首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Patterns in the relative importance of structural attributes and growth forms along fynbos and non-fynbos coenoclines were studied to test the hypothesis that there would be less structural variation in the former because the overriding influence of low levels of soil nutrients would be manifest in a great deal of structural convergence in fynbos. The coenoclines were ranged along identical environmental gradients of increasing altitude, rainfall and soil moisture and decreasing climatic variability. Results showed that along the entire fynbos coenocline vegetation was structurally a small-leaved sclerophyllous shrubland with a graminoid understorey and, usually, a large-leaved (proteoid) shrub overstorey. Fynbos structure was interpreted largely as a response to low levels of soil nutrients. Non-fynbos vegetation ranged from mixed succulent-sclerophyllous and spiny large-leaved thicket at lower altitudes to tall mesic forest at the upper end of the gradient. Non-fynbos structure was explained in terms of variations in soil moisture and climate. An analysis of the biogeographical affinities of sample floras at sites along the coenoclines showed that fynbos vegetation was dominated by taxa endemic to the Cape phytochorion, although phytochorological mixing was pronounced at the lower altitude sites. The level of local endemism in the fynbos coenocline was relatively high; nearly all endemics were Cape fynbos taxa and their incidence increased with increasing altitude. These data indicate that fynbos vegetation has had a lengthy history in the southeastern Cape and that high altitude sites would have comprised a refuge for Cape taxa during unfavourable climatic periods. Non-fynbos vegetation ranged from dry subtropical Tongaland-Pondoland thicket with a strong Karoo-Namib component to temperate Afromontane forest. Levels of endemism were lower than the fynbos coenocline and decreased with increasing altitude. The high number of karroid endemics found in both coenoclines at low altitudes suggests that karroid vegetation would have been more widespread in the past, probably during the last glacial which was considerably drier than the present Holocene interglacial.  相似文献   

2.
This study investigates the influence of texture, soil moisture and nutrient status on the growth and survival of seedlings of two typical fynbos (Leucadendron pubescens and Passerina vulgaris) and succulent karoo (Ruschia spp.) species, which grow in the boundary zone between these two vegetation types. Seedlings of each species were grown in shalederived and sandstone‐derived soils and under xeric and mesic regimes. Under the xeric regime, the shale‐derived and sandstone‐derived soils represented fine and coarse‐textured soils, respectively. Under the mesic regime, the same soils represented nutrient‐rich and nutrient‐poor soils, respectively. The seedlings of both fynbos species died rapidly under the xeric regime, irrespective of soil type. In contrast, the succulent karoo seedlings survived for over 77 days without water. Under mesic conditions, the fynbos seedlings grew faster than the succulent karoo seedlings, irrespective of soil type. Fynbos seedlings appear to be directly limited by the environment (moisture and salinity), whereas succulent karoo seedlings may be limited by interactions with other plants.  相似文献   

3.
Abstract Fynbos is the main vegetation of the Cape Floristic Region, a biodiversity hotspot that occurs in southwestern South Africa. A major question concerning the fynbos ecosystem is how it supports abundant and diverse vegetation on soils derived from nutrient-poor bedrock. In addition to marine aerosols (recycled sea salts), geochemical analyses reported here suggest that dust (aeolian) deposition represents a significant source of nutrients (for example, K, Ca and Zn) to the fynbos ecosystem. Headwater portions of the Boontjies River sub-catchment near the Cederberg Mountains support mountain fynbos communities that are entirely underlain by the Peninsula Formation, a quartz arenite with greater than 98 wt% SiO2. Fynbos soils in these areas are composed of quartzose sand with 3–6 wt% kaolinitic clay and 1–2 wt% organic carbon. The minor amount of feldspar and mica minerals in the bedrock (0.5 wt% Al2O3) suggests an aeolian source for much of the clay minerals in the soil. The isotope composition of soluble Pb and Sr from fynbos vegetation and soils indicates a mixture of anthropogenic and terrigenous sources, most likely from washout of combusted petrol and dust from the arid interior particularly in association with Berg Wind events. Approximate mass balance calculations indicate that washout of aerosols provides an important source of nutrients such as Ca, K, P, Fe, Mn and Zn which the fynbos ecosystem is highly effective in retaining.  相似文献   

