首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel technique is described for the immobilization of Candida cylindracea lipase in the soapy-shell of colloidal liquid aphrons (CLAs). CLAs consist of a micron-sized solvent droplet surrounded by a thin, aqueous, soapy-film and are stabilized by a mixture of nonionic and ionic surfactants. Retention of lipase within the CLAs is primarily determined by electrostatic interactions between the surface charges on the protein and those of the anionic surfactant used (SDS) because leakage of the lipase from dispersed CLAs was reduced at low continuous phase pH (相似文献   

2.
Research within the field of colloidal liquid aphrons (CLAs) for enzyme immobilization has often used ionic surfactants for the retention of enzymes. Although these charged interactions allow for enhanced immobilization, they can often lead to denaturation of enzyme activity, and even release of the protein. Sodium alginate has been used in drug delivery applications due to its low toxicity and charged interactions that allow for encapsulation. Hence, alginate systems can be used as an alternative to ionic surfactants in CLA immobilization. This paper presents, for the first time, the use of sodium alginate as potential ligand for enhanced CLA immobilization. The use of five model proteins; lysozyme, bovine serum albumin, ovalbumin, insulin, and α-chymotrypsin, of various pIs and hydrophobicities, showed the relevance of electrostatic interactions in promoting binding with sodium alginate when the pH < pI, with 100% immobilization attributed to alginate incorporated CLAs over general nonionic formulations. Furthermore, above their pI, >80% protein recovery was observed, with activity and conformation comparable to their native counterparts. Finally, the use of proteolysis showed that as the degree of ionic bonding increased between the protein and sodium alginate, the degree of protease resistance decreased due to conformational changes experienced during binding.  相似文献   

3.
A catalase preparation from a newly isolated Bacillus sp. was covalently immobilized on silanized alumina using glutaraldehyde as crosslinking agent. The effect of the coupling time of the enzyme-support reaction was determined in terms of protein recovery and immobilization yield and a certain balance point was found after which the activity recovery decreased. The activity profile of the immobilized catalase at high pH and temperature was investigated. The immobilized enzyme showed higher stabilities (214 h at pH 11, 30°C) at alkaline pH than the free enzyme (10 h at pH 11, 30°C). The immobilized catalase was inhibited by anionic stabilizers or surfactants added to the hydrogen peroxide substrate solution.  相似文献   

4.
Mushroom tyrosinase was immobilized from an extract onto the totally cinnamoylated derivative of D-sorbitol by direct adsorption as a result of the intense hydrophobic interactions that took place. The immobilization pH value and mass of lyophilized mushrooms were important parameters that affected the immobilization efficiency, while the immobilization time and immobilization support concentration were not important in this respect. The extracted/immobilized enzyme could best be measured above pH 3.5 and the optimum measuring temperature was 55 degrees C. The apparent Michaelis constant using 4-tert-butylcatechol as substrate was 0.38+/-0.02 mM, which was lower than for the soluble enzyme from Sigma (1.41+/-0.20 mM). Immobilization stabilized the extracted enzyme against thermal inactivation and made it less susceptible to activity loss during storage. The operational stability was higher than in the case of the tyrosinase supplied by Sigma and immobilized on the same support. The results show that the use of p-nitrophenol as enzyme-inhibiting substrate during enzyme extraction and immobilization made the use of ascorbic acid unnecessary and is a suitable method for extracting and immobilizing the tyrosinase enzyme, providing good enzymatic activity and stability.  相似文献   

5.
Comparative studies have been carried out on soluble and immobilized yeast hexokinase (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1). The enzyme was immobilized by covalent attachment to a polyacrylamide type support containing carboxylic functional groups. The effects of immobilization on the catalytic properties and stability of hexokinase were studied. As a result of immobilization, the pH optimum for catalytic activity was shifted in the alkaline direction to ~pH 9.7. The apparent optimum temperature of the immobilized enzyme was higher than that of the soluble enzyme. The apparent Km value with D-glucose as substrate increased, while that with ATP as substrate decreased, compared with the data for the soluble enzyme. Differences were found in the thermal inactivation processes and stabilities of the soluble and immobilized enzymes. The resistance to urea of the soluble enzyme was higher at alkaline pH values, while that for the immobilized enzyme was greatest at ~pH 6.0.  相似文献   

