首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The molecular mechanisms underlying the protein assembly at synaptic junctions are thought to be important for neural functions. PSD-95, one of the major postsynaptic density proteins, is composed of three PDZ domains (PDZ1, PDZ2, and PDZ3), an SH3 domain, and a GK (guanylate kinase ) domain. It binds to the N-methyl-D-aspartate glutamate receptor NR2 subunit or to the Shaker-type K(+) channel, Kv1.4, via the PDZ1 or PDZ2 domain, whereas PDZ3 binds to distinct partners. The intramolecular interaction of these multiple domains has been implicated in efficient protein clustering. We introduced missense and deletion mutations into PDZ1 (PDZ1mDelta) and/or PDZ2 (PDZ2mDelta) of the full-length PSD-95 to disrupt the association of each domain with the target proteins, while preserving the overall structure. The ion channel clustering activities of the PSD-95 mutants were analyzed in COS-1 cells coexpressing each mutant and Kv1.4. The mutant bearing the dysfunctional PDZ2 (PSD-95:1-2mDelta) showed significantly reduced clustering efficiency, whereas the mutant with the dysfunctional PDZ1 (PSD-95:1mDelta-2) exhibited activity comparable with the wild-type activity. Furthermore, we also examined the requirements for the position of PDZ2 in full-length PSD-95 by constructing a series of PDZ1-PDZ2 inversion mutants. Surprisingly, the clustering activity of PSD-95:2-1mDelta was severely defective. Taken together, these findings show that PDZ2, which is endowed with the highest affinity for Kv1.4, is required for efficient ligand binding. In addition, the ligand binding at the position of the second PDZ domain in full-length PSD-95 is prerequisite for efficient and typical cluster formation. This study suggests that the correct placement of the multiple domains in the full-length PSD-95 protein is necessary for the optimal protein activity.  相似文献   

2.
NMDA receptors are linked to intracellular cytoskeletal and signaling molecules via the PSD-95 protein complex. We report a novel family of postsynaptic density (PSD) proteins, termed Shank, that binds via its PDZ domain to the C terminus of PSD-95-associated protein GKAP. A ternary complex of Shank/GKAP/PSD-95 assembles in heterologous cells and can be coimmunoprecipitated from rat brain. Synaptic localization of Shank in neurons is inhibited by a GKAP splice variant that lacks the Shank-binding C terminus. In addition to its PDZ domain, Shank contains a proline-rich region that binds to cortactin and a SAM domain that mediates multimerization. Shank may function as a scaffold protein in the PSD, potentially cross-linking NMDA receptor/PSD-95 complexes and coupling them to regulators of the actin cytoskeleton.  相似文献   

3.
Proteomic analyses have revealed a novel synaptic proline-rich membrane protein: PRR7 (proline rich 7), in the postsynaptic density (PSD) fraction of rat forebrain. PRR7 is 269 amino acid residues long, and displays a unique architecture, composed of a very short N-terminal extracellular region, a single membrane spanning domain, and a cytoplasmic domain possessing a proline-rich sequence and a C-terminal type-1 PDZ binding motif. A fraction of PRR7 accumulates in spines along with synapse maturation, and colocalizes with PSD-95 in a punctate pattern in rat hippocampal neural cultures. Immunoprecipitation and GST pull-down assays demonstrated that PRR7 binds to the third PDZ domain of PSD-95. In addition, the NMDA receptor subunits, NR1 and NR2B, specifically co-immunoprecipitated with PRR7. These results suggest that PRR7 is involved in modulating neural activities via interactions with the NMDA receptor and PSD-95, and PSD core formation.  相似文献   

4.
The voltage-gated potassium channel, Kv1.3, plays an important role in regulating membrane excitability in diverse cell types ranging from T-lymphocytes to neurons. In the present study, we test the hypothesis that the C-terminal PDZ binding domain modulates the function and localization of Kv1.3. We created a mutant form of Kv1.3 that lacked the last three amino acids of the C-terminal PDZ-binding domain (Kv1.3ΔTDV). This form of Kv1.3 did not bind the PDZ domain containing protein, PSD95. We transfected wild type and mutant Kv1.3 into HEK293 cells and determined if the mutation affected current, Golgi localization, and surface expression of the channel. We found that cells transfected with Kv1.3ΔTDV had greater current and lower Golgi localization than those transfected with Kv1.3. Truncation of the C-terminal PDZ domain did not affect surface expression of Kv1.3. These findings suggest that PDZ-dependent interactions affect both Kv1.3 localization and function. The finding that current and Golgi localization changed without a corresponding change in surface expression suggests that PDZ interactions affect localization and function via independent mechanisms.  相似文献   

