首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R A Maplestone  M J Stone  D H Williams 《Gene》1992,115(1-2):151-157
It is argued that organisms have evolved the ability to biosynthesise secondary metabolites ('natural products') due to the selectional advantages they obtain as a result of the functions of the compounds. Pleiotropic switching, the simultaneous expression of sporulation and antibiotic biosynthesis genes in Streptomyces, is interpreted in terms of the defense roles of antibiotics. The clustering together of antibiotic biosynthesis, regulation, and resistance genes, and in particular the staggering complexity shown in the case of the gene cluster for erythromycin A biosynthesis, implies that these genes have been selected as a group and that the antibiotics function in antagonistic capacities in nature.  相似文献   

2.
3.
The interaction between growth and secondary metabolism develops from physiological responses of the producer organism to its environment. Nutrients are channelled into primary growth processes or into secondary processes such as antibiotic biosynthesis by a variety of metabolic controls, the nature of which has been extensively studied in organisms producing beta-lactam antibiotics via the tripeptide, delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine. In the following article we review the early stages of beta-lactam biosynthesis in fungi and actinomycetes, keeping in mind the regulation of primary pathways that provide the amino acid precursors of this group of antibiotics, as well as the regulation of the secondary pathway itself. Of special importance to organisms engaging in secondary metabolism are the control mechanisms that suppress the nonessential process during rapid growth but allow secondary metabolic genes to be expressed and resources to be diverted when environmental factors generate the appropriate biochemical signals.  相似文献   

4.
Antibiotic‐producing bacteria encode antibiotic resistance genes that protect them from the biologically active molecules that they produce. The expression of these genes needs to occur in a timely manner: either in advance of or concomitantly with biosynthesis. It appears that there have been at least two general solutions to this problem. In many cases, the expression of resistance genes is tightly linked to that of antibiotic biosynthetic genes. In others, the resistance genes can be induced by their cognate antibiotics or by intermediate molecules from their biosynthetic pathways. The regulatory mechanisms that couple resistance to antibiotic biosynthesis are mechanistically diverse and potentially relevant to the origins of clinical antibiotic resistance.  相似文献   

5.
Synergy and duality in peptide antibiotic mechanisms   总被引:4,自引:0,他引:4  
The molecular mechanisms by which peptide antibiotics disrupt bacterial DNA synthesis, protein biosynthesis, cell wall biosynthesis, and membrane integrity are diverse, yet historically have been understood to follow a theme of one antibiotic, one inhibitory mechanism. In the past year, mechanistic and structural studies have shown a rich diversity in peptide antibiotic mechanism. Novel secondary targeting mechanisms for peptide antibiotics have recently been discovered, and the mechanisms of peptide antibiotics involved in synergistic relationships with antibiotics and proteins have been more clearly defined. In apparent response to selective pressures, antibiotic-producing organisms have elegantly integrated multiple functions and cooperative interactions into peptide antibiotic design for the purpose of improving antimicrobial success.  相似文献   

6.
Antibiotic biosynthesis pathways are found in a broad range of Gram positive prokaryotes, a smaller range of Gram negative prokaryotes and a limited range of eukaryotes. A variety of techniques can be used to identify the genes involved in the biosynthesis of these compounds ranging from genetic complementation and interspecific gene transfer to polymerase chain reaction amplification and transposon mutagenesis. The dissection of these cloned pathways and the understanding of their structure and regulation has led to insights into the structure and function of antibiotic biosynthesis genes. With new knowledge of the structural similarities and relationships between related antibiotic biosynthesis pathways, the possibility of directed manipulation of specific genes to allow synthesis of novel antibiotics is now possible.  相似文献   

7.
8.
ABC转运蛋白家族是一个广泛存在于不同生物细胞中且功能保守的膜蛋白亚家族;它们是一类单向底物转运泵,通常以主动转运方式完成多种分子的跨膜转运。随着抗生素合成基因簇相关研究的开展,越来越多的簇内ABC转运蛋白被鉴定出来,对其生物学功能的研究正逐渐成为热点。多烯类抗生素作为一类重要的抗真菌药物,能够有效避免真菌产生耐药性,具有非常重要的临床价值。本文以多烯类抗生素合成基因簇为对象,综述了在其中所发现的ABC转运蛋白的研究进展,综合分析了其结构特性与功能间的关系,并对研究应用进行了展望。  相似文献   

9.
Biosynthesis of deoxyaminosugars in antibiotic-producing bacteria   总被引:3,自引:0,他引:3  
Deoxyaminosugars comprise an important class of deoxysugars synthesized by a variety of different microorganisms; they can be structural components of lipopolysaccharides, extracellular polysaccharides, and secondary metabolites such as antibiotics. Genes involved in the biosynthesis of the deoxyaminosugars are often clustered and are located in the vicinity of other genes required for the synthesis of the final compound. Most of the gene clusters for aminosugar biosynthesis have common features, as they contain genes encoding dehydratases, isomerases, aminotransferases, methyltransferases, and glycosyltransferases. In the present mini-review, the proposed biosynthetic pathways for deoxyaminosugar components of both macrolide and non-macrolide antibiotics are highlighted. The possibilities for genetic manipulations of the deoxyaminosugar biosynthetic pathways aimed at production of novel secondary metabolites are discussed.  相似文献   