6.
Alcalase was scarcely immobilized on monoaminoethyl-N-aminoethyl (MANAE)-agarose beads at different pH values (<20% at pH 7). The enzyme did not immobilize on MANAE-agarose activated with glutaraldehyde at high ionic strength, suggesting a low reactivity of the enzyme with the support functionalized in this manner. However, the immobilization is relatively rapid when using low ionic strength and glutaraldehyde activated support. Using these conditions, the enzyme was immobilized at pH 5, 7, and 9, and in all cases, the activity vs. Boc-Ala-ONp decreased to around 50%. However, the activity vs. casein greatly depends on the immobilization pH, while at pH 5 it is also 50%, at pH 7 it is around 200%, and at pH 9 it is around 140%. All immobilized enzymes were significantly stabilized compared to the free enzyme when inactivated at pH 5, 7, or 9. The highest stability was always observed when the enzyme was immobilized at pH 9, and the worst stability occurred when the enzyme was immobilized at pH 5, in agreement with the reactivity of the amino groups of the enzyme. Stabilization was lower for the three preparations when the inactivation was performed at pH 5. Thus, this is a practical example on how the cooperative effect of ion exchange and covalent immobilization may be used to immobilize an enzyme when only one independent cause of immobilization is unable to immobilize the enzyme, while adjusting the immobilization pH leads to very different properties of the final immobilized enzyme preparation. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2768, 2019.  相似文献   

7.
The α-amylase of Bacillus amyloliquifaciens TSWK1-1 (GenBank Number, GQ121033) was immobilized by various methods, including ionic binding with DEAE cellulose, covalent coupling with gelatin and entrapment in polyacrylamide and agar. The immobilization of the purified enzyme was most effective with the DEAE cellulose followed by gelatin, agar and polyacrylamide. The K m increased, while V max decreased upon immobilization on various supports. The temperature and pH profiles broadened, while thermostability and pH stability enhanced after immobilization. The immobilized enzyme exhibited greater activity in various non-ionic surfactants, such as Tween-20, Tween-80 and Triton X-100 and ionic surfactant, SDS. Similarly, the enhanced stability of the immobilized α-amylase in various organic solvents was among the attractive features of the study. The reusability of the immobilized enzyme in terms of operational stability was assessed. The DEAE cellulose immobilized α-amylase retained its initial activity even after 20 consequent cycles. The DEAE cellulose immobilized enzyme hydrolyzed starch with 27 % of efficiency. In summary, the immobilization of B. amyloliquifaciens TSWK1-1 α-amylase with DEAE cellulose appeared most suitable for the improved biocatalytic properties and stability.  相似文献   

8.
Levansucrase of Zymomonas mobilis was immobilized onto the surface of hydroxyapatite by ionic binding. Optimum conditions for the immobilization were: pH 6.0, 4 h of immobilization reaction time, and 20 U of enzyme/g of matrix. The enzymatic and biochemical properties of the immobilized enzyme were similar to those of the native enzyme, especially towards the effect of salts and detergents. The immobilized enzyme showed sucrose hydrolysis activity higher as that of the native enzyme, but levan formation activity was 70% of the native enzyme. HPLC analysis of levan produced by immobilized enzyme showed the presence of two different types of levan: high-molecular-weight levan and low-molecular-weight levan. The proportion of low-molecular-weight levan to total levan produced by the immobilized enzyme was much higher than that with the native enzyme, indicating that immobilized levansucrase could be applied to produce low-molecular-weight levan. Immobilized levansucrase retained 65% of the original activity after 6 times of repeated uses and 67% of the initial activity after 40 d when stored at 4 °C.  相似文献   

9.
The purpose of the present investigation was to study the pH dependence of both the immobilization process and the enzyme activity of a feruloyl esterase (FoFaeC from Fusarium oxysporum) immobilized in mesoporous silica. This was done by interpreting experimental results with theoretical molecular modeling of the enzyme structure. Modeling of the 3D structure of the enzyme together with calculations of the electrostatic surface potential showed that changes in the electrostatic potential of the protein surface were correlated with the pH dependence of the immobilization process. High immobilization yields were associated with an increase in pH. The transesterification activity of both immobilized and free enzyme was studied at different values of pH and the optimal pH of the immobilized enzyme was found to be one unit lower than that for the free enzyme. The surface charge distribution around the binding pocket was identified as being a crucial factor for the accessibility of the active site of the immobilized enzyme, indicating that the orientation of the enzyme inside the pores is pH dependent. Interestingly, it was observed that the immobilization pH affects the specific activity, irrespective of the changes in reaction pH. This was identified as a pH memory effect for the immobilized enzyme. On the other hand, a change in product selectivity of the immobilized enzyme was also observed when the transesterification reaction was run in MOPS buffer instead of citrate phosphate buffer. Molecular docking studies revealed that the MOPS buffer molecule can bind to the enzyme binding pocket, and can therefore be assumed to modulate the product selectivity of the immobilized enzyme toward transesterification.  相似文献   

