in which one can estimate relationship-specific dependence simultaneously with regression coefficients that describe the average population response to changing covariates; and a subject-specific Bayesian mixed model in which heterogeneity in regression parameters is explicitly modeled and the different components of variation may be estimated directly. The proportional hazards and Weibull models were utilized, as both produce natural frameworks for estimating relative risks while adjusting for simultaneous effects of other covariates. A simple Markov Chain Monte Carlo method for covariate imputation of missing data was used and the actual implementation of the Bayesian model was based on Gibbs sampling using the free ware package BUGS. In addition, we also used a Bayesian model to investigate the relative contribution of genetic and environmental effects on the expression of naevi and freckles, which are known risk factors for melanoma.  相似文献   

20.
Nonparametric mixed effects models for unequally sampled noisy curves   总被引:7,自引:0,他引:7  
Rice JA  Wu CO 《Biometrics》2001,57(1):253-259
We propose a method of analyzing collections of related curves in which the individual curves are modeled as spline functions with random coefficients. The method is applicable when the individual curves are sampled at variable and irregularly spaced points. This produces a low-rank, low-frequency approximation to the covariance structure, which can be estimated naturally by the EM algorithm. Smooth curves for individual trajectories are constructed as best linear unbiased predictor (BLUP) estimates, combining data from that individual and the entire collection. This framework leads naturally to methods for examining the effects of covariates on the shapes of the curves. We use model selection techniques--Akaike information criterion (AIC), Bayesian information criterion (BIC), and cross-validation--to select the number of breakpoints for the spline approximation. We believe that the methodology we propose provides a simple, flexible, and computationally efficient means of functional data analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号