首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The classification of the hyperdiverse true bug family Miridae is far from settled, and is particularly contentious for the cosmopolitan subfamily Bryocorinae. The morphological diversity within the subfamily is pronounced, and a lack of explicit character formulation hampers stability in the classification. Molecular partitions are few and only a handful of taxa have been sequenced. In this study the phylogeny of the subfamily Bryocorinae has been analysed based on morphological data alone, with an emphasis on evaluating the tribe Dicyphina sensu Schuh, 1976, within which distinct groups of taxa exist. A broad sample of taxa was examined from each of the bryocorine tribes. A broad range of outgroup taxa from most of the other mirid subfamilies was also examined to test for bryocorine monophyly, ingroup relationships and to determine character polarity. In total a matrix comprising 44 ingroup, 15 outgroup taxa and 111 morphological characters was constructed. The phylogenetic analysis resulted in a monophyletic subfamily Bryocorinae sensu Schuh (1976, 1995), except for the genus Palaucoris, which is nested within Cylapinae. The tribe Dicyphini sensu Schuh (1976, 1995) has been rejected. The subtribe Odoniellina is synonymized with the subtribe Monaloniina and the subtribes Dicyphina, Monaloniina and Eccritotarsina are now elevated to tribal level, with the Dicyphini now restricted in composition and definition. The genus Felisacus is highly autapomorphic and a new tribe – the Felisacini – is erected for the included taxa. This phylogeny of the tribes of the Bryocorinae comprises the following sister‐group relationships: Dicyphini ((Bryocorini + Eccritotarsini)(Felisicini + Monaloniini)).  相似文献   

2.
The phylogenetic relationships of the tribe Rhingiini and the genus Cheilosia (Diptera, Syrphidae) were investigated using morphological and molecular characters. The genus Cheilosia is one of the most diverse lineages of hoverflies (Syrphidae). The mitochondrial protein coding gene cytochrome c oxidase subunit I (COI), and the D2‐3 region of the nuclear 28S rRNA gene were chosen for sequencing, and morphological characters were scored for both adults and immature stages. The combined dataset included 56 ingroup taxa. The datasets were analyzed separately and in conjunction, using both static and dynamic alignment under the parsimony criterion. The aim of the study was to assess the phylogenetic relationships of the tribe Rhingiini, and to explore if the subgenera of Cheilosia were supported as monophyletic clades. Results showed that the monophyly of subtribes of Rhingiini remained ambiguous, especially due to unstable phylogenetic placements of the genera Portevinia and Rhingia. We recovered most subgenera of Cheilosia as monophyletic clades. Dynamic alignment, using the optimization alignment program POY, always recovered more parsimonious topologies under all parameter weighting schemes, than did parsimony analyses using static alignment and analyzed with NONA.  相似文献   

3.
The tribe Abrotrichini (five genera and 14 living species) is a small clade within the speciose subfamily Sigmodontinae (Rodentia, Cricetidae), representing one of the extant successful radiations of mammals at southern high latitudes of the Neotropics. Its distribution is mostly Andean, reaching its greatest diversity in southern Argentina and Chile. We evaluate the phylogenetic relationships within this tribe through parsimony and Bayesian approaches based on 99 morphological characters (including 19 integumental characters, 38 skull characters, 31 dental characters, three postcranial skeletal characters, seven from the male accessory glands and phallus and one from the digestive system) and six molecular markers (one mitochondrial and five nuclear). We include representatives of all, except one, of the currently recognized species of living Abrotrichini plus one fossil form. Based on total evidence, we recovered a primary division between the genus Abrothrix and a group including the long‐clawed Abrotrichini, Chelemys, Geoxus, Notiomys and Pearsonomys. Both clades are recognized and named here as subtribes. The large degree of morphological variation observed within Abrothrix suggests that species in the genus fall into four groups, which we recognize as subgenera. In addition, the two known species of Chelemys do not form a monophyletic group, and Geoxus was recovered as paraphyletic with respect to Pearsonomys. To reconcile classification and phylogenetics, we describe a new genus for Chelemys macronyx and include Pearsonomys as a junior synonym of Geoxus. Our results highlight the importance of both morphology and molecules in resolving the phylogenetic relationships within this tribe. Based on biogeographical analyses, we hypothesize that Abrotrichini originated in south‐western South America by vicariance and then diversified mostly by successive dispersal events.  相似文献   

4.
Phylogenetic relationships within the bee family Megachilidae are poorly understood. The monophyly of the subfamily Fideliinae is questionable, the relationships among the tribes and subtribes in the subfamily Megachilinae are unknown, and some extant genera cannot be placed with certainty at the tribal level. Using a cladistic analysis of adult external morphological characters, we explore the relationships of the eight tribes and two subtribes currently recognised in Megachilidae. Our dataset included 80% of the extant generic‐level diversity, representatives of all fossil taxa, and was analysed using parsimony. We employed 200 characters and selected 7 outgroups and 72 ingroup species of 60 genera, plus 7 species of 4 extinct genera from Baltic amber. Our analysis shows that Fideliinae and the tribes Anthidiini and Osmiini of Megachilinae are paraphyletic; it supports the monophyly of Megachilinae, including the extinct taxa, and the sister group relationship of Lithurgini to the remaining megachilines. The Sub‐Saharan genus Aspidosmia, a rare group with a mixture of osmiine and anthidiine features, is herein removed from Anthidiini and placed in its own tribe, Aspidosmiini, new tribe . Protolithurgini is the sister of Lithurgini, both placed herein in the subfamily Lithurginae; the other extinct taxa, Glyptapina and Ctenoplectrellina, are more basally related among Megachilinae than Osmiini, near Aspidosmia, and are herein treated at the tribal level. Noteriades, a genus presently in the Osmiini, is herein transferred to the Megachilini. Thus, we recognise four subfamilies (Fideliinae, Pararhophitinae, Lithurginae and Megachilinae) and nine tribes in Megachilidae. We briefly discuss the evolutionary history and biogeography of the family, present alternative classifications, and provide a revised key to the extant tribes of Megachilinae.  相似文献   

5.
With 71 genera and over 2700 described species, Philonthina is the most speciose subtribe of rove beetle tribe Staphylinini and forms a major component of the largest remaining higher systematics challenge in Staphylinini, the ‘Staphylinini propria’ clade. A related systematics issue concerns the position of the genus Holisus (Hyptiomina), which was recovered within the Neotropical philonthine lineage in several recent analyses of morphology. With the aims of resolving the phylogeny of Philonthina and the position and, thus, validity of Hyptiomina, we performed phylogenetic analyses of the tribe Staphylinini based on molecular (six genes, 4471 bp) and morphological (113 characters) data including 138 taxa from all relevant lineages of Staphylinini. We found that ‘Staphylinini propria’ is a monophylum consisting of six lineages: current subtribes Anisolinina, Philonthina, Staphylinina and Xanthopygina; and two new subtribes, Algonina Schillhammer and Brunke and Philothalpina Chatzimanolis and Brunke. While the previously hypothesized Neotropical lineage of Philonthina was corroborated, Holisus was recovered as a separate subtribe, outside of Philonthina, within an informal ‘Southern Hemisphere clade’. Based on our analyses, we propose tentative new concepts of the polyphyletic genera Belonuchus and Philonthus. We propose the following taxonomic changes: synonymy of the subtribes Staphylinina Latreille (valid name) and Eucibdelina Sharp; resurrection of genera Barypalpus Cameron and Trapeziderus Motschulsky from synonymy with Rientis Sharp and Belonuchus Nordmann, respectively; transfer of 38 Belonuchus species, 16 Hesperus Fauvel species and one Philonthus Stephens species to Trapeziderus as new combinations; transfer of two Hesperus species to Eccoptolonthus Bernhauer as new combinations; transfer of one Belonuchus species to Paederomimus Sharp as a new combination; and transfer of Pridonius Blackwelder new status from its position as a subgenus of Quedius (subtribe Quediina) to Philonthina as a genus, and new combinations for its two described species.  相似文献   

6.
The phylogenetic relationships of Peniocereus (Cactaceae) species were studied using parsimony analyses of DNA sequence data. The plastid rpl16 and trnL-F regions were sequenced for 98 taxa including 17 species of Peniocereus, representatives from all genera of tribe Pachycereeae, four genera of tribe Hylocereeae, as well as from three additional outgroup genera of tribes Calymmantheae, Notocacteae, and Trichocereeae. Phylogenetic analyses support neither the monophyly of Peniocereus as currently circumscribed, nor the monophyly of tribe Pachycereeae since species of Peniocereus subgenus Pseudoacanthocereus are embedded within tribe Hylocereeae. Furthermore, these results show that the eight species of Peniocereus subgenus Peniocereus (Peniocereus sensu stricto) form a well-supported clade within subtribe Pachycereinae; P. serpentinus is also a member of this subtribe, but is sister to Bergerocactus. Moreover, Nyctocereus should be resurrected as a monotypic genus. Species of Peniocereus subgenus Pseudoacanthocereus are positioned among species of Acanthocereus within tribe Hylocereeae, indicating that they may be better classified within that genus. A number of morphological and anatomical characters, especially related to the presence or absence of dimorphic branches, are discussed to support these relationships.  相似文献   

7.
A total of 56 morphological characters were analyzed for 53 cirrospiline species that represent all of the 17 described genera of the tribe. The other taxa of the Eulophinae included in the analysis were six species of six representative genera in the tribe Eulophini, a species of Elasmus (the only genus comprising the tribe Elasmini), and a species of Trichospilus (unplaced). Trichospilus and two of the six genera of Eulophini examined were placed within Cirrospilini. Monophyly of Cirrospilini (when these two genera of Eulophini and Trichospilus are included) and of the cirrospiline genera for which more than one species were examined was supported, but the relationships between the genera were poorly resolved. An exception was Cirrospilus, the largest genus in the Cirrospilini, monophyly of which was not supported to any extent.  相似文献   

8.
The mustard family, Brassicaceae, is well-known for its homoplasy in almost any morphological character at practically all taxonomic levels. The genus Arabis, within the largest tribe of the Brassicaceae, is such an example comprising numerous para- and polyphyletic groups of taxa. Past research during the last 15 years has unraveled many phylogenetic relationships among the ∼550 (or more) species within the notoriously difficult tribe Arabideae. The European Arabis hirsuta species aggregate has remained unexplored, however. Herein we analyze phylogenetic relationships using nuclear ITS and plastid DNA sequences of Eurasian Arabis to characterize Hairy rock cress (A. hirsuta) and its relatives. Representative geographic sampling is used to study character and trait evolution, and bioclimatic data are used to differentiate between species. Our overview puts European Arabis into a reliable evolutionary framework, and we provide some striking insights into evolutionary trends and correlating morphological characters from seeds and flowers with environmental data such as climate variables and elevation. We demonstrate independent parallel evolution of sets of traits, and, therefore, we could further elaborate our previous findings that within tribe Arabideae high speciation rates are correlated with perennial growth form and occurrence at higher elevation. Finally some taxonomical remarks are provided to give added context.  相似文献   

9.
Tiger beetles are a remarkable group that captivates amateur entomologists, taxonomists and evolutionary biologists alike. This diverse clade of beetles comprises about 2300 currently described species found across the globe. Despite the charisma and scientific interest of this lineage, remarkably few studies have examined its phylogenetic relationships with large taxon sampling. Prior phylogenetic studies have focused on relationships within cicindeline tribes or genera, and none of the studies have included sufficient taxon sampling to conclusively examine broad species patterns across the entire subfamily. Studies that have attempted to reconstruct higher‐level relationships of Cicindelinae have yielded conflicting results. Here, we present the first taxonomically comprehensive molecular phylogeny of Cicindelinae to date, with the goal of creating a framework for future studies focusing on this important insect lineage. We utilized all available published molecular data, generating a final concatenated dataset including 328 cicindeline species, with molecular data sampled from six protein‐coding gene fragments and three ribosomal gene fragments. Our maximum‐likelihood phylogenetic inferences recover Cicindelinae as sister to the wrinkled bark beetles of the subfamily Rhysodinae. This new phylogenetic hypothesis for Cicindelinae contradicts our current understanding of tiger beetle phylogenetic relationships, with several tribes, subtribes and genera being inferred as paraphyletic. Most notably, the tribe Manticorini is recovered nested within Platychilini including the genera Amblycheila Say, Omus Eschscholtz, Picnochile Motschulsky and Platychile Macleay. The tribe Megacephalini is recovered as paraphyletic due to the placement of the monophyletic subtribe Oxycheilina as sister to Cicindelini, whereas the monophyletic Megacephalina is inferred as sister to Oxycheilina, Cicindelini and Collyridini. The tribe Collyridini is paraphyletic with the subtribes Collyridina and Tricondylina in one clade, and Ctenostomina in a second one. The tribe Cicindelini is recovered as monophyletic although several genera are inferred as para‐ or polyphyletic. Our results provide a novel phylogenetic framework to revise the classification of tiger beetles and to encourage the generation of focused molecular datasets that will permit investigation of the evolutionary history of this lineage through space and time.  相似文献   

10.
The genus Auletobius in the Russian fauna is revised. Five species (A. egorovi, A. irkutensis, A. puberulus, A. sanguisorbae, and A. submaculatus) belonging to two subgenera are revealed. The distribution of these species in Russia is given. The data on the trophic associations of the species are summarized. Keys to the subtribes of the tribe Auletini, subgenera of the genus Auletobius, and species of the subgenus Auletobius s. str. are given. All the taxa are redescribed.  相似文献   

11.
Mitochondrial DNA polymorphism was employed to assess cytoplasmic diversity among cytoypes of the genus Cichorium and related genera of the tribe Lactuceae (Asteraceae). Hybridization patterns of total DNA using six restriction enzymes and five heterologous mtDNA probes were examined. From estimates of mtDNA diversity, Cichorium spinosum appeared as an ecotype of C. intybus rather than a separate species. Interspecific mtDNA polymorphism in the genus Cichorium was higher than that observed in Cicerbita Crepis, Lactuca and Tragopogon. Molecular data seemed to indicate that Catananche is very distant from the other genera examined. Intergeneric comparisons allowed the clustering of Cicerbita, Lactuca and Cichorium, genera which belong to different subtribes. However, further molecular investigations on a larger number of genera are needed to clarify the relationships among genera within and between subtribes of the tribe Lactuceae.  相似文献   

12.
This paper studies the phylogeny of the rove beetle subtribe Philonthina, to test its hypothetical monophyly and to unravel the evolutionary relationships of the subtribe and its included genus‐level taxa, with emphasis on the genus Pseudohesperus and its close‐allied relatives. The phylogenetic analyses are based on 105 adult morphological characters and 66 terminal taxa, i.e., all six members of Pseudohesperus, 51 species to represent 29 other genera of the subtribe Philonthina, seven species to represent the other six subtribes of Staphylinini, one species of the tribes Arrowinini, and one of the Platyprosopini. According to the phylogenetic results obtained, the genus Erichsonius should move out from the hitherto‐defined subtribe Philonthina and thus the monophyly of this taxon is challenged. The phylogenetic tree suggests that the genera Hesperus and Belonuchus might not be monophyletic, but the monophyly of Pseudohesperus and the sister relationship between it and Bisnius are well supported. The species‐level phylogenetic relationships of the genus Pseudohesperus reveal a clear pattern of species diversification that can be correlated well with the species' zoogeographical patterns. The paper also revises the taxonomy of Pseudohesperus and describes five new species from China: Pseudohesperus luteus Li & Zhou sp. nov. , Pseudohesperus pedatiformis Li & Zhou sp. nov. , Pseudohesperus tripartitus Li & Zhou sp. nov. , Pseudohesperus sparsipunctatus Li & Zhou sp. nov. , and Bisnius lubricus Li & Zhou sp. nov. An identification key to the species of Pseudohesperus is provided and their geographical distributions are mapped. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 679–722.  相似文献   

13.
Abstract A phylogeny of the tribe Aphidini (Hemiptera: Aphididae) was reconstructed from three gene fragments: two mitochondrial regions, partial tRNA‐leucine + cytochrome oxidase II (tRNA/COII), partial 12S rRNA + tRNA‐valine + 16S rRNA (12S/16S) and one nuclear gene, the elongation factor‐1 alpha (EF1α). Bayesian phylogenetic (BP) analyses were performed on each individual dataset of tRNA/COII, 12S/16S and EF1α, and maximum parsimony (MP), Bremer support test, maximum likelihood (ML) and BP analysis were performed on the combined dataset. After comparing our molecular phylogenetic results with the classic classification based on morphological and ecological data, we analysed three main issues: the monophyletic relationships among tribes and subtribes, the validities of the latest taxonomic positions of genera and species and the status of certain Aphis species groups. Our results indicate that 36 of the species analysed, with the exception of Cryptosiphum artemisiae, are clustered within the clade of Aphidini. Also, the 28 species representative of the subtribe Aphidina were separated from the eight species representative of Rhopalosiphina; each monophyletic subtribe was supported by significant P‐values in the combined analysis. According to our results, Cryptosiphum should be moved to Macrosiphini because it is more closely related to the genera Lipaphis and Brevicoryne. The genus Toxoptera was recovered as non‐monophyletic. In Rhopalosiphina, three genera, Hyalopterus, Rhopalosiphum and Schizaphis, were relatively closer to each other than to the genus Melanaphis. In the relationships between species‐groups among Aphis, most species were separated into two main lineages; the fabae group seemed to be more closely related to the spiraecola and craccivora group rather than to the gossypii group.  相似文献   

14.
The taxonomic history of the diatom genus Amphora is one of a broad early morphological concept resulting in the inclusion of a diversity of taxa, followed by an extended period of revision and refinement. The introduction of molecular systematics has increased the pace of revision and has largely resolved the relationships between the major lineages, indicating homoplasy in the evolution of amphoroid symmetry. Within the two largest monophyletic lineages, the genus Halamphora and the now taxonomically refined genus Amphora, the intrageneric morphological and ecological relationships have yet to be explored within a phylogenetic framework. Critical among this is whether the range of morphological features exhibited within these diverse genera are reflective of evolutionary groupings or, as with many previously studied amphoroid features, are nonhomologous when examined phylogenetically. Presented here is a four‐marker molecular phylogeny that includes 31 taxa from the genus Amphora and 77 taxa from the genus Halamphora collected from fresh, brackish, and salt waters from coastal and inland habitats of the United States and Japan. These phylogenies illustrate complex patterns in the evolution of frustule morphology and ecology within the genera and the implications of this on the taxonomy, classification, and organization of the genera are discussed.  相似文献   

15.
16.
The leaf, stem, root, tuber and dropper anatomy of the orchid tribe Diseae (including the subtribes Satyriinae, Disinae, Brownlecinac, Huttonaeinae and Coryciinae) is reviewed. The study is largely based on investigations of 123 species, and data from several previous publications have also been incorporated. Two characters were identified as being taxonomically valuable: (1) the presence of sclerenchyma caps associated with leaf vascular bundles, and (2) the degree of dissection of the siphonostele of the tuber (‘polystelic’ or ‘monostelic’). The phylogenetic analysis shows that anatomical characters do not change the basic structure of a cladogram that is based on morphological characters. The taxa of Diseae are discussed on the basis of anatomical data. Subtribes Satyriinae (excluding the anatomically unusual genus Pachites), Brownleeinae, Huttonaeinae, and Coryciinae are uniform in. critical anatomical characters. However, subtribe Disinae is rather diverse in vegetative anatomy. Disa sect. Micranthae differs from the rest of the genus in its leaf anatomy. The occurrence of foliar sclerenchyma bundle caps and ‘polystelic’ tubers supports the incorporation of Herschelianthe in Disa sect. Stenocarpa.  相似文献   

17.
A recent phylogenetic study based on morphological, biochemical and early life history characters resurrected the genus Scartomyzon (jumprock suckers, c . eight−10 species) from Moxostoma (redhorse suckers, c . 10–11 species) and advanced the understanding of relationships among species in these two genera, and the genealogical affinities of these genera with other evolutionary lineages within the tribe Moxostomatini in the subfamily Catostominae. To further examine phylogenetic relationships among moxostomatin suckers, the complete mitochondrial (mt) cytochrome b gene was sequenced from all species within this tribe and representative outgroup taxa from the Catostomini and other catostomid subfamilies. Phylogenetic analysis of gene sequences yielded two monophyletic clades within Catostominae: Catostomus + Deltistes + Xyrauchen + Erimyzon + Minytrema and Moxostoma + Scartomyzon + Hypentelium + Thoburnia . Within the Moxostomatini, Thoburnia was either unresolved or polyphyletic; Thoburnia atripinnis was sister to a monophyletic Hypentelium . In turn, this clade was sister to a monophyletic clade containing Scartomyzon and Moxostoma . Scartomyzon was never resolved as monophyletic, but was always recovered as a polyphyletic group embedded within Moxostoma , rendering the latter genus paraphyletic if ' Scartomyzon ' continues to be recognized. Relationships among lineages within the Moxostoma and' Scartomyzon 'clade were resolved as a polytomy. To better reflect phylogenetic relationships resolved in this analysis, the following changes to the classification of the tribe Moxostomatini are proposed: subsumption of' Scartomyzon 'into Moxostoma ; restriction of the tribe Moxostomatini to Moxostoma ; resurrect the tribe Erimyzonini, containing Erimyzon and Minytrema , classified as incertae sedis within Catostominae; retain the tribe Thoburniini.  相似文献   

18.
Vuji?, A., Ståhls, G., A?anski, J., Bartsch, H., Bygebjerg, R. & Stefanovi?, A. (2013). Systematics of Pipizini and taxonomy of European Pipiza Fallén: molecular and morphological evidence (Diptera, Syrphidae). —Zoologica Scripta, 42, 288–305. In the present work the monophyly and molecular phylogenetic relationships of the genera of tribe Pipizini (Syrphidae) were investigated based on mitochondrial cytochrome c oxidase subunit I (COI) and nuclear 28S rDNA sequences, and the relationships among species of genus Pipiza Fallén, 1810 based on mtDNA COI sequences. Molecular phylogenetic analyses of Pipizini supported Pipiza as monophyletic and as sister group to all other Pipizini, and resolved other Pipizini genera as monophyletic lineages except for genus Heringia Rondani, 1856. To recognize the distinctness and maintain the monophyly the genus Heringia was redefined, generic rank was assigned to Neocnemodon Goffe, 1944 stat. n., and the genus Claussenia Vuji? & Ståhls gen. n., type‐species Claussenia hispanica (Strobl, 1909), was described. A revision of the European Pipiza species, including a discussion of taxonomic characters and a morphological redefinition of all included species, is presented. One new species, Pipiza laurusi Vuji? & Ståhls sp. n. was described. The taxa Pipiza carbonaria Meigen, 1822; Pipiza fasciata, Meigen 1822; Pipiza lugubris (Fabricius, 1775), Pipiza noctiluca (Linneaues, 1758), Pipiza notata Meigen, 1822 were redefined. Lectotypes are designated for 17 taxa, and neotypes were designated for seven taxa. Fourteen new synonymies were proposed. Male genitalia were illustrated for all the species, and a key of the 12 European species for males and females was provided. Geometric morphometrics of wing landmarks and extended sampling of mtDNA COI sequences was employed to delimitate taxa of the P. noctiluca and P. lugubris complexes. Despite subtle morphological differences, wing geometric morphometrics variables of wing size and shape showed highly significant differences among species within P. noctiluca and P. lugubris complexes, which were supported by the molecular data.  相似文献   

19.
The genus Hesperodiaptomus Light, 1938, one of the most diverse groups of freshwater copepods that occur in North and Central America, plays a major role in the food webs of the alpine freshwater communities. Phylogenetic relationships of these taxa remain poorly understood due to difficulties in obtaining reliable morphological characters for phylogenetic analyses. To understand the phylogenetic relationships within this group, we reconstructed a partial phylogeny of the genus Hesperodiaptomus based on nuclear ribosomal gene sequences. Phylogenetic analyses based upon the taxa examined supported the monophyly the genus and revealed two clades. The eiseni clade comprised species that are morphologically similar to Hesperodiaptomus eiseni (Lilljeborg, 1889), and the shoshone clade included species morphologically similar to Hesperodiaptomus shoshone (S.A. Forbes, 1882). The two groups can be distinguished by a modification of the right basis, the arrangement of spinules on the distal pad of the second exopod, and the degree of presence the inner lamellar expansion of the right coxa. Handling editor: P. Spaak  相似文献   

20.
The genus Nuphar consists of yellow-flowered waterlilies and is widely distributed in north-temperate bodies of water. Despite regular taxonomic evaluation of these plants, no explicit phylogenetic hypotheses have been proposed for the genus. We investigated phylogenetic relationships in Nuphar using morphology and sequences of the chloroplast gene matK and of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA. Two major lineages within Nuphar are consistently resolved with the morphological and molecular data sets. One lineage comprises New World taxa and the other represents a primarily Old World lineage. Relationships within the major lineages were poorly resolved by morphology and ITS, yet certain relationships were elucidated by all analyses. Most notable is the strong support for a monophyletic lineage of dwarf taxa and the alliance of the North American N. microphylla with the Eurasian taxa. Minor discordance between the independent cladograms is accounted for by hybridization. The common taxonomic practice of uniting all North American and Eurasian taxa under one species is not supported phylogenetically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号