5.
Kv4.2 is a voltage-gated potassium channel that is critical in controlling the excitability of myocytes and neurons. Processes that influence trafficking and surface distribution patterns of Kv4.2 will affect its ability to contribute to cellular functions. The scaffolding/clustering protein PSD-95 regulates trafficking and distribution of several receptors and Shaker family Kv channels. We therefore investigated whether the C-terminal valine-serine-alanine-leucine (VSAL) of Kv4.2 is a novel binding motif for PSD-95. By using co-immunoprecipitation assays, we determined that full-length Kv4.2 and PSD-95 interact when co-expressed in mammalian cell lines. Mutation analysis in this heterologous expression system showed that the VSAL motif of Kv4.2 is necessary for PSD-95 binding. PSD-95 increased the surface expression of Kv4.2 protein and caused it to cluster, as shown by deconvolution microscopy and biotinylation assays. Deleting the C-terminal VSAL motif of Kv4.2 eliminated these effects, as did substituting a palmitoylation-deficient PSD-95 mutant. In addition to these effects of PSD-95 on Kv4.2 distribution, the channel itself promoted redistribution of PSD-95 to the cell surface in the heterologous expression system. This work represents the first evidence that a member of the Shal subfamily of Kv channels can bind to PSD-95, with functional consequences.  相似文献   

6.
D B Arnold  D E Clapham 《Neuron》1999,23(1):149-157
Ion channels and PSD-95 are colocalized in specific neuronal subcellular locations by an unknown mechanism. To investigate mechanisms of localization, we used biolistic techniques to express GFP-tagged PSD-95 (PSD-95:GFP) and the K(+)-selective channel Kv1.4 in slices of rat cortex. In pyramidal cells, PSD-95:GFP required a single PDZ domain and a region including the SH3 domain for localization to postsynaptic sites. When transfected alone, PSD-95:GFP was present in dendrites but absent from axons. When cotransfected with Kv1.4, PSD-95:GFP appeared in both axons and dendrites, while Kv1.4 was restricted to axons. When domains that mediate the interaction of Kv1.4 and PSD-95 were disrupted, Kv1.4 localized nonspecifically. Our results provide evidence that Kv1.4 itself may determine its subcellular location, while an associated MAGUK protein is a necessary but not sufficient cofactor.  相似文献   

7.
Slo2 channels are a type of sodium-activated K+ channels and possess a typical PDZ binding motif at the carboxy-terminal end. Thus, we investigated whether Slo2 channels bind to PSD-95, because it is well known that other types of K+ channels, voltage-gated and inward rectifier K+ channels, bind to PSD-95 via the PDZ binding motif and are involved in excitatory synaptic transmission. By using an extract prepared from cultured neocortical neurons, we demonstrated a biochemical interaction between mSlo2 channels and PSD-95, and a mutational analysis revealed that mSlo2 channels bound to the first PDZ domain of PSD-95 via the PDZ binding motif. To investigate the expression of mSlo2 protein in primary neocortical neurons, we raised anti-mSlo2 channel antibody and immunostained neocortical neurons. The immunocytochemical study showed that mSlo2 channels partly colocalized with PSD-95 in mouse neocortical neurons.  相似文献   

8.
Voltage-dependent potassium channels regulate membrane excitability and cell-cell communication in the mammalian nervous system, and are found highly localized at distinct neuronal subcellular sites. Kv1 (mammalian Shaker family) potassium channels and the neurexin Caspr2, both of which contain COOH-terminal PDZ domain binding peptide motifs, are found colocalized at high density at juxtaparanodes flanking nodes of Ranvier of myelinated axons. The PDZ domain-containing protein PSD-95, which clusters Kv1 potassium channels in heterologous cells, has been proposed to play a major role in potassium channel clustering in mammalian neurons. Here, we show that PSD-95 colocalizes precisely with Kv1 potassium channels and Caspr2 at juxtaparanodes, and that a macromolecular complex of Kv1 channels and PSD-95 can be immunopurified from mammalian brain and spinal cord. Surprisingly, we find that the high density clustering of Kv1 channels and Caspr2 at juxtaparanodes is normal in a mutant mouse lacking juxtaparanodal PSD-95, and that the indirect interaction between Kv1 channels and Caspr2 is maintained in these mutant mice. These data suggest that the primary function of PSD-95 at juxtaparanodes lies outside of its accepted role in mediating the high density clustering of Kv1 potassium channels at these sites.  相似文献   

9.
PDZ domain proteins play critical roles in binding, clustering and subcellular targeting of membrane receptors and ion channels. PDZ domains in multi-PDZ proteins often are arranged in groups with highly conserved spacing and intervening sequences; however, the functional significance of such tandem arrangements of PDZs is unclear. We have solved the three-dimensional structure of the first two PDZ domains of postsynaptic density protein-95 (PSD-95 PDZ1 and PDZ2), which are closely linked to each other in the PSD-95 family of scaffold proteins. The two PDZs have limited freedom of rotation and their C-terminal peptide-binding grooves are aligned with each other with an orientation preference for binding to pairs of C termini extending in the same direction. Increasing the spacing between PDZ1 and PDZ2 resulted in decreased binding between PDZ12 and its dimeric targets. The same mutation impaired the functional ability of PSD-95 to cluster Kv1.4 potassium channels in heterologous cells. The data presented provide a molecular basis for preferential binding of PSD-95 to multimeric membrane proteins with appropriate C-terminal sequences.  相似文献   

10.
Postsynaptic density 95 (PSD-95/SAP-90) is a membrane associated guanylate kinase (GK) PDZ protein that scaffolds glutamate receptors and associated signaling networks at excitatory synapses. Affinity chromatography identifies cypin as a major PSD-95-binding protein in brain extracts. Cypin is homologous to a family of hydrolytic bacterial enzymes and shares some similarity with collapsin response mediator protein (CRMP), a cytoplasmic mediator of semaphorin III signalling. Cypin is discretely expressed in neurons and is polarized to basal membranes in intestinal epithelial cells. Overexpression of cypin in hippocampal neurons specifically perturbs postsynaptic trafficking of PSD-95 and SAP-102, an effect not produced by overexpression of other PDZ ligands. In fact, PSD-95 can induce postsynaptic clustering of an otherwise diffusely localized K+ channel, Kv1.4. By regulating postsynaptic protein sorting, cypin may influence synaptic development and plasticity.  相似文献   

11.
Neuronal nitric oxide synthase (nNOS) is targeted to the cell membrane via interactions of its extended PDZ domain with PDZ domains of membrane-associated proteins including PSD-95 and alpha1-syntrophin. The formation of heterodimers between the nNOS PDZ domain and the PDZ domains of nNOS-binding proteins requires a stretch of continuous amino-acid residues C-terminal to the canonical nNOS PDZ domain. In this work, we show that a 27-residue peptide comprising the C-terminal extension of the extended nNOS PDZ domain is capable of binding to PSD-95. The structure of the 27-residue peptide in aqueous solution was determined using multidimensional NMR-spectroscopic techniques. The free peptide adopts a native-like beta-hairpin finger structure in aqueous solution. The results indicate that the C-terminal extension peptide of the nNOS PDZ domain may represent a relatively independent structural unit in the mediation of the interaction between nNOS and PDZ domain-containing proteins including PSD-95 and alpha1-syntrophin.  相似文献   

12.
Gee SH  Quenneville S  Lombardo CR  Chabot J 《Biochemistry》2000,39(47):14638-14646
PDZ domains are modular protein-protein interaction domains that bind to specific C-terminal sequences of membrane proteins and/or to other PDZ domains. Certain PDZ domains in PSD-95 and syntrophins interact with C-terminal peptide ligands and heterodimerize with the extended nNOS PDZ domain. The capacity to interact with nNOS correlates with the presence of a Lys residue in the carboxylate- binding loop of these PDZ domains. Here, we report that substitution of an Arg for Lys-165 in PSD-95 PDZ2 disrupted its interaction with nNOS, but not with the C terminus of the Shaker-type K(+) channel Kv1.4. The same mutation affected nNOS binding to alpha1- and beta1-syntrophin PDZ domains to a lesser extent, due in part to the stabilizing effect of tertiary interactions with the canonical nNOS PDZ domain. PDZ domains with an Arg in the carboxylate-binding loop do not bind nNOS; however, substitution with Lys or Ala was able to confer nNOS binding. Our results indicate that the carboxylate-binding loop Lys or Arg is a critical determinant of nNOS binding and that the identity of this residue can profoundly alter one mode of PDZ recognition without affecting another. We also analyzed the effects of mutating Asp-143, a residue in the alphaB helix of alpha1-syntrophin that forms a tertiary contact with the nNOS PDZ domain. This residue is important for both nNOS and C-terminal peptide binding and confers a preference for peptides with a positively charged residue at position -4. On this basis, we have identified the C terminus of the Kir2.1 channel as a possible binding partner for syntrophin PDZ domains. Together, our results demonstrate that single-amino acid substitutions alter the specificity and affinity of PDZ domains for their ligands.  相似文献   

13.
The synaptic scaffolding molecule (S-SCAM) has been identified as a protein interacting with SAP90/PSD-95-associated protein (SAPAP) (also called guanylate kinase-associated protein/hDLG-associated protein). S-SCAM has six PDZ (we have numbered them PDZ-0 to -5), two WW, and one guanylate kinase (GK) domains and interacts with N-methyl-D-aspartate (NMDA) receptor via PDZ-5 and SAPAP via the GK domain. We have identified here shorter isoforms of S-SCAM that start at the 164th or 224th methionine, and we renamed the original one, S-SCAMalpha, the middle one, S-SCAMbeta, and the shortest one, S-SCAM-gamma. S-SCAMbeta and -gamma have five PDZ (PDZ-1 to -5), two WW, and one GK domains. S-SCAMalpha interacted with S-SCAMbeta and -gamma through the region containing PDZ-4 and -5. The region containing both of PDZ-4 and -5 is sufficient for the clustering of NMDA receptors and forms a dimer in gel filtration, suggesting that S-SCAM forms multimers via the interaction between the C-terminal PDZ domains and assembles NMDA receptors into clusters. S-SCAMbeta and -gamma also interacted with SAPAP, suggesting that the N-terminal region of the GK domain is not necessary for the interaction. Finally, we have identified the interaction of the PDZ domains of S-SCAM with the GK domain of PSD-95/SAP90. S-SCAM, PSD-95/SAP90, and SAPAP are colocalized at least in some part in brain. Therefore, S-SCAM, PSD-95/SAP90, and SAPAP may form a complex in vivo.  相似文献   

14.
Craven SE  El-Husseini AE  Bredt DS 《Neuron》1999,22(3):497-509
During synaptic development, proteins aggregate at specialized pre- and postsynaptic structures. Mechanisms that mediate protein clustering at these sites remain unknown. To investigate this process, we analyzed synaptic targeting of a postsynaptic density protein, PSD-95, by expressing green fluorescent protein- (GFP-) tagged PSD-95 in cultured hippocampal neurons. We find that postsynaptic clustering relies on three elements of PSD-95: N-terminal palmitoylation, the first two PDZ domains, and a C-terminal targeting motif. In contrast, disruptions of PDZ3, SH3, or guanylate kinase (GK) domains do not affect synaptic targeting. Palmitoylation is sufficient to target the diffusely expressed SAP-97 to synapses, and palmitoylation cannot be replaced with alternative membrane association motifs, suggesting that a specialized synaptic lipid environment mediates postsynaptic clustering. The requirements for PDZ domains and a C-terminal domain of PSD-95 indicate that protein-protein interactions cooperate with lipid interactions in synaptic targeting.  相似文献   

15.
Synaptic function requires proper localization of proteins at synaptic sites. Targeting of the postsynaptic density protein 95 (PSD-95) relies on multiple signals within the protein, including twelve C-terminal amino acids. We now show that this C-terminal targeting domain of PSD-95 mediates postsynaptic localization through a short tyrosine-based motif followed by a pair of hydrophobic amino acids. Consistent with a role in cellular trafficking, the tyrosine motif resembles the canonical motif for interactions with clathrin adaptor proteins. In fact, we find that the C-terminal targeting domain of PSD-95 is sufficient to mediate clathrin-dependent endocytosis when appended to a transmembrane protein. Furthermore, systematic mutagenesis reveals that endocytosis mediated by this domain depends on both the tyrosine motif and the dihydrophobic amino acid pair. Thus, postsynaptic targeting of PSD-95 requires a tyrosine-based signal that can mediate clathrin-coated vesicle formation.  相似文献   

16.
Nitric oxide (NO) biosynthesis in cerebellum is preferentially activated by calcium influx through N-methyl-D-aspartate (NMDA)-type glutamate receptors, suggesting that there is a specific link between these receptors and neuronal NO synthase (nNOS). Here, we find that PSD-95 assembles a postsynaptic protein complex containing nNOS and NMDA receptors. Formation of this complex is mediated by the PDZ domains of PSD-95, which bind to the COOH termini of specific NMDA receptor subunits. In contrast, nNOS is recruited to this complex by a novel PDZ-PDZ interaction in which PSD-95 recognizes an internal motif adjacent to the consensus nNOS PDZ domain. This internal motif is a structured "pseudo-peptide" extension of the nNOS PDZ that interacts with the peptide-binding pocket of PSD-95 PDZ2. This asymmetric interaction leaves the peptide-binding pocket of the nNOS PDZ domain available to interact with additional COOH-terminal PDZ ligands. Accordingly, we find that the nNOS PDZ domain can bind PSD-95 PDZ2 and a COOH-terminal peptide simultaneously. This bivalent nature of the nNOS PDZ domain further expands the scope for assembly of protein networks by PDZ domains.  相似文献   

17.
PDZ domains are modular protein units that play important roles in organizing signal transduction complexes. PDZ domains mediate interactions with both C-terminal peptide ligands and other PDZ domains. Here, we used PDZ domains from neuronal nitric oxide synthase (nNOS) and postsynaptic density protein-95 (PSD-95) to explore the mechanism for PDZ-dimer formation. The nNOS PDZ domain terminates with a approximately 30 residue amino acid beta-finger peptide that is shown to be required for nNOS/PSD-95 PDZ dimer formation. In addition, formation of the PDZ dimer requires this beta-finger peptide to be physically anchored to the main body of the canonical nNOS PDZ domain. A buried salt bridge between the beta-finger and the PDZ domain induces and stabilizes the beta-hairpin structure of the nNOS PDZ domain. In apo-nNOS, the beta-finger peptide is partially flexible and adopts a transient beta-strand like structure that is stabilized upon PDZ dimer formation. The flexibility of the NOS PDZ beta-finger is likely to play a critical role in supporting the formation of nNOS/PSD-95 complex. The experimental data also suggest that nNOS PDZ and the second PDZ domain of PSD-95 form a "head-to-tail" dimer similar to the nNOS/syntrophin complex characterized by X-ray crystallography.  相似文献   

18.
The Na(+)/H(+) exchanger regulatory factor 2 (NHERF2/TKA-1/E3KARP) contains two PSD-95/Dlg/ZO-1 (PDZ) domains which interact with the PDZ docking motif (X-(S/T)-X-(V/L)) of proteins to mediate the assembly of transmembrane and cytosolic proteins into functional signal transduction complexes. One of the PDZ domains of NHERF2 interacts specifically with the DSLL, DSFL, and DTRL motifs present at the carboxy-termini of the 2-adrenergic receptor, the platelet-derived growth factor receptor, and the cystic fibrosis transmembrane conductance regulator, respectively. Serum- and glucocorticoid-induced protein kinase 1 (SGK1) also carries a putative PDZ-binding motif (D-S-F-L) at its carboxy tail, implicated in the specific interaction with NHERF2. There is a 3-phosphoinositide-dependent protein kinase 1 (PDK1) interacting fragment (PIF) in the tail of NHERF2. Using pull-down assays and co-transfection experiments, we demonstrated that the DSFL tail of SGK1 interacts with the first PDZ domain of NHERF2 and the PIF of NHERF2 binds to the PIF-binding pocket of PDK1 to form an SGK1-NHERF2-PDK1 complex. Formation of the protein complex promoted the phosphorylation and activation of SGK1 by PDK1. Thus, it was suggested that NHERF2 mediates the activation and phosphorylation of SGK1 by PDK1 through its first PDZ domain and PIF motif, as a novel SGK1 activation mechanism.  相似文献   

19.
Although it is generally recognized that cystic fibrosis transmembrane conductance regulator (CFTR) contains a PSD-95/Disc-large/ZO-1 (PDZ)-binding motif at its COOH terminus, the identity of the PDZ domain protein(s) that interact with CFTR is uncertain, and the functional impact of this interaction is not fully understood. By using human airway epithelial cells, we show that CFTR associates with Na(+)/H(+) exchanger (NHE) type 3 kinase A regulatory protein (E3KARP), an EBP50/NHE regulatory factor (NHERF)-related PDZ domain protein. The PDZ binding motif located at the COOH terminus of CFTR interacts preferentially with the second PDZ domain of E3KARP, with nanomolar affinity. In contrast to EBP50/NHERF, E3KARP is predominantly localized (>95%) in the membrane fractions of Calu-3 and T84 cells, where CFTR is located. Moreover, confocal immunofluorescence microscopy of polarized Calu-3 monolayers shows that E3KARP and CFTR are co-localized at the apical membrane domain. We also found that ezrin associates with E3KARP in vivo. Co-expression of CFTR with E3KARP and ezrin in Xenopus oocytes potentiated cAMP-stimulated CFTR Cl(-) currents. These results support the concept that E3KARP functions as a scaffold protein that links CFTR to ezrin. Since ezrin has been shown previously to function as a protein kinase A anchoring protein, we suggest that one function served by the interaction of E3KARP with both ezrin and CFTR is to localize protein kinase A in the vicinity of the R-domain of CFTR. Since ezrin is also an actin-binding protein, the formation of a CFTR.E3KARP.ezrin complex may be important also in stabilizing CFTR at the apical membrane domain of airway cells.  相似文献   

20.
The B class cell-attached ephrins mediate contact-dependent cell-cell communications and transduce the contact signals to the host cells through the binding interactions of their cytoplasmic domains. Two classes of intracellular effectors of B ephrins have been identified: one contains the PSD-95/Dlg/ZO-1 (PDZ) domain (for example PDZ-RGS3), and the second the Src homology 2 (SH2) domain (e.g. the Grb4 adaptor protein). The interaction with Grb4 requires phosphorylation of tyrosine residues on the conserved cytoplasmic C-terminal region of B ephrins, while binding to the PDZ domain is independent of tyrosine phosphorylation. However, the exact phosphorylation site(s) required for signaling remained obscure and it is also unknown whether the two classes of effectors can bind to B ephrins simultaneously or if the binding of one affects the binding of the other. We report here that phosphorylation of Tyr304 in the functional C-terminal region (residues 301-333) of ephrin B2 confers high-affinity binding to the SH2 domain of the Grb4 protein. Tyrosine phosphorylation at other candidate sites resulted in only minor change of the binding of Tyr304-phosphorylated ephrin B peptide (i.e. ephrinB2(301-333)-pY304) with the SH2 domain. (1)H-(15)N NMR HSQC experiments show that only the ephrinB2(301-333)-pY304 peptide forms a stable and specific binding complex with the SH2 domain of Grb4. The SH2 and PDZ domains were found to bind to the Tyr304 phosphopeptide both independently and at the same time, forming a three-component molecular complex. Taken together, our studies identify a novel SH2 domain binding motif, PHpY304EKV, on the cytoplasmic domains of B ephrins that may be essential for reverse signaling via the Grb4 adaptor protein alone or in concert with proteins containing PDZ domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号