10.
Cultural conditions optimum for beta-galactosidase production by Saccharomyces anamensis are pH 4.5, temperature 26 +/- 2 degrees C, and 30 h of incubation period. Addition of lactose at 24 h fermentation greatly increase the level of enzyme. Optimum pHl, temperature, pH stability, and thermostability of yeast beta-galactosidase are negligibly affected by immobilization. The K(m) values of enzyme in the native and immobilized cells are 102mM and 148mM, respectively. Glucose noncompetitively inhibits the enzyme activity. Addition of substances such as dithioerythritol, glutathione, and bovine serum albumin to the native cell during assay procedure and immobilized cell prior to immobilization have stimulatory effects on enzyme activity. Metal ions like Ca(2+), Mg(2+) enhance the beta-galactosidase activity for both intact and bound cells. Immobilized cells retain 68.6% of the beta-galactosidase activity of intact cells and there is no significant loss of activity on storage at 4 degrees C for 28 days.  相似文献   

11.
Immobilized cell and enzyme hollow fiber reactors have been developed for a variety of biochemical and biomedical applications. Reported mathematical models for predicting substrate conversion in these reactors have been limited in accuracy because of the use of free-solution kinetic parameters. This paper describes a method for determining the intrinsic kinetics of enzymes immobilized in hollow fiber reactor systems using a mathematical model for diffusion and reaction in porous media and an optimization procedure to fit intrinsic kinetic parameters to experimental data. Two enzymes, a thermophilic beta-galactosidase that exhibits product inhibition and L-lysine alpha-oxidase, were used in the analysis. The intrinsic kinetic parameters show that immobilization enhanced the activity of the beta-galactosidase while decreasing the activity of L-lysine alpha-oxidase. Both immobilized enzymes had higher Km values than did the soluble enzyme, indicating less affinity for the substrate. These results are used to illustrate the significant improvement in the ability to predict substrate conversion in hollow fiber reactors.  相似文献   

12.
The carminomycin 4-O-methyltransferase enzyme from Streptomyces peucetius was covalently immobilized on 3M Emphaze ABI-activated beads. Optimal conditions of time, temperature, pH, ionic strength, enzyme, substrate (carminomycin), and cosubstrate (S-adenosyl-L-methionine) concentrations were defined for the immobilization reaction. Protein immobilization yield ranged from 52% to 60%. Including carminomycin during immobilization had a positive effect on the activity of the immobilized enzyme but a strongly negative effect on the coupling efficiency. The immobilized enzyme retained at least 57% of its maximum activity after storage at 4 degrees C for more than 4 months. The properties of the free and immobilized enzyme were compared to determine whether immobilization could alter enzyme activity. Both soluble and bound enzyme exhibited the same pH profile with an optimum near 8.0. Immobilization caused an approximately 50% decrease in the apparent K(m) (K'(m)) for carminomycin while the K'(m) for S-adenosyl-L-methionine was approximately doubled. A 57% decrease in the V(max) value occurred upon immobilization. These changes are discussed in terms of active site modifications as a consequence of the enzyme immobilization. This system has a potential use in bioreactors for improving the conversion of carminomycin to daunorubicin. (c) 1995 John Wiley & Sons, Inc.  相似文献   

13.
The main objective of the present work is to study the immobilization process of Aspergillus oryzae β-galactosidase using the ionic exchange resin Duolite A568 as carrier. Initially, the immobilization process by ionic binding was studied through a central composite design (CCD), by analyzing the simultaneous influences of the enzyme concentration and pH on the immobilization medium. The results indicate that the retention of enzymatic activity during the immobilization process was strongly dependant of those variables, being maximized at pH 4.5 and enzyme concentration of 16 g/L. The immobilized enzyme obtained under the previous conditions was subjected to a cross-linking process with glutaraldehyde and the conditions that maximized the activity were a glutaraldehyde concentration of 3.83 g/L and cross-linking time of 1.87 h. The residual activity of the immobilized enzyme without glutaraldehyde cross-linking was 51% of the initial activity after 30 uses, while the enzyme with cross-linking immobilization was retained 90% of its initial activity. The simultaneous influence of pH and temperature on the immobilized β-galactosidase activity was also studied through a central composite design (CCD). The results indicate a greater stability on pH variations when using the cross-linking process.  相似文献   