4.
Insect diversity in Cape fynbos and neighbouring South African vegetation   总被引:1,自引:0,他引:1  
Aim  It has often been suggested that South Africa's Cape fynbos shrublands, although extremely rich in plant species, are poor in insects, thus representing a notable exception from the broad plant–insect diversity relationship. The aims of this study were to compare the diversity patterns of plant-inhabiting insects in fynbos and the vegetation of three neighbouring biomes (grassland, subtropical thicket, and Nama-karoo), and to test for a general relationship between plant diversity and insect diversity across these biomes.
Location  South-western to south-eastern South Africa.
Methods  We conducted seasonal plant surveys and sweep insect sampling in 10 × 10 m plots in the Baviaanskloof Conservation Area (Eastern Cape), where all four biomes occur. We also conducted once-only collections in the core area of each biome.
Results  Fynbos plots had insect diversity values similar to those of grassland and subtropical thicket (a dense, evergreen and spinescent shrubland with a high abundance of succulents and climbers), and significantly higher than Nama-karoo (an open, semiarid shrubland). A remarkably strong positive relationship was found between plant and insect species richness.
Main conclusions  Previous generalizations were based on a few insect groups (e.g. butterflies, under-represented in fynbos), but ignored published results on other groups (e.g. galling insects, which are in fact over-represented in this vegetation). We show that, overall, insect diversity in fynbos is comparable to that of neighbouring biomes. Fynbos vegetation does not represent a significant exception from the broad positive relationship between plant diversity and insect diversity.  相似文献   

5.
The species-rich fynbos of the southern Langeberg Mountains, South Africa was studied along three transects (a) to evaluate the compatibility of a floristic classification of the southern Langeberg vegetation with a fynbos biome-wide structural classification of mountain vegetation, (b) to describe the environmental gradients to which the vegetation responds and (c) to investigate the relationship between the vegetation and the abiotic environmental variables which determine the pattern of distribution of the fynbos communities on the southern Langeberg.Principal Components Analysis (PCA) was used to determine correlations between environmental variables independent of vegetation data. Similarities between the 46 communities (determined by floristics) from the three transects were determined using cluster analysis and grouped into 14 higher-level units. Detrended Correspondence Analysis (DCA) was then used for indirect gradient analysis after which Canonical Correspondence Analysis (CCA) was used in a direct gradient analysis of the vegetation with the environmental variables.Compatibility between the floristic and structural classification of the vegetation was analysed. The PCA principal gradient was defined as one from sites with high rock cover, shallow soils and north aspects to those with low rock cover, deeper soils and south aspects. The second gradient is most strongly positively correlated with percentage organic carbon and most strongly negatively correlated with soil clay content. In contrast to the PCA, the DCA showed that the principal gradient is a precipitation gradient, with the response of the vegetation dominated by the change from wet to dry conditions and from low to high winter incoming radiation. The CCA showed that the variation in the mountain habitats to which the vegetation responds can be predicted from a combination of a few environmental variables. The principal gradient was one of change from high to low mean annual precipitation with an opposite change in winter incoming radiation. The second gradient was described by percentage surface rock cover and soil clay content. A simple model using the environmental factors selected in the CCA was proposed for predicting the distribution of floristically determined community groups in the fynbos vegetation of the Langeberg and the southern Cape coastal mountains in general.  相似文献   

6.
Large tracts of lowland and foothill landscape in the bimodal rainfall, eastern Fynbos Biome of South Africa lack an overstorey of nonsprouting, serotinous Proteaceae (proteoids). Scattered stands of proteoids in the grassy fynbos that dominate these landscapes suggest that proteoids have the potential to be more widespread. Here, we assessed whether interactions between the resprouting graminoid (predominantly C4 grasses) understorey and the proteoid overstorey could explain the sparseness of proteoids in grassy fynbos. We quantified postfire seedling growth and graminoid cover for three proteoid (Protea) species in beneath‐proteoid canopy and open microsites at sixteen locations in the eastern Fynbos Biome. Contrary to studies undertaken in proteoid fynbos west of our study area, we found no consistent differences between graminoid cover and growth of proteoid seedlings in beneath‐canopy and open microsites. Nor did we find consistent negative relationships between graminoid cover and seedling growth. We conclude that graminoid–proteoid interactions do not explain the sparseness of proteoids in the eastern Fynbos Biome.  相似文献   

7.
Global patterns in local number of insect galling species   总被引:3,自引:0,他引:3  
Abstract. We evaluate a three-part hypothesis explaining why gall-inducing insect species richness is so high in scleromorphic vegetation: (1) persistence of low nutrient status scleromorphic leaves facilitates the galling habit in warm temperate latitudes; (2) favourable colonization sites for gallers result from reduced hygrothermal stress, high phenolics in the outer cortex of the gall, and reduced carnivore and fungal attack in the gall; and (3) in more mesic sites, mortality is high due to carnivore attack and invasion of galls by fungi. Over 280 samples of local species of galling herbivorous insects from fourteen countries on all continents except Antarctica revealed a strong pattern of highest richness in warm temperate latitudes, or their altitudinal equivalents. The peak of galling species richness on the latitudinal gradient from the equator into the Arctic was between 25 to 38° N or S. Galling species were particularly diverse in sclerophyllous vegetation, which commonly had greater than twelve species per local sample. In mesic, non-sclerophyllous vegetation types the number of galling species was lower with twelve or fewer species present. Many sites in sclerophyllous vegetation supported between thirteen and forty-six galling species locally, including campina islands in Amazonia, cerrado savanna in central Brazil, the Sonoran Desert in Arizona and Mexico, shrubland in Israel, fynbos in South Africa and coastal scleromorphic vegetation in Australia. At the same latitude, or its elevational equivalent, galling species richness was significantly higher in relatively xeric sites when compared to riparian or otherwise mesic habitats, even when scleromorphic vegetation dominated the mesic sites. The results were consistent with the hypothesis and extend to a more general level the patterns and predictions on the biogeography of gall-inducing insects.  相似文献   

8.
Biome boundaries are expected to be sensitive to changes in climate and disturbance, because it is here that ecological communities are at environmental, ecological or disturbance limits. Using palaeoecology to study ecosystem dynamics at biome boundaries provides opportunities for understanding ecosystem resilience or sensitivity at ecologically meaningful timescales, and under varying climatic and disturbance conditions.The fynbos biome is a megadiverse Mediterranean type shrubland, found only in South Africa, that is threatened by climate change, land-use change and invasion by alien species. We used palaeoecological records from the semi-arid and mesic boundaries of the fynbos biome to test hypotheses regarding ecosystem resilience over timescales of centuries to millennia. We hypothesised that fynbos would expand at its mesic boundary at the expense of afrotemperate forest under drier and / or more fire prone conditions. In contrast, we hypothesised that at the semi-arid boundary, fynbos would expand at the expense of succulent karoo under wetter and cooler and / or more fire-prone conditions. Contrary to our expectations, the fossil pollen record at both biome boundaries showed remarkable stability at centennial - millennial timescales. To explain our results, we generated new hypotheses exploring possible mechanisms that might confer resilience.At the mesic (temperate) boundary, we suggest that decreased seasonality of rainfall during drier phases favoured fire and fynbos persistence, while in wetter periods, increased seasonality of rainfall resulted in enhanced summer drought stress, inhibiting forest expansion. At this boundary, internal reorganisation from grassy to proteoid fynbos states conferred resilience through resistance. At the succulent karoo boundary, we suggest that increased aridity was offset by less seasonality of rainfall, which enhanced biomass and allowed fire to persist, favouring persistence of fynbos. At this boundary, fynbos sensu stricto retreated during arid phases but recovered during climate amelioration, consistent with resilience through recovery. In both cases, this mega-diverse, disturbance-adapted flora provided a range of traits that enabled fynbos to persist despite environmental perturbation. Our findings agree with general observations that for ecosystems in regions of ample resource availability (i.e. at the mesic boundary), biotic interactions and disturbance tend to become more important in ecosystem dynamics, whereas in regions of scarce resources (in this case water scarcity at the semi-arid boundary) abiotic stress is more important. Our findings contribute to debates over the mechanisms that confer resistance and resilience to environmental change. Understanding and conserving the processes and mechanisms underpinning its resilience will be critical to effective conservation planning.  相似文献   

9.
The idea of alternate stable states (ASS) has been used to explain the juxtaposition of distinct vegetation types within the same climate regime. ASS may explain the co‐existence of relatively inflammable closed‐canopy Afrotemperate forest patches (‘Forest’) within fire‐prone open‐canopy Fynbos in the Cape Floristic Region (CFR) on sandstone‐derived soils. We evaluated the hypothesis that although fire and local topography and hydrology likely determined the paleogeographic boundaries of Forest, present‐day boundaries are additionally imposed by emergent edaphic properties and disturbance histories. We studied vegetation and edaphic properties of Forest‐Transition‐Fynbos vegetation at two sites within the CFR on sandstone‐derived soils and tracked historical change using aerial photography. Whereas Forest and Fynbos have changed little in extent or density since 1945, transition vegetation increased into areas formerly occupied by Fynbos. Forest soils were ubiquitously more nutrient‐rich than Fynbos soils, with transition soils being intermediate. These edaphic differences are not due to geological differences, but instead appear to have emerged as a consequence of different nutrient cycling within the different ecosystems. Soil nutrients are now so different that a switch from Fynbos to Forest is unlikely, in the short term (i.e. decades). Floristically and nutritionally, transitional vegetation is more similar to Fynbos than Forest and may be less resilient to changes in exogenous drivers (e.g. fire). Our findings are consistent with the idea that geologically Forest and Fynbos are largely fire‐derived long‐term ASS, with the stability of each state reinforced by marked soil nutrient differences. In contrast, the intermediate transitional vegetation that might switch states is unlikely to be stable.  相似文献   

10.
The Cape Fynbos region of South Africa, a global biodiversity hotspot, hosted a diverse large mammal fauna till shortly after permanent European settlement (1652). How these animals survived in this exceptionally nutrient-poor environment is puzzling and it is generally believed that they restricted their movements to the more fertile shale areas. We tested the hypothesis that large herbivores avoid nutrient-poor limestone and sandstone fynbos shrublands in favour of shale-derived renosterveld vegetation using strontium (Sr) isotope analysis. If this technique could reconstruct the preferred feeding habitats of the contemporary fauna, it might also be useful for reconstructing the preferred feeding grounds of an extinct fauna. Using the assumption that small rodents have spatially restricted foraging activities, we determined the 87Sr/86Sr isotope ratios of rodent teeth to establish the isotopic signal characteristic of the different geological substrates in the area. We then analysed 87Sr/86Sr isotope ratios in the bones of a number of different large herbivores found in De Hoop Nature Reserve using laser ablation multi-collector inductively coupled plasma mass spectrometry. These values were compared to the bioavailable (rodent) values on the respective geological substrates. The technique identified differences in feeding substrate selection between different species and groups of the same species. The results also showed that shale renosterveld shrubland is not the exclusive source of nutrition for the large herbivores. Strikingly different isotope ratios among individuals in some populations pointed to significant dispersal events from distant sources. However, we were unable to pinpoint the exact feeding areas using Sr isotope analysis probably because some animals use a combination of substrates for feeding and because the geology of the study area is complex with graded isotope signals. We suggest that this technique is a valuable additional tool for exploring large mammal foraging behaviour on habitats associated with contrasting and less complex geology.  相似文献   

