首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Mycobacterium tuberculosis ornithine acetyltransferase (Mtb OAT; E.C. 2.3.1.35) is a key enzyme of the acetyl recycling pathway during arginine biosynthesis. It reversibly catalyzes the transfer of the acetyl group from N-acetylornithine (NAORN) to l-glutamate. Mtb OAT is a member of the N-terminal nucleophile fold family of enzymes. The crystal structures of Mtb OAT in native form and in its complex with ornithine (ORN) have been determined at 1.7 and 2.4 Å resolutions, respectively. ORN is a competitive inhibitor of this enzyme against l-glutamate as substrate. Although the acyl-enzyme complex of Streptomyces clavuligerus ornithine acetyltransferase has been determined, ours is the first crystal structure to be reported of an ornithine acetyltransferase in complex with an inhibitor. ORN binding does not alter the structure of Mtb OAT globally. However, its presence stabilizes the three C-terminal residues that are disordered and not observed in the native structure. Also, stabilization of the C-terminal residues by ORN reduces the size of the active-site pocket volume in the structure of the ORN complex. The interactions of ORN and the protein residues of Mtb OAT unambiguously delineate the active-site residues of this enzyme in Mtb. Moreover, modeling studies carried out with NAORN based on the structure of the ORN-Mtb OAT complex reveal important interactions of the carbonyl oxygen of the acetyl group of NAORN with the main-chain nitrogen atom of Gly128 and with the side-chain oxygen of Thr127. These interactions likely help in the stabilization of oxyanion formation during enzymatic reaction and also will polarize the carbonyl carbon-oxygen bond, thereby enabling the side-chain atom Oγ1 of Thr200 to launch a nucleophilic attack on the carbonyl-carbon atom of the acetyl group of NAORN.  相似文献   

4.
The Escherichia coli arginine repressor (ArgR) controls expression of the arginine biosynthetic genes and acts as an accessory protein in Xer site-specific recombination at cer and related plasmid recombination sites. The hexameric wild-type protein shows L -arginine-dependent DNA binding. In this work, ArgR mutants that are defective in trimer–trimer interactions and bind DNA as trimers in an L -arginine-independent manner are isolated and characterized. Whereas the wild-type ArgR hexamer exhibits high-affinity binding to two repeated ARG boxes separated by 3 bp (each ARG box containing two identical dyad symmetrical 9 bp half-sites), the trimeric mutants bind to and footprint three adjacent half-sites of this 'idealized' substrate. Trimeric ArgR is impaired in its ability to repress the arginine biosynthetic genes and in Xer site-specific recombination. In the absence of L -arginine, residual wild-type ArgR-binding occurs as trimers. The binding of an N-terminal 77-amino-acid DNA-binding domain to idealized ARG boxes is also characterized.  相似文献   

5.
We report the cloning of the arginine repressor gene from the psychropiezophilic Gram-negative bacterium Moritella profunda, the purification of its product (ArgR(Mp)), the identification of the operator in the bipolar argECBFGH(A) operon, in vivo repressibility studies, and an in vitro analysis of the repressor-operator interaction, including binding to mutant and heterologous arginine operators. The ArgR(Mp) subunit shows about 70% amino acid sequence identity with Escherichia coli ArgR (ArgR(Ec)). Binding of purified hexameric ArgR(Mp) to the control region of the divergent operon proved to be arginine-dependent, sequence-specific, and significantly more sensitive to heat than complex formation with ArgR(Ec). ArgR(Mp) binds E.coli arginine operators very efficiently, but hardly recognizes the operator from Bacillus stearothermophilus or Thermotoga maritima. ArgR(Mp) binds to a single site overlapping the -35 element of argC(P), but not argE(P). Therefore, the arrangement of promoter and operator sites in the bipolar argECBFGH(A) operon of M.profunda is very different from the organization of control elements in the bipolar argECBH operon of E.coli, where both promoters overlap the common operator and are equally repressible. We demonstrate that M.profunda argC(P) is about 44-fold repressible, whereas argE(P) is fully constitutive. A high-resolution contact map of the ArgR(Mp)-operator interaction was established by enzymatic and chemical footprinting, missing contact and base-specific premodification binding interference studies. The results indicate that the argC operator consists of two ARG box-like sequences (18bp imperfect palindromes) separated by 3bp. ArgR(Mp) binds to one face of the DNA helix and establishes contacts with two major groove segments and the intervening minor groove of each ARG box, whereas the minor groove segment facing the repressor at the center of the operator remains largely uncontacted. This pattern is reminiscent of complex formation with the repressors of E.coli and B.stearothermophilus, and suggests that each ARG box is contacted by two ArgR subunits belonging to opposite trimers. Moreover, the premodification interference patterns and mutant studies clearly indicate that the inner, center proximal halves of each ARG box in the M.profunda argC operator are more important for complex formation and repression than the outermost halves. A close inspection of sequence conservation and of single base-pair O(c)-type mutations indicate that the same conclusion can be generalized to E.coli operators.  相似文献   