14.
Glucoamylase (GA) from Aspergillus niger was immobilized via ionic adsorption onto DEAE-agarose, Q1A-Sepabeads, and Sepabeads EC-EP3 supports coated with polyethyleneimine (PEI). After optimization of the immobilization conditions (pH, polymer size), it was observed that the adsorption strength was much higher in PEI-Sepabeads than in Q1A-Sepabeads or DEAE-supports, requiring very high ionic strength to remove glucoamylase from the PEI-supports (e.g., 1 M NaCl at pH 5.5). Thermal stability and optimal temperature was marginally improved by this immobilization. Recovered activity depended on the substrate used, maltose or starch, except when very low loading was used. The optimization of the loading allowed the preparation of derivatives with 750 IU/g in the hydrolysis of starch, preserving a high percentage of immobilized activity (around 50%).  相似文献   

15.
16.
The catalytic properties of a beta-galactosidase from Aspergillus oryzae, entrapped into a spongy polyvinyl alcohol cryogel, were studied. This polymeric matrix was selected because of its mild conditions of preparation and its stability, biocompatibility, structural strength and diffusive properties. The enzyme was entrapped, in high percentage, into cryogel sponges and its activity and kinetic parameters were determined and compared with those of the free enzyme, using as substrates o-nitrophenyl-beta-galactopyranoside (ONPG) or lactose. The immobilized enzyme showed a reduced activity with ONPG and lactose, probably because of substrate diffusion limitations through the matrix, but it was more stable to temperature, pH and ionic strength than the free enzyme. Lactose hydrolysis under continuous experimental conditions was performed using the matrix-enzyme cited above.  相似文献   

17.
Glucose oxidase (beta-D-glucose: oxygen 1-oxidoreductase, EC 1.1.3.4) was covalently coupled to silica-based supports containing aldehyde functional groups. The activity of the immobilized enzyme was about 1000 U/g support. The optimum pH of the catalytic activity was 5.5 for the soluble enzyme and 6.0 for the immobilized enzyme. With glucose as a substrate the Km value of the immobilized enzyme was higher than in case of the soluble enzyme. The immobilized enzyme was found to be more thermostable than the soluble one. The immobilization did not affect the stability of glucose oxidase against the denaturing effect of urea.  相似文献   

18.
A heterogeneous multienzyme preparation with the peptidase activity, isolated from the cells of Pseudomonadacea bacteria, was immobilized on alumina. The specific activity of the immobilized enzyme complex is not a simple function of the bound protein quantity, but depends on immobilization conditions. An additional glutaraldehyde treatment results in higher thermostability of the immobilized enzyme preparation. The substrate specificity of the preparation retains after immobilization, and it becomes less sensitive to pH changes.  相似文献   

19.
Summary We have used response surface methodology to study the interactions between various parameters (pH, temperature, enzyme concentration) controlling the immobilization of ribonuclease A on to glutaraldehyde activated-amine Spherosil beads. The optimum activity of immobilized ribonuclease A was observed at pH=9.1. The specific activity of the immobilized enzyme was affected by the pH and by the enzyme concentration.  相似文献   

20.
近年来溶胶-凝胶法固定脂肪酶已成为研究热点。选用TMOS、MTMS、ETMS和PTMS 4种硅烷试剂对黑曲霉脂肪酶进行了固定化研究。固定化的最佳配方为ETMS/TMOS=5:1、水与硅烷试剂分子比为8;固定化脂肪酶的固定率为80.2%、相对活性为136.3%;以乳化橄榄油作为底物,在50℃和pH4.0的条件下,固定化脂肪酶与游离脂肪酶Km分别为1.899×10-4M和2.789×10-4M;最适反应pH均为pH4.0,固定化脂肪酶在pH4.0~pH5.5之间其活性能保持95%以上;固定化脂肪酶最适反应温度为60℃,较游离脂肪酶提高了10℃;固定化脂肪酶的酸碱稳定性和热稳定性较非固定化酶有显著的提高。固定化脂肪酶的使用寿命和保存稳定性良好,使用12次后仍能够保留71.7%活性,在室温避光条件下保存180天后仍可保留79.2%活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号