11.
The Cape Peninsula, a 470 km2 area of rugged scenery and varied climate, is located at the southwestern tip of the Cape Floristic Region, South Africa. The Peninsula is home to 2285 plant species and is a globally important hot-spot of biodiversity for higher plants and invertebrates. This paper provides a broad overview of the physiography, biological attributes and history of human occupation of the Peninsula. The Peninsula is characterized physiographically by extremely high topographical heterogeneity, very long and steep gradients in annual rainfall, and a great diversity of nutrient-poor soils. Thus, the Peninsula supports a high number of habitats and ecological communities. The predominant vegetation is fynbos, a fire-prone shrubland, and 12 broadly characterized fynbos types have been described on the Peninsula. Animal community structure, especially with regard to invertebrates, is poorly known. Vertebrate community structure is probably strongly influenced by nutrient poverty and recurrent fire. Generally, most vertebrates are small and typically occur in low numbers. Some invertebrates play keystone roles in facilitating ecological processes. Human occupation of the Peninsula was limited, until relatively recently, by nutrient poverty. After Dutch colonization in 1652, direct and indirect impacts on the natural ecosystems of the Peninsula escalated dramatically, and by 1994, some 65% of original natural habitat was either transformed by urbanization and agriculture, or invaded by alien plants. Nonetheless, there is still excellent potential to conserve the Cape Peninsula's remaining biodiversity.  相似文献   

12.
Commercial plantations and alien tree invasions often have substantial negative impacts on local biodiversity. The effect of plantations on faunal communities in the fire‐adapted fynbos vegetation of the Cape Floristic Region biodiversity hotspot is not yet well quantified. We studied small mammal community structure in alien Pinus radiata plantations and adjacent fynbos regenerating after clear‐felling of plantations on the Cape Peninsula, South Africa. Small mammal sampling over 1,800 trap‐nights resulted in 480 captures of 345 individuals (excluding recaptures) representing six species. Significantly more species, individuals (12 X) and biomasses (29 X) of small mammals occurred on recovering fynbos sites compared to plantations. This was commensurate with a higher diversity of plant growth forms, vegetation densities and live vegetation biomass. Only one small mammal species, the pygmy mouse (Mus minutoides), was consistently trapped within plantations. Fynbos sites were dominated by three small mammal species that are ecological generalists and early successional pioneer species, rendering the recovering fynbos slightly depauperate in terms of species richness and evenness relative to other studies done in pristine fynbos. We make three recommendations for forestry that would facilitate the restoration of more diverse natural plant communities and progressively more diverse and dynamic small mammal assemblages in a key biodiversity hotspot.  相似文献   

13.
Rainfall is the key driver of woody cover and life-history attributes in arid grassy biomes where disturbance is mostly rare and of low intensity. However, relatively little is known about the causes of woody community assembly in arid systems that are subject to periodic intense fire disturbance. In the central Australian desert region, grassland and shrubland fire can occur following above average rainfall. Patterns of species regeneration response (resprouting vs. reseeding) are poorly documented in this region. We tested the effects of rainfall and fire on species’ resprouting response across the latitudinal rainfall–fire gradient using constrained ordination of 385 sites and general linear models. A resprouting response was significantly greater in grassland habitat as well as at the high end of the rainfall–fire gradient. The frequency of epicormic stem resprouting also increased along the rainfall–fire gradient. We attribute this pattern to the combined effects of frequent fire and rapid gap closure on seedlings of slow-growing, fire-killed woody species in higher rainfall grasslands. In addition, we also demonstrated that rapidly maturing fire-recruiting species are similarly favoured by high fire disturbance. In arid grassy ecosystems, unlike in mesic savanna, flammable grassland supports a mix of resprouting and recruitment functional types, and habitat membership cannot be predicted by resprouting capacity. Regions, such as central Australia, that are characterised by grassland–shrubland mosaics of high and low fuel biomass, respectively, pose specific challenges to fire ecology research that are possibly best dealt with by focussing modelling at the habitat scale.  相似文献   