6.
The enzyme tetrahydrodipicolinate N-succinyltransferase (DapD) is part of the L-lysine biosynthetic pathway. This pathway is crucial for the survival of the pathogen Mycobacterium tuberculosis (Mtb) and, consequently, the enzymes of the pathway are potential drug targets. We report here the crystal structures of Mtb-DapD and of Mtb-DapD in complex with the co-factor succinyl-CoA (SCoA) at 2.15 Å and 1.97 Å resolution, respectively. Each subunit of the trimeric enzyme consists of three domains, of which the second, a left-handed, parallel β-helix (LβH domain), is the common structural motif of enzymes belonging to the hexapeptide repeat superfamily. The trimeric quaternary structure is stabilized by Mg2+ and Na+ located on the 3-fold axis. The binary complex of Mtb-DapD and SCoA reveals the binding mode(s) of the co-factor and a possible covalent reaction intermediate. The N-terminal domain of Mtb-DapD exhibits a unique architecture, including an interior water-filled channel, which allows access to a magnesium ion located at the 3-fold symmetry axis.  相似文献   

7.
8.
9.
IscU is a key component of the ISC machinery and is involved in the biogenesis of iron-sulfur (Fe-S) proteins. IscU serves as a scaffold for assembly of a nascent Fe-S cluster prior to its delivery to an apo protein. Here, we report the first crystal structure of IscU with a bound [2Fe-2S] cluster from the hyperthermophilic bacterium Aquifex aeolicus, determined at a resolution of 2.3 Å, using multiwavelength anomalous diffraction of the cluster. The holo IscU formed a novel asymmetric trimer that harbored only one [2Fe-2S] cluster. One iron atom of the cluster was coordinated by the Sγ atom of Cys36 and the Nε atom of His106, and the other was coordinated by the Sγ atoms of Cys63 and Cys107 on the surface of just one of the protomers. However, the cluster was buried inside the trimer between the neighboring protomers. The three protomers were conformationally distinct from one another and associated around a noncrystallographic pseudo-3-fold axis. The three flexible loop regions carrying the ligand-binding residues (Cys36, Cys63, His106 and Cys107) and the N-terminal α1 helices were positioned at the interfaces and underwent substantial conformational rearrangement, which stabilized the association of the asymmetric trimer. This unique trimeric A. aeolicus holo-IscU architecture was clearly distinct from other known monomeric apo-IscU/SufU structures, indicating that asymmetric trimer organization, as well as its association/dissociation, would be involved in the scaffolding function of IscU.  相似文献   

10.
Autophagy provides an important defense mechanism against intracellular bacteria, such as Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis disease (TB). We recently reported that pathogen recognition and antibacterial autophagy are connected by the induction of the DNA damage-regulated autophagy modulator DRAM1 via the toll-like receptor (TLR)-MYD88-NFKB innate immunity signaling pathway. Having shown that DRAM1 colocalizes with Mtb in human macrophages, we took advantage of a zebrafish model for TB to investigate the function of DRAM1 in autophagic host defense in vivo. We found that DRAM1 protects the zebrafish host from infection with Mycobacterium marinum (Mm), a close relative of Mtb. Overexpression of DRAM1 increases autophagosome formation and promotes autophagic flux by a mechanism dependent on the cytosolic DNA sensor TMEM173/STING and the ubiquitin receptor SQSTM1/p62. Here we summarize and discuss the implications of these findings.  相似文献   

11.
The degree of sequence conservation of arginine repressor proteins (ArgR) and of the cognate operators (tandem pairs of 18 bp imperfect palindromes, ARG boxes) in evolutionarily distant bacteria is unusually high, and the global mechanism of ArgR-mediated regulation appears to be similar. However, here we demonstrate that the arginine repressor from the hyperthermophilic bacterium Thermotoga neapolitana (ArgR(Tn)) exhibits characteristics that clearly distinguish this regulator from the well-studied homologues from Escherichia coli, Bacillus subtilis and B.stearothermophilus. A high-resolution contact map of ArgR(Tn) binding to the operator of the biosynthetic argGHCJBD operon of Thermotoga maritima indicates that ArgR(Tn) establishes all of its strong contacts with a single ARG box-like sequence of the operator only. Protein array and electrophoretic mobility-shift data demonstrate that ArgR(Tn) has a remarkable capacity to bind to arginine operators from Gram-negative and Gram-positive bacteria, and to single ARG box-bearing targets. Moreover, the overall effect of L-arginine on the apparent K(d) of ArgR(Tn) binding to various cognate and heterologous operator fragments was minor with respect to that observed with diverse bacterial arginine repressors. We demonstrate that this unusual behaviour for an ArgR protein can, to a large extent, be ascribed to the presence of a serine residue at position 107 of ArgR(Tn), instead of the highly conserved glutamine that is involved in arginine binding in the E.coli repressor. Consistent with these results, ArR(Tn) was found to behave as a superrepressor in E.coli, inhibiting growth in minimal medium, even supplemented with arginine, whereas similar constructs bearing the S107Q mutant allele did not inhibit growth. We assume that ArgR(Tn), owing to its broad target specificity and its ability to bind single ARG box sequences, might play a more general regulatory role in Thermotoga  相似文献   

12.
Mycobacterium tuberculosis ornithine carbamoyltransferase (Mtb OTC) catalyzes the sixth step in arginine biosynthesis; it produces citrulline from carbamoyl phosphate (CP) and ornithine (ORN). Here, we report the crystal structures of Mtb OTC in orthorhombic (form I) and hexagonal (form II) space groups. The molecules in form II are complexed with CP and l-norvaline (NVA); the latter is a competitive inhibitor of OTC. The asymmetric unit in form I contains a pseudo hexamer with 32 point group symmetry. The CP and NVA in form II induce a remarkable conformational change in the 80s and the 240s loops with the displacement of these loops towards the active site. The displacement of these loops is strikingly different from that seen in other OTC structures. In addition, the ligands induce a domain closure of 4.4° in form II. Sequence comparison of active-site residues of Mtb OTC with several other OTCs of known structure reveals that they are virtually identical. The interactions involving the active-site residues of Mtb OTC with CP and NVA and a modeling study of ORN in the form II structure strongly rule out an earlier proposed mechanistic role of Cys264 in catalysis and suggest a possible mechanism for OTC. Our results strongly support the view that ORN with an already deprotonated Nε atom is the species that binds to the enzyme and that one of the phosphate oxygen atoms of CP is likely to be involved in accepting a proton from the doubly protonated Nε atom of ORN. We have interpreted this deprotonation as part of the collapse of the transition state of the reaction.  相似文献   

13.
Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyze the transfer of methyl groups from S-adenosyl-l-methionine to nitrogen atoms on arginine residues. Here, we describe the crystal structure of Caenorhabditis elegans PRMT7 in complex with its reaction product S-adenosyl-l-homocysteine. The structural data indicated that PRMT7 harbors two tandem repeated PRMT core domains that form a novel homodimer-like structure. S-adenosyl-l-homocysteine bound to the N-terminal catalytic site only; the C-terminal catalytic site is occupied by a loop that inhibits cofactor binding. Mutagenesis demonstrated that only the N-terminal catalytic site of PRMT7 is responsible for cofactor binding.  相似文献   

14.
Coenzyme F420 is a deazaflavin hydride carrier with a lower reduction potential than most flavins. In Mycobacterium tuberculosis (Mtb), F420 plays an important role in activating PA-824, an antituberculosis drug currently used in clinical trials. Although F420 is important to Mtb redox metabolism, little is known about the enzymes that bind F420 and the reactions that they catalyze. We have identified a novel F420-binding protein, Rv1155, which is annotated in the Mtb genome sequence as a putative flavin mononucleotide (FMN)-binding protein. Using biophysical techniques, we have demonstrated that instead of binding FMN or other flavins, Rv1155 binds coenzyme F420. The crystal structure of the complex of Rv1155 and F420 reveals one F420 molecule bound to each monomer of the Rv1155 dimer. Structural, biophysical, and bioinformatic analyses of the Rv1155–F420 complex provide clues about its role in the bacterium.  相似文献   

15.
Mycobacterium tuberculosis (Mtb), the intracellular pathogen that infects macrophages primarily, is the causative agent of the infectious disease tuberculosis in humans. The Mtb genome encodes at least six epoxide hydrolases (EHs A to F). EHs convert epoxides to trans-dihydrodiols and have roles in drug metabolism as well as in the processing of signaling molecules. Herein, we report the crystal structures of unbound Mtb EHB and Mtb EHB bound to a potent, low-nanomolar (IC50 ≈ 19 nM) urea-based inhibitor at 2.1 and 2.4 Å resolution, respectively. The enzyme is a homodimer; each monomer adopts the classical α/β hydrolase fold that composes the catalytic domain; there is a cap domain that regulates access to the active site. The catalytic triad, comprising Asp104, His333 and Asp302, protrudes from the catalytic domain into the substrate binding cavity between the two domains. The urea portion of the inhibitor is bound in the catalytic cavity, mimicking, in part, the substrate binding; the two urea nitrogen atoms donate hydrogen bonds to the nucleophilic carboxylate of Asp104, and the carbonyl oxygen of the urea moiety receives hydrogen bonds from the phenolic oxygen atoms of Tyr164 and Tyr272. The phenolic oxygen groups of these two residues provide electrophilic assistance during the epoxide hydrolytic cleavage. Upon inhibitor binding, the binding-site residues undergo subtle structural rearrangement. In particular, the side chain of Ile137 exhibits a rotation of around 120° about its Cα-Cβ bond in order to accommodate the inhibitor. These findings have not only shed light on the enzyme mechanism but also have opened a path for the development of potent inhibitors with good pharmacokinetic profiles against all Mtb EHs of the α/β type.  相似文献   

16.
17.
We have solved the crystal structure of the acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis (Mtb) at 1.95 Å resolution. AcpS, a 4-phosphopantetheinyl transferase, activates two distinct acyl carrier proteins (ACPs) that are present in fatty acid synthase (FAS) systems FAS-I and FAS-II, the ACP-I domain and the mycobacterial ACP-II protein (ACPM), respectively. Mtb, the causal agent of tuberculosis (TB), and all other members of the Corynebacterineae family are unique in possessing both FAS systems to produce and to elongate fatty acids to mycolic acids, the hallmark of mycobacterial cell wall. Various steps in this process are prime targets for first-line anti-TB agents. A comparison of the Mtb AcpS structure determined here with those of other AcpS proteins revealed unique structural features in Mtb AcpS, namely, the presence of an elongated helix followed by a flexible loop and a moderately electronegative surface unlike the positive surface common to other AcpSs. A structure-based sequence comparison between AcpS and its ACP substrates from various species demonstrated that the proteins of the Corynebacterineae family display high sequence conservation, forming a segregated subgroup of AcpS and ACPs. Analysis of the putative interactions between AcpS and ACPM from Mtb, based on a comparison with the complex structure from Bacillus subtilis, showed that the Mtb AcpS and ACPM lack the electrostatic complementarity observed in B. subtilis. Taken together, the common characteristic of the Corynebacterineae family is likely reflected in the participation of different residues and interactions used for binding the Mtb AcpS to ACP-I and ACPM. The distinct features and essentiality of AcpS, as well as the mode of interaction with ACPM and ACP-I in Mtb, could be exploited for the design of AcpS inhibitors, which, similarly to other inhibitors of fatty acid synthesis, are expected to be effective anti-TB-specific drugs.  相似文献   

18.
We have previously used inhibitors interacting with the Qn site of the yeast cytochrome bc1 complex to obtain yeast strains with resistance-conferring mutations in cytochrome b as a means to investigate the effects of amino acid substitutions on Qn site enzymatic activity [M.G. Ding, J.-P. di Rago, B.L. Trumpower, Investigating the Qn site of the cytochrome bc1 complex in Saccharomyces cerevisiae with mutants resistant to ilicicolin H, a novel Qn site inhibitor, J. Biol. Chem. 281 (2006) 36036-36043.]. Although the screening produced various interesting cytochrome b mutations, it depends on the availability of inhibitors and can only reveal a very limited number of mutations. Furthermore, mutations leading to a respiratory deficient phenotype remain undetected. We therefore devised an approach where any type of mutation can be efficiently introduced in the cytochrome b gene. In this method ARG8, a gene that is normally encoded by nuclear DNA, replaces the naturally occurring mitochondrial cytochrome b gene, resulting in ARG8 expressed from the mitochondrial genome (ARG8m). Subsequently replacing ARG8m with mutated versions of cytochrome b results in arginine auxotrophy. Respiratory competent cytochrome b mutants can be selected directly by virtue of their ability to restore growth on non-fermentable substrates. If the mutated cytochrome b is non-functional, the presence of the COX2 respiratory gene marker on the mitochondrial transforming plasmid enables screening for cytochrome b mutants with a stringent respiratory deficiency (mit). With this system, we created eight different yeast strains containing point mutations at three different codons in cytochrome b affecting center N. In addition, we created three point mutations affecting arginine 79 in center P. This is the first time mutations have been created for three of the loci presented here, and nine of the resulting mutants have never been described before.  相似文献   

19.
20.
Novel vaccines are needed to control tuberculosis (TB), the bacterial infectious disease that together with malaria and HIV is worldwide responsible for high levels of morbidity and mortality. TB can result from the reactivation of an initially controlled latent infection by Mycobacterium tuberculosis (Mtb). Mtb proteins for which a possible role in this reactivation process has been hypothesized are the five homologs of the resuscitation-promoting factor of Micrococcus luteus, namely Mtb Rv0867c (rpfA), Rv1009 (rpfB), Rv1884c (rpfC), Rv2389c (rpfD) and Rv2450c (rpfE). Analysis of the immune recognition of these 5 proteins following Mtb infection or Mycobacterium bovis BCG vaccination of mice showed that Rv1009 (rpfB) and Rv2389c (rpfD) are the most antigenic in the tested models. We therefore selected rpfB and rpfD for testing their vaccine potential as plasmid DNA vaccines. Elevated cellular immune responses and modest but significant protection against intra-tracheal Mtb challenge were induced by immunization with the rpfB encoding DNA vaccine. The results indicate that rpfB is the most promising candidate of the five rpf-like proteins of Mtb in terms of its immunogenicity and protective efficacy and warrants further analysis for inclusion as an antigen in novel TB vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号