10.
Exploiting the genetic potential of polyketide producing streptomycetes   总被引:4,自引:0,他引:4  
Streptomycetes are the most important bacterial producers of bioactive secondary metabolites such as antibiotics or cytostatics. Due to the emerging resistance of pathogenic bacteria to all commonly used antibiotics, new and modified natural compounds are required for the development of novel drugs. In addition to the classical screening for natural compounds, genome driven approaches like combinatorial biosynthesis are permanently gaining relevance for the generation of new structures. This technology utilizes the combination of genes from different biosynthesis pathways resulting in the production of novel or modified metabolites. The basis for this strategy is the access to a significant number of genes and the knowledge about the activity and specificity of the enzymes encoded by them. A joint initiative was started to exploit the biosynthesis gene clusters from streptomycetes. In this publication, an overview of the strategy for the identification and characterization of numerous biosynthesis gene clusters for polyketides displaying interesting functions and particular structural features is given.  相似文献   

11.
《Journal of molecular biology》2019,431(18):3370-3399
The biosynthesis of antibiotics and self-protection mechanisms employed by antibiotic producers are an integral part of the growing antibiotic resistance threat. The origins of clinically relevant antibiotic resistance genes found in human pathogens have been traced to ancient microbial producers of antibiotics in natural environments. Widespread and frequent antibiotic use amplifies environmental pools of antibiotic resistance genes and increases the likelihood for the selection of a resistance event in human pathogens. This perspective will provide an overview of the origins of antibiotic resistance to highlight the crossroads of antibiotic biosynthesis and producer self-protection that result in clinically relevant resistance mechanisms. Some case studies of synergistic antibiotic combinations, adjuvants, and hybrid antibiotics will also be presented to show how native antibiotic producers manage the emergence of antibiotic resistance.  相似文献   

12.
Molecular biology of antibiotic production in Bacillus.   总被引:11,自引:0,他引:11  
  相似文献   

13.
Data are presented on resistance of Streptomyces aureofaciens strain TB-633 FU--the producer of chlortetracycline (CTC) to autogenous antibiotics and a number of other antibiotics. It is demonstrated that resistance to CTC is specified by ctr genes of constitutive expression as well as by inducible genes. CTC and ethidium bromide may serve as efficient inductors of inducible ctr genes. The induction process is accompanied by increase in antibiotic biosynthesis level. Genes responsible for strain resistance to a number of macrolide antibiotics and thiostrepton are inducible and only function in the presence of appropriate antibiotics in the medium. The action of inducible mtr gene(s) is described in detail. The gene(s) simultaneously ensure increase in resistance to CTC and a number of macrolide antibiotics in the presence of exogenous inductors in media, such as both CTC and macrolide antibiotics. Mutants have been isolated which provide constitutive level of resistance to these antibiotics. A series of ctr and mtr mutants have increased CTC biosynthesis as compared to the initial level. Data on comparative analysis of the results obtained from hybridization of fragments of S. aureofaciens and S. rimosus DNAs to actI and actIII genes, responsible for polyketide synthases' synthesis, demonstrate that genes for CTC and OTC biosynthesis are situated on DNA fragments of similar size. This determines the strategy for cloning ctr and mtr genes as well as genes for CTC biosynthesis from S. aureofaciens.  相似文献   

14.
Current advances in the research and practical application of pleiotropic regulatory genes for antibiotic production in actinomycetes are reviewed. The basic regulatory mechanisms discovered in these bacteria are outlined. The examples described in the review show the importance of the manipulation of regulatory systems that affect the synthesis of antibiotics for the metabolic engineering of actinomycetes. Also, the study of these genes is the basis for the development of genetic engineering approaches to the induction of the “cryptic” part of the actinomycetes secondary metabolome, the capacity of which for the production of biologically active compounds is much larger than the diversity of antibiotics underpinned by traditional microbiological screening. Besides practical problems, the study of regulatory genes for antibiotic biosynthesis will provide insights into the process of evolution of complex regulatory systems that coordinate the expression of gene operons, clusters, and regulons, involved in the control of the secondary metabolism and morphogenesis of actinomycetes.  相似文献   

15.
16.
17.
Peters RJ 《Phytochemistry》2006,67(21):2307-2317
Rice (Oryza sativa) is a staple food crop and serves as a model cereal crop plant for scientific study. Phytochemical investigations of the agronomically devastating rice blast disease have identified a number of rice phytoalexins exhibiting significant direct anti-fungal activity against the causative agent, Magneporthe grisea. Current evidence strongly indicates that these phytoalexins, largely a family of labdane-related diterpenoids, are important as general antibiotics, and that similar phytoalexins are produced more broadly throughout the cereal crop family. From the extensive sequence information available for rice it has been possible to functionally identify the genes for the enzymes catalyzing the two consecutive cyclization reactions that initiate biosynthesis of these labdane-related diterpenoid phytoalexins. This has led to several insights into the underlying evolution of diterpene biosynthesis throughout the cereal crop family. The hydrocarbon olefins resulting from cyclization must be further elaborated to form bioactive natural products and, because not much is currently known, necessarily speculative biosynthetic pathways for these processes are presented. Given the significant antibiotic activity of the labdane-related diterpenoid phytoalexins from rice, and the presence of similar secondary metabolism throughout the cereal crop plant family, study of this type of biosynthesis will continue to be an area of active investigation.  相似文献   

18.
The history of modern medicine cannot be written apart from the history of the antibiotics. Antibiotics are cytotoxic secondary metabolites that are isolated from Nature. The antibacterial antibiotics disproportionately target bacterial protein structure that is distinct from eukaryotic protein structure, notably within the ribosome and within the pathways for bacterial cell‐wall biosynthesis (for which there is not a eukaryotic counterpart). This review focuses on a pre‐eminent class of antibiotics—the β‐lactams, exemplified by the penicillins and cephalosporins—from the perspective of the evolving mechanisms for bacterial resistance. The mechanism of action of the β‐lactams is bacterial cell‐wall destruction. In the monoderm (single membrane, Gram‐positive staining) pathogen Staphylococcus aureus the dominant resistance mechanism is expression of a β‐lactam‐unreactive transpeptidase enzyme that functions in cell‐wall construction. In the diderm (dual membrane, Gram‐negative staining) pathogen Pseudomonas aeruginosa a dominant resistance mechanism (among several) is expression of a hydrolytic enzyme that destroys the critical β‐lactam ring of the antibiotic. The key sensing mechanism used by P. aeruginosa is monitoring the molecular difference between cell‐wall construction and cell‐wall deconstruction. In both bacteria, the resistance pathways are manifested only when the bacteria detect the presence of β‐lactams. This review summarizes how the β‐lactams are sensed and how the resistance mechanisms are manifested, with the expectation that preventing these processes will be critical to future chemotherapeutic control of multidrug resistant bacteria.  相似文献   

19.
Summary In the last decade numerous genes involved in the biosynthesis of antibiotics, pigments, herbicides and other secondary metabolites have been cloned. The genes involved in the biosynthesis of penicillin, cephalosporin and cephamycins are organized in clusters as occurs also with the biosynthetic genes of other antibiotics and secondary metabolites (see review by Martín and Liras [65]). We have cloned genes involved in the biosynthesis of -lactam antibiotics from five different -lactam producing organisms both eucaryotic (Penicillium chrysogenum, Cephalosporium acremonium (syn.Acremonium chrysogenum) Aspergillus nidulans) and procaryotic (Nocardia lactamdurans, Streptomyces clavuligerus). InP. chrysogenum andA. nidulans the organization of thepcbAB,pcbC andpenDE genes for ACV synthetase, IPN synthase and IPN acyltransferase showed a similar arrangement. InA. chrysogenum two different clusters of genes have been cloned. The cluster of early genes encodes ACV synthetase and IPN synthase, whereas the cluster of late genes encodes deacetoxycephalosporin C synthetase/hydroxylase and deacetylcephalosporin C acetyltransferase. InN. lactamdurans andS. clavuligerus a cluster of early cephamycin genes has been fully characterized. It includes thelat (for lysine-6-aminotransferase),pcbAB (for ACV synthase) andpcbC (for IPN synthase) genes. Pathway-specific regulatory genes which act in a positive (or negative) form are associated with clusters of genes involved in antibiotic biosynthesis. In addition, widely acting positive regulatory elements exert a pleiotropic control on secondary metabolism and differentiation of antibiotic producing microorganisms.The application of recombinant DNA techniques will contribute significantly to the improvement of fermentation organisms.  相似文献   

20.
《Journal of molecular biology》2019,431(18):3520-3530
Natural product antibiotics usually target the major biosynthetic pathways of bacterial cells and the search for new targets outside these pathways has proven very difficult. Cell wall biosynthesis maybe the most prominent antibiotic target, and ß-lactams are among the clinically most relevant antibiotics. Among cell wall biosynthesis inhibitors, glycopeptide antibiotics are a second group of important drugs, which bind to the peptidoglycan building block lipid II and prevent the incorporation of the monomeric unit into polymeric cell wall. However, lipid II acts as a docking molecule for many more naturally occurring antibiotics from diverse chemical classes and likely is the most targeted molecule in antibacterial mechanisms. We summarize current knowledge on lipid II binding antibiotics and explain, on the levels of mechanisms and resistance development, why lipid II is such a prominent target, and thus provide insights for the design of new antibiotic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号