14.
Conserving biodiversity on mountains holds particular challenges, with topographic species beta diversity being high. In turn, conserving mountain biodiversity in the heart of a biodiversity hotspot, with intense urbanization on its lower slopes, poses further challenges. We investigate here an iconic mountain at the southern tip of Africa, which is under multiple human pressures, while receiving much conservation attention. We sought here some general principles to guide conservation management of this and other similar mountains. Our focal organisms were surface-active invertebrates, as they are abundant, diverse, and environmentally sensitive at point localities. We show that vegetation structure and elevation were the most important environmental variables determining this diversity. Type of fynbos vegetation, proximity of forest to a river, aspect, and abundance of the alien Argentine ant Linepithema humile, had no significant influence. Suburban woodland species richness and abundance had a non-significant difference to that of natural forest. Fynbos had high species beta diversity of invertebrates, suggesting that large areas of this dominant vegetation type should be conserved. However, many specialist and highly local endemic species were in forest, highlighting the irreplaceability of forest habitats. Such a mountain, with its complex topography, requires total protection, as there is no room for loss of any part of the mountain. We emphasize that, while the upper slope and summit are well protected, the lower slopes are in need of urgent attention, a situation which mirrors that in Europe.  相似文献   

15.
Grassy woodland, grassy shrubland, grassy sedgeland, tussock grassland and grassland are extensive on basalt, limestone and fine-textured Quaternary deposits, are occasional on dolerite, granite and fine-grained sedimentary rocks, but are absent from the siliceous mountains of Tasmania. With the exception of limestone lithosols, the grassy communities are confined to relatively deep soils with a low surface rock cover. Much of the area of the grassy communities below the climatic treeline has clearly been forest in the recent past, although some of the higher subalpine plains seem likely to have been grassy at least since the peak of the Last Glacial. The first axis of an ordination of floristic data from 190 quadrats had at one extreme the grassy communities which most resembled in their species composition the sedgelands and sclerophyll shrub woodlands of the west of Tasmania, and at the other extreme the grassy woodlands on relatively fertile, well drained sites in the centre and east of Tasmania. The second axis was correlated with altitude, probably inversely reflecting the growing season. The third axis was related most closely to a soil drainage index. Many of the 15 communities recognized from a polythetic divisive classification of the quadrats have highly local distributions. Six of the communities are totally unreserved and four are poorly reserved. An iterative method is used to develop a minimum reservation strategy involving seven areas.  相似文献   

16.
17.
The endophagous insects associated with Proteaceae of the Cape fynbos were compared to endophage assemblages from more northern non-Capensis Proteaceae. Insects were collected from Proteaceae in the Cape on a regular basis and additional records obtained from insect collections. Northern samples were collected more opportunistically or records were obtained from collections or through personal communication. The Cape fynbos genus Protea is utilized by many more insect taxa than the non-fynbos Protea species. The fynbos Proteaceae has very few species in common with the northern Proteaceae, yet each has many of their own distinct species. This suggests that the fynbos endophage insect fauna is distinct from that of the other regions. It appears that the high diversity of host plants in the fynbos has contributed to generating high, local endophagous insect diversity.  相似文献   

