首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

The below-canopy soil moisture content and litter-layer arthropod abundance and diversity of Acacia karroo trees parasitized by each of three mistletoe species (Erianthemum ngamicum, Plicosepalus kalachariensis, and Viscum verrucosum) and uninfected A. karroo trees were investigated in semi-arid savanna, southwest Zimbabwe.

Results

The soils below the canopies of mistletoe-infected trees were significantly low in moisture content compared to those beneath uninfected A. karroo trees. Nevertheless, arthropod species diversity was greater by up to 34 % below the canopies of mistletoe-infected trees than beneath uninfected A. karroo trees, with greater abundances beneath trees infected by E. ngamicum and P. kalachariensis. In addition, the majority of the arthropod species associated with mistletoe-infected trees had litter as their dominant foraging substrate.

Conclusions

Our findings show that mistletoes increase the abundance and diversity of litter-dwelling and –foraging arthropods due to increase in the quality and quantity of litterfall beneath mistletoe-infected trees. By altering the below-canopy arthropod communities and soil moisture content, mistletoes have potential to modify ecosystem processes such as decomposition, soil process rates, and nutrient cycling. Therefore, we suggest that the resulting increase in resource heterogeneity plays an important role in determining the structure and functioning of semi-arid savanna ecosystems.  相似文献   

2.
Our understanding of carbon (C) dynamics within savannas is very limited, especially how source/sink dynamics are influenced by the resident biota. Previous measurements of epigeal termite mounds (termitaria), ubiquitous in many savannas, have shown that they are considerable point sources of soil carbon dioxide (CO2), whereas CO2 measurements collected outside the mounds were generally assumed to be independent of termite activity. However, no measurements were conducted along gradients away from the mounds to confirm this. We quantified daytime soil CO2 emissions (soil respiration) along gradients from the center to 20?m from the mound edge in Serengeti National Park, and measured soil temperature/moisture, macro-invertebrate abundance, and vegetation height as variables potentially influencing these emissions. Further, we quantified how far into the savanna termitaria impact CO2 emissions. As in other studies, we found the highest soil CO2 fluxes at the termitaria-center and considerably lower fluxes in the surrounding savanna. Macro-invertebrate abundance was associated with the differences in emissions measured, whereas the other variables were not. The analysis of spatial autocorrelation revealed significantly lower fluxes between the termitaria edge and up to 9?m from the edge compared to the values measured at the termitaria-center and between 10 and 20?m from the termitaria edge. When extrapolating the emissions across the landscape our results suggest that the lower CO2 emissions found between the edge and 9?m fully compensate for the high fluxes measured at the termitaria center. Consequently, our findings provide evidence that termitaria might influence the savanna C source-sink dynamics differently than previously thought.  相似文献   

3.
Topographic variations and disturbances are key sources of spatial heterogeneity in the ecosystem and may influence its functioning, productivity, and carbon (C) storage. In water controlled ecosystems, structural and functional heterogeneity become distinct during drought when the ecosystem processes are operating at their limits. We examined spatial heterogeneity arising from grazing, abandoned cropland, presence of Acacia trees, and termite mounds (termitaria). Soil water content (SWC) was significantly (P < 0.05) higher in termitaria and fenced (un-grazed) plots. Higher soil nitrogen (N) content occurred in the Acacia, termitaria, and fenced plots while total biomass was highest in the fenced plot. The termitaria plots showed the highest net ecosystem CO2 exchange (NEE), ecosystem respiration (R eco), and gross primary production (GPP) and were the only plots that were net CO2 sinks. Except in fenced plots, maximum GPP was positively correlated with SWC and green biomass in all the other plots. Green biomass and R eco were positively correlated with SWC. Shifting cultivation (abandoned farmlands) negatively affected soil quality, ecosystem CO2 assimilation, and productivity. Removal of grazing (cattle) from the ecosystem negatively influenced GPP, while the presence of termitaria and Acacia trees facilitated soil water and N availability and ecosystem productivity. We concluded that soil water availability was responsible for most of the localized differences in the savanna and has a strong influence on ecosystem C capture and storage. We recommend that future studies on savanna productivity and ecosystem CO2 fluxes should consider heterogeneity in the ecosystem in order to avoid bias and increase the accuracy of any estimates made.  相似文献   

4.
Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant community assemblage may be a general property of mound building termites.  相似文献   

5.
Mound building termites contribute to savanna vegetation heterogeneity   总被引:1,自引:0,他引:1  
With biomass densities comparable to large ungulates and megaherbivores, termites play a key functional role in many tropical savanna ecosystems. This study focuses on vegetated termite mounds (termitaria) constructed by the Termitidae species Macrotermes herus. We studied how resource rich termitaria affect graminoid herbs (Poaceae and Cyperaceae), forbs and woody species composition and diversity. The density of termitaria explained 89% of the variation in dense thickets in the area. Fire tolerant Acacia species dominated the open savanna while fire sensitive species like Grewia spp. and the succulent Euphorbia candelabrum were restricted to termite mounds. Termitaria plots had four times the mean number of woody species and supported three times as many forb species as the adjacent savanna. For woody species, both the Shannon–Wiener index and the Shannon evenness index were higher on temitaria than on the savanna. There were no differences for graminoid herbs, except for the Shannon evenness index which was higher on termitaria. Our results indicate that graminoid herb richness peaks at lower productivity levels than trees and forbs in savanna ecosystems, as also recently found in temperate areas.  相似文献   

6.
Parasitic plants are increasingly becoming the focus of research in many ecosystems. They have been shown to alter litterfall properties and decomposition rates in environments where they occur. Despite this recognition, the role of mistletoes in nutrient cycling in semi-arid savanna remains poorly understood. We investigated the litter input, element returns, and associated below-canopy soil nutrient concentrations of three mistletoe species (Erianthemum ngamicum, Plicosepalus kalