首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We show prolonged contraction of permeabilized muscle fibers of the frog during which structural order, as judged from low-angle x-ray diffraction, was preserved by means of partial cross-linking of the fibers using the zero-length cross-linker 1-ethyl-3-[3-dimethylamino)propyl]carbodiimide. Ten to twenty percent of the myosin cross-bridges were cross-linked, allowing the remaining 80-90% to cycle and generate force. These fibers displayed a well-preserved sarcomeric order and mechanical characteristics similar to those of intact muscle fibers. The intensity of the brightest meridional reflection at 14.5 nm, resulting from the projection of cross-bridges evenly spaced along the myofilament length, decreased by 60% as a relaxed fiber was deprived of ATP and entered the rigor state. Upon activation of a rigorized fiber by the addition of ATP, the intensity of this reflection returned to 97% of the relaxed value, suggesting that the overall orientation of cross-bridges in the active muscle was more perpendicular to the filament axis than in rigor. Following a small-amplitude length step applied to the active fibers, the reflection intensity decreased for both releases and stretches. In rigor, however, a small stretch increased the amplitude of the reflection by 35%. These findings show the close link between cross-bridge orientation and tension changes.  相似文献   

2.
K Ajtai  T P Burghardt 《Biochemistry》1986,25(20):6203-6207
The fluorescence polarization from rhodamine labels specifically attached to the fast-reacting thiol of the myosin cross-bridge in glycerinated muscle fibers has been measured to determine the angular distribution of the cross-bridges in different physiological states of the fibers as a function of temperature. To investigate the fibers at temperatures below 0 degree C, we have added glycerol to the bathing solution as an anti-freezing agent. We find that the fluorescence polarization from the rhodamine probe detects distinct angular distributions of the cross-bridges in isometric-active, rigor, MgADP, and low ionic strength relaxed fibers at 4 degrees C. We also find that the rigor cross-bridges in the presence of glycerol can maintain at least two distinct orientations relative to the actin filament, one dominant at temperatures T greater than 2 degrees C and another dominant at T less than -10 degrees C. MgADP cross-bridges in the presence of glycerol maintain approximately the same orientation for all temperatures investigated. The rigor cross-bridge orientation at T less than -10 degrees C is similar to both the MgADP cross-bridge orientation in the presence of glycerol and the active muscle cross-bridge orientation at 4 degrees C. These findings show that the rigor cross-bridge in the presence of glycerol has at least two distinct orientations while attached to actin: one of them dominant at high temperature, the other dominant at low temperature or when MgADP is present. The latter orientation resembles that present in isometric-active fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Form birefringence of muscle.   总被引:2,自引:1,他引:1       下载免费PDF全文
We investigate the sensitivity of measurements of muscle birefringence to cross-bridge dynamics in the resting, active, and rigor states. The theory of form birefringence is reviewed, and an optical model is constructed for the form birefringence of muscle. Values for the parameters in the model are selected or deduced from the literature. As an illustration of the use of the model, plausible distributions for the orientations of cross-bridges in the resting, active, and rigor states are constructed using a model for cross-bridge dynamics suggested by Huxley and Kress (1985). The general magnitude of the predictions of our model is comparable with that of published measurements of muscle birefringence. However, the precise values of the predicted birefringence for the resting, active, and rigor states are sensitive to the assumed orientations of cross-bridges. We also investigate the dependence of muscle birefringence on sarcomere length and on disorder in the orientation of the myofilament array. We conclude that measurements of muscle birefringence can play a useful role in distinguishing between proposed models of cross-bridge dynamics.  相似文献   

4.
The orientation of a cross-bridge is widely used as a parameter in determining the state of muscle. The conventional measurements of orientation, such as that made by wide-field fluorescence microscopy, electron paramagnetic resonance (EPR) or X-ray diffraction or scattering, report the average orientation of 1012–109 myosin cross-bridges. Under conditions where all the cross-bridges are immobile and assume the same orientation, for example in normal skeletal muscle in rigor, it is possible to determine the average orientation from such global measurements. But in actively contracting muscle, where a parameter indicating orientation fluctuates in time, the measurements of the average value provide no information about cross-bridge kinetics. To avoid problems associated with averaging information from trillions of cross-bridges, it is necessary to decrease the number of observed cross-bridges to a mesoscopic value (i.e. the value affected by fluctuations around the average). In such mesoscopic regimes, the averaging of the signal is minimal and dynamic behavior can be examined in great detail. Examples of mesoscopic analysis on skeletal and cardiac muscle are provided.  相似文献   

5.
We have used electron paramagnetic resonance (EPR) to investigate the orientation, rotational motion, and actin-binding properties of rabbit psoas muscle cross-bridges in the presence of the nonhydrolyzable nucleotide analogue, 5'-adenylylimido-diphosphate (AMPPNP). This analogue is known to decrease muscle tension without affecting its stiffness, suggesting an attached cross-bridge state different from rigor. We spin-labeled the SH1 groups on myosin heads and performed conventional EPR to obtain high-resolution information about the orientational distribution, and saturation transfer EPR to measure microsecond rotational motion. At 4 degrees C and 100 mM ionic strength, we find that AMPPNP increases both the orientational disorder and the microsecond rotational motion of myosin heads. However, computer analysis of digitized spectra shows that no new population of probes is observed that does not match either rigor or relaxation in both orientation and motion. At 4 degrees C, under nearly saturating conditions of 16 mM AMPPNP (Kd = 3.0 mM, determined from competition between AMPPNP and an ADP spin label), 47.5 +/- 2.5% of myosin heads are dynamically disoriented (as in relaxation) without a significant decrease in rigor stiffness, whereas the remainder are rigidly oriented as in rigor. The oriented heads correspond to actin-attached heads in a ternary complex, and the disoriented heads correspond to detached heads, as indicated by EPR experiments with spin-labeled subfragment 1 (S1) that provide independent measurements of orientation and binding. We take these findings as evidence for a single-headed cross-bridge that is as stiff as the double-headed rigor cross-bridge. The data are consistent with a model in which, in the presence of saturating AMPPNP, one head of each cross-bridge binds actin about 10 times more weakly, whereas the remaining head binds at least 10 times more strongly, than extrinsic S1. Thus, although there is no evidence for heads being attached at nonrigor angles, the attached cross-bridge differs from that of rigor. The heterogeneous behavior of heads is probably due to steric effects of the filament lattice.  相似文献   

6.
The fluorescence polarization intensities from fluorescent probes and the electron paramagnetic resonance spectra from spin probes, specifically modifying elements of a biological assembly such as myosin sulfhydryl 1 (SH1) in muscle fibers, are interpreted in terms of probe order parameters using a model-independent method. The probe order parameters are related to each other by an Euler rotation of coordinates. We use this relationship to link the sets of order parameters from the different probes and in so doing create a system of equations that can be solved using only the information available from the experimental data. The solution yields the Euler angles relating the different probe coordinate frames and a larger set of probe order parameters than can be directly detected experimentally. The Euler angles are used to display the relative orientation of the probe molecular frames. The order parameters give rise to probe angular distributions that are at the theoretical limit of resolution. We demonstrate the utility of this analytical method by investigating the rotation of myosin SH1 from its orientation in rigor upon the binding of the nucleotide MgADP to the myosin cross-bridge. Our findings, discussed in the accompanying paper, suggest that the rigor-to-MgADP cross-bridge angular transition consists predominantly of a rotation about the hydrodynamic axis of symmetry of the cross-bridge, i.e., its torsional degree of freedom [Ajtai, K., Ringler, A., & Burghardt, T. P. (1992) Biochemistry (following paper in this issue)].  相似文献   

7.
In muscle fibres labelled with iodoacetamidotetramethylrhodamine at Cys707 of the myosin heavy chain, the probes have been reported to change orientation when the fibre is activated, relaxed or put into rigor. In order to test whether these motions are indications of the cross-bridge power stroke, we monitored tension and linear dichroism of the probes in single glycerol-extracted fibres of rabbit psoas muscle during mechanical transients initiated by laser pulse photolysis of caged ATP and caged ADP. In rigor dichroism is negative, indicating average probe absorption dipole moments oriented more than 54.7 degrees away from the fibre axis. During activation from rigor induced by photoliberation of ATP from caged ATP in the presence of calcium, the dichroism reversed sign promptly (half-time 12.5 ms for 500 microM-ATP) upon release of ATP, but then changed only slightly during tension development 20 to 100 milliseconds later. During the onset of rigor following transfer of the fibre from an ATP-containing relaxing solution to a rigor medium lacking ATP, force generation preceded the change in dichroism. The dichroism change occurred slowly (half-time 47 s), because binding of ADP to sites within the muscle fibre limited its rate of diffusion out of the fibre. When ADP was introduced or removed, the dichroism transient was similar in time course and magnitude to that obtained after the introduction or removal of ATP. Neither adding nor removing ADP produced substantial changes in force. These results demonstrate that orientation of the rhodamine probes on the myosin head reflects mainly structural changes linked to nucleotide binding and release, rather than rotation of the cross-bridge during force generation.  相似文献   

8.
15N- and 2H-substituted maleimido-TEMPO spin label ([15N,2H]MTSL) and the fluorescent label 1,5-IAEDANS were used to specifically modify sulfhydryl 1 of myosin to study the orientation of myosin cross-bridges in skeletal muscle fibers. The electron paramagnetic resonance (EPR) spectrum from muscle fibers decorated with labeled myosin subfragment 1 ([15N,2H]MTSL-S1) or the fluorescence polarization spectrum from fibers directly labeled with 1,5-IAEDANS was measured from fibers in various physiological conditions. The EPR spectra from fibers with the fiber axis oriented at 90 degrees to the Zeeman field show a clear spectral shift from the rigor spectrum when the myosin cross-bridge binds MgADP. This shift is attributable to a change in the torsion angle of the spin probe from cross-bridge rotation and is observable due mainly to the improved angular resolution of the substituted probe. The EPR data from [15N,2H]MTSL-S1 decorating fibers are combined with the fluorescence polarization data from the 1,5-IAEDANS-labeled fibers to map the global angular transition of the labeled cross-bridges due to nucleotide binding by an analytical method described in the accompanying paper [Burghardt, T. P., & Ajtai, K. (1992) Biochemistry (preceding paper in this issue)]. We find that the spin and fluorescent probes are quantitatively consistent in the finding that the actin-bound cross-bridge rotates through a large angle upon binding MgADP. We also find that, if the shape of the cross-bridge is described as an ellipsoid with two equivalent minor axes, then cross-bridge rotation takes place mainly about an axis parallel to the major axis of the ellipsoid. This type of rotation may imitate the rotation motion of cross-bridges during force generation.  相似文献   

9.
When skeletal muscle fibers are subjected to a hydrostatic pressure of 10 MPa (100 atmospheres), reversible changes in tension occur. Passive tension from relaxed muscle is unaffected, rigor tension rises, and active tension falls. The effects of pressure on muscle structure are unknown: therefore a pressure-resistant cell for x-ray diffraction has been built, and this paper reports the first study of the low-angle equatorial patterns of pressurized relaxed, rigor, and active muscle fibers, with direct comparisons from the same chemically skinned rabbit psoas muscle fibers at 0.1 and 10 MPa. Relaxed and rigor fibers show little change in the intensity of the equatorial reflections when pressurized to 10 MPa, but there is a small, reversible expansion of the lattice of 0.7 and 0.4%, respectively. This shows that the order and stability of the myofilament lattice is undisturbed by this pressure. The rise in rigor tension under pressure is thus probably due to axial shortening of one or more components of the sarcomere. Initial results from active fibers at 0.1 MPa show that when phosphate is added the lattice spacing and equatorial intensities change toward their relaxed values. This indicates cross-bridge detachment, as expected from the reduction in tension that phosphate induces. 10 MPa in the presence of phosphate at 11 degrees C causes tension to fall by a further 12%, but not change is detected in the relative intensity of the reflections, only a small increase in lattice spacing. Thus pressure appears to increase the proportion of attached cross-bridges in a low-force state.  相似文献   

10.
Equatorial x-ray diffraction patterns from single skinned rabbit psoas fibers were studied at various ionic strengths to obtain structural information regarding cross-bridge formation in relaxed muscle fibers. At ionic strengths between 20 and 50 mM, the intensity of the 11 reflection, I11, of the relaxed state was close to that of the rigor state, whereas the intensity of the 10 reflection, I10, was approximately twice that of rigor reflection. Calculations by two-dimensional Fourier synthesis indicated that substantial extra mass was associated with the thin filaments under these conditions. With increasing ionic strength between 20 and 100 mM, I10 increased and I11 decreased in an approximately linear way, indicating net transfer of mass away from the thin filaments towards the thick filaments. These results provided evidence that cross-bridges were formed in a relaxed fiber at low ionic strengths, and that the number of cross-bridges decreased as ionic strength was raised. Above mu = 100 mM, I10 and I11 both decreased, indicating the onset of increasing disorder within the filament lattice.  相似文献   

11.
Properties of the rigor state in muscle can be explained by a simple cross-bridge model, of the type which has been suggested for active muscle, in which detachment of cross-bridges by ATP is excluded. Two attached cross-bridge states, with distinct force vs. distortion relationships, are required, in addition to a detached state, but the attached cross-bridge states in rigor muscle appear to differ significantly from the attached cross-bridge states in active muscle. The stability of the rigor force maintained in muscle under isometric conditions does not require exceptional stability of the attached cross-bridges, if the positions in which attachment of cross-bridges is allowed are limited so that the attachment of cross-bridges in positions which have minimum free energy is excluded. This explanation of the stability of the rigor state may also be applicable to the maintenance of stable rigor waves on flagella.  相似文献   

12.
The structure of glycerinated Lethocerus insect flight muscle fibers, relaxed by spin-labeled ATP and vanadate (Vi), was examined using X-ray diffraction, electron microscopy and electron paramagnetic resonance (e.p.r.) spectra. We obtained excellent relaxation of MgATP quality as determined by mechanical criteria, using vanadate trapping of 2' spin-labeled 3' deoxyATP at 3 degree C. In rigor fibers, when the diphosphate analog is bound in the absence of Vi, the probes on myosin heads are well-ordered, in agreement with electron microscopic and X-ray patterns showing that myosin heads are ordered when attached strongly to actin. In relaxed muscle, however, e.p.r. spectra report orientational disorder of bound (Vi-trapped) spin-labeled nucleotide, while electron microscopic and X-ray patterns both show well-ordered bridges at a uniform 90 degrees angle to the filament axis. The spin-labeled nucleotide orientation is highly disordered, but not completely isotropic; the slight anisotropy observed in probe spectra is consistent with a shift of approximately 10% of probes from angles close to 0 degrees to angles close to 90 degrees. Measurements of probe mobility suggest that the interaction between probe and protein remains as tight in relaxed fibers as in rigor, and thus that the disorder in relaxed fibers arises from disorders of (or within) the protein and not from disorder of the probe relative to the protein. Fixation of the relaxed fibers with glutaraldehyde did not alter any aspect of the spectrum of the Vi-trapped analog, including the slight order observed, showing that the extensive inter- and intra-molecular cross-linking of the first step of sample preparation for electron microscopy had not altered relaxed crossbridge orientations. Two models that may reconcile the apparently disparate results obtained on relaxed fibers are presented: (1) a rigid myosin head could possess considerable disorder in the regular array about the thick filament; or (2) the nucleotide site could be on a disordered, probably distal, domain of myosin, while a more proximal region is well ordered on the thick filament backbone. Our findings suggest that when e.p.r. probes signal disorder of a local site or domain, this is complementary, not contradictory, to signals of general order. The e.p.r. spectra show that a portion of the myosin molecule can be disordered at the same time as the X-ray diffraction and electron microscopy show the bulk of myosin head mass to be uniformly oriented and regularly arrayed.  相似文献   

13.
In a relaxed muscle fiber at low ionic strength, the cross-bridges may well be in states comparable to the one that precedes the cross-bridge power stroke (Schoenberg, M. 1988. Adv. Exp. Med. Biol. 226:189-202). Using electron paramagnetic resonance (EPR) and (saturation transfer) electron paramagnetic resonance (ST-EPR) techniques on fibers labeled with maleimide spin label, under low ionic strength conditions designed to produce a majority of weakly-attached heads, we have established that (a) relaxed labeled fibers show a speed dependence of chord stiffness identical to that of unlabeled, relaxed fibers, suggesting similar rapid dissociation and reassociation of cross-bridges; (b) the attached relaxed heads at low ionic strength are nearly as disordered as in relaxation at physiological ionic strength where most of the heads are detached from actin; and (c) the microsecond rotational mobility of the relaxed heads was only slightly restricted compared to normal ionic strength, implying great motional freedom despite attachment. The differences in head mobility between low and normal ionic strength scale with filament overlap and are thus due to acto-myosin interactions. The spectra can be modeled in terms of two populations: one identical to relaxed heads at normal ionic strength (83%), the other representing a more oriented population of heads (17%). The spectrum of the latter is centered at approximately the same angle as the spectrum in rigor but exhibits larger (40 degrees) axial probe disorder with respect to the fiber axis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
During interaction of actin with myosin, cross-bridges impart mechanical impulses to thin filaments resulting in rotations of actin monomers. Impulses are delivered on the average every tc seconds. A cross-bridge spends a fraction of this time (ts) strongly attached to actin, during which it generates force. The "duty cycle" (DC), defined as the fraction of the total cross-bridge cycle that myosin spends attached to actin in a force generating state (ts/ tc), is small for cross-bridges acting against zero load, like freely shortening muscle, and increases as the load rises. Here we report, for the first time, an attempt to measure DC of a single cross-bridge in muscle. A single actin molecule in a half-sarcomere was labeled with fluorescent phalloidin. Its orientation was measured by monitoring intensity of the polarized TIRF images. Actin changed orientation when a cross-bridge bound to it. During isometric contraction, but not during rigor, actin orientation oscillated between two values, corresponding to the actin-bound and actin-free state of the cross-bridge. The average ts and tc were 3.4 and 6 s, respectively. These results suggest that, in isometrically working muscle, cross-bridges spend about half of the cycle time attached to actin. The fact that 1/ tc was much smaller than the ATPase rate suggests that the bulk of the energy of ATP hydrolysis is used for purposes other than performance of mechanical work.  相似文献   

15.
Cross-bridge arrangements in Limulus muscle   总被引:9,自引:0,他引:9  
X-ray diffraction patterns show Limulus muscle to have a structure in rigor similar to that of insect flight muscle, except that the thick filaments are staggered. Myosin filaments in relaxed muscle bear a highly ordered helical array of cross-bridges which, however, is very labile. The array undergoes a reversible transition between order and disorder in response to changes in ionic strength.  相似文献   

16.
A new approach was used to study transient structural states of cross-bridges during activation of muscle fibers. Rabbit skinned muscle fibers were rapidly and synchronously activated from the rigor state by photolysis of caged ATP in the presence of Ca2+. At several different times during the switch from rigor to fully active tension development, the fibers were rapidly frozen on a liquid helium-cooled metal block, freeze-substituted, and examined in an electron microscope. The limits of structural preservation and resolution with this technique were analyzed. We demonstrate that the resolution of our images is sufficient to draw the following conclusions about cross-bridge structure. Rigor cross-bridges point away from the Z-line and most of them are wider near the thin filaments than near the backbone of the thick filaments. In contrast, cross-bridges in actively contracting fibers stretch between the thick and thin filaments at a variable angle, and are uniformly thin. Diffraction patterns computed from contracting muscle show layer lines both at 38 and 43 nm indicating that active cross-bridges contribute mass to both the actin- and myosin-based helical periodicities. The images obtained from fibers frozen 20 ms after release of ATP show a mixture of rigor and active type cross-bridge configurations. There is little evidence of cross-bridges with the rigor shape by 50 ms, and the difference in configurations between 50 and 300 ms after photolysis is surprisingly subtle.  相似文献   

17.
The kinetics of ATP-induced rigor cross-bridge detachment were studied by initiating relaxation in chemically skinned trabeculae of the guinea pig heart using photolytic release of ATP in the absence of calcium ions (pCa > 8). The time course of the fall in tension exhibited either an initial plateau phase of variable duration with little change in tension or a rise in tension, followed by a decrease to relaxed levels. The in-phase component of tissue stiffness initially decreased. The rate then slowed near the end of the tension plateau, indicating transient cross-bridge rebinding, before falling to relaxed levels. Estimates of the apparent second-order rate constant for ATP-induced detachment of rigor cross-bridges based on the half-time for relaxation or on the half-time to the convergence of tension records to a common time course were similar at 3 x 10(3) M-1 s-1. Because the characteristics of the mechanical transients observed during relaxation from rigor were markedly similar to those reported from studies of rabbit psoas fibers in the presence of MgADP (Dantzig, J. A., M. G. Hibberd, D. R. Trentham, and Y. E. Goldman. 1991. Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibres. J. Physiol. 432:639-680), direct measurements of MgADP using [3H]ATP in cardiac tissue in rigor were made. Results indicated that during rigor, nearly 18% of the cross-bridges in skinned trabeculae had [3H]MgADP bound. Incubation of the tissue during rigor with apyrase, an enzyme with both ADPase and ATPase activity, reduced the level of [3H]MgADP to that measured following a 2-min chase in a solution containing 5 mM unlabeled MgATP. Apyrase incubation also significantly reduced the tension and stiffness transients, so that both time courses became monotonic and could be fit with a simple model for cross-bridge detachment. The apparent second-order rate constant for ATP-induced rigor cross-bridge detachment measured in the apyrase treated tissue at 4 x 10(4) M-1 s-1 was faster than that measured in untreated tissue. Nevertheless, this rate was still over an order of magnitude slower than the analogous rate measured in previous studies of isolated cardiac actomyosin-S1. These results are consistent with the hypothesis that the presence of MgADP bound cross-bridges suppresses the inhibition normally imposed by the thin filament regulatory system in the absence of calcium ions and allows cross-bridge rebinding and force production during relaxation from rigor.  相似文献   

18.
B Hambly  K Franks    R Cooke 《Biophysical journal》1992,63(5):1306-1313
We have measured the orientation of a region of the myosin head, close to the junction with the rod, during active force generation. Paramagnetic probes were attached specifically to a reactive cysteine (Cys 125) of purified myosin light chain 2 (LC2) and exchanged into myosin heads in glycerinated rabbit psoas muscle. Electron paramagnetic resonance spectroscopy was used to monitor the orientation of the probes. Previous work has shown that the LC2 bound spin probes are significantly ordered in rigor and muscle in the presence of adenosine diphosphate (ADP). In contrast, there is a nearly random angular distribution in relaxed muscle. We show here that during the generation of isometric tension, all of the LC2 bound spin probes (98 +/- 1.6%) show an angular distribution similar to that of relaxed muscle. These findings contrast with results obtained from probes attached to Cys 707 on the cross-bridge, located close to the actin binding site, where, during active force generation, a proportion of the spin probes were ordered as in rigor, whereas the remaining probes were disordered as in relaxation. To test the hypothesis that this ordered component is due to modification of Cys 707, we measured the spectra obtained from probes attached to LC2 in fibers modified at Cys 707. The modification of Cys 707 did not produce an ordered component in these spectra. The absence of an ordered component at the LC2 site limits the populations of some states in active fibers. An actin/myosin/ADP state is thought to be the major force-producing state. Our present results show that the populations of states with ordered probes on LC2 are < 2% in active fibers; thus, the major force-producing state is different from the one obtained by addition of ADP to rigor fibers.  相似文献   

19.
The structures of the actin and myosin filaments of striated muscle have been studied extensively in the past by sectioning of fixed specimens. However, chemical fixation alters molecular details and prevents biochemically induced structural changes. To overcome these problems, we investigate here the potential of cryosectioning unfixed muscle. In cryosections of relaxed, unfixed specimens, individual myosin filaments displayed the characteristic helical organization of detached cross-bridges, but the filament lattice had disintegrated. To preserve both the filament lattice and the molecular structure of the filaments, we decided to section unfixed rigor muscle, stabilized by actomyosin cross-bridges. The best sections showed periodic, angled cross-bridges attached to actin and their Fourier transforms displayed layer lines similar to those in x-ray diffraction patterns of rigor muscle. To preserve relaxed filaments in their original lattice, unfixed sections of rigor muscle were picked up on a grid and relaxed before negative staining. The myosin and actin filaments showed the characteristic helical arrangements of detached cross-bridges and actin subunits, and Fourier transforms were similar to x-ray patterns of relaxed muscle. We conclude that the rigor structure of muscle and the ability of the filament lattice to undergo the rigor-relaxed transformation can be preserved in unfixed cryosections. In the future, it should be possible to carry out dynamic studies of active sacromeres by cryo-electron microscopy.  相似文献   

20.
Non-specific termination of simian virus 40 DNA replication.   总被引:4,自引:0,他引:4  
Axial X-ray diffraction patterns have been studied from relaxed, contracted and rigor vertebrate striated muscles at different sarcomere lengths to determine which features of the patterns depend on the interaction of actin and myosin. The intensity of the myosin layer lines in a live, relaxed muscle is sometimes less in a stretched muscle than in the muscle at rest-length; the intensity depends not only on the sarcomere length but on the time that has elapsed since dissection of the muscle. The movement of cross-bridges giving rise to these intensity changes are not caused solely by the withdrawal of actin from the A-band.When a muscle contracts or passes into rigor many changes occur that are independent of the sarcomere length: the myosin layer lines decrease in intensity to about 30% of their initial value when the muscle contracts, and disappear completely when the muscle passes into rigor. Both in contracting and rigor muscles at all sarcomere lengths the spacings of the meridional reflections at 143 Å and 72 Å are 1% greater than from a live relaxed muscle at rest-length. It is deduced that the initial movement of cross-bridges from their positions in resting muscle does not depend on the interaction of each cross-bridge with actin, but on a conformational change in the backbone of the myosin filament: occurring as a result of activation. The possibility is discussed that the conformational change occurs because the myosin filament, like the actin filament, has an activation control mechanism. Finally, all the X-ray diffraction patterns are interpreted on a model in which the myosin filament can exist in one of two possible states: a relaxed state which gives a diffraction pattern with strong myosin layer lines and an axial spacing of 143.4 Å, and an activated state which gives no layer lines but a meridional spacing of 144.8 Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号