18.
We analysed variation in microbial community richness and function in soils associated with a fire‐induced vegetation successional gradient from low maquis (shrubland) through tall maquis to rainforest on metal‐rich ultramafic soils at Mt Do, New Caledonia. Random amplified polymorphic DNA fingerprinting was used to determine the extent of genetic relatedness among the microbial communities and indicated that the open and tall maquis microbial communities were more similar to each other than they were to the rainforest community. Sole‐source carbon utilization indicated variation in the microbial communities, again with greater diversity in rainforest soils. Plate counts showed that both rainforest and maquis soils contained bacteria that can grow in the presence of up to 20 mmol L?1 nickel and 10 mmol L?1 chromium. Understanding microbial community composition and dynamics in these ultramafic soils may lead to a better understanding of the processes facilitating vegetation succession from shrubland to forest on these high‐metal substrates, and of approaches to successful revegetation following mining for metals including nickel, chromium and cobalt.  相似文献   

19.
Soil-stored seed banks of grassland, fynbos and thicket, all growing on calcareous dunes and each subject to different disturbance regimes, were examined. Seed banks were determined from counts of germinants from 50 soil cores from each type. Aboveground estimates of plant species cover in 10 1-m2 plots were used in determining vegetation/seed bank similarities. There was no evidence for seed bank densities to be markedly higher in the most frequently disturbed community (grassland -4273 seeds/m2) than the least disturbed community (thicket - 3417 seeds/m2). Highest similarity between seed bank and above-ground vegetation composition in terms of species and growth form/life-span classes was recorded for grassland (CC = 50%). Lowest similarity (CC = 13%) was found in the less frequently disturbed thicket where no seeds of climax trees were recorded in the seed bank. A fynbos community on a north-facing (warm, dry) slope had intermediate-sized seed banks (1683 seeds/m2) with intermediate vegetation/seed bank similarity (CC = 46%). However, on the south-facing slope, which has a large post-fire ephemeral herb component, seed banks were larger (4518 seeds/m2) but less similar to above-ground vegetation (CC = 39%o). Ordination (DCA) of vegetation data from the four communities was different from an ordination of their seed bank data. Fynbos shrub species were absent from seed banks of both grassland and thicket, even though secondary succession proceeds from grassland, through fynbos to thicket. Their seed banks appear less persistent than those of European heath or Californian chaparral shrubs.  相似文献   

20.
A recent conceptual model of controls on vegetation structure in semiarid regions includes the hypothesis that the balance between the dominance of woody and herbaceous species is partly controlled by soil texture. The model predicts that the dominance of woody plants is associated with coarse textured soils, and that ecotones between woody and herbaceous plant functional types are associated with soil textural changes. We analyzed vegetation and soil data (from US Soil Conservation Service maps) for an area of shortgrass steppe in Northern Weld County, Colorado, in a canonical correlation procedure to test the hypothesis at a regional scale. In support of the model, we found significant correlations between (a) a canonical vegetation variable correlated with C3 grass biomass and shrub biomass, and a canonical soil variable correlated with sandy topsoils, and (b) a canonical vegetation variable correlated with succulent biomass, and a canonical soil variable correlated with clay soils. Relatively sharp transitions between shrub- and grass-dominated vegetation types occur in a number of areas in the shortgrass steppe of northeastern Colorado and southeastern Wyoming, and we selected four sites to test the above hypothesis at a local scale. We gathered data on vegetation cover and soil texture from transects (50 m long) positioned across the transition zones from grassland to shrubland. We conducted a further canonical correlation analysis of the vegetation and soil data to test for the relationships between vegetation structure and soil texture, and a performed regression analyses on individual site data to describe site-specific relationships between vegetation and soil texture variables. Vegetation structure along the transects, at the level of plant functional types, was similar at all four sites. The transition from grassland to shrubland encompassed a change from a C4 grass/half-shrub complex to a shrub/C3 grass/succulent complex. At two of the sites these transitions were associated with a change to coarser-textured soils in the shrubland zone. Within the context of the shortgrass steppe, our overall findings support the predictions of the conceptual at a regional scale, but indicate that soil texture is only one factor that can influence vegetation structure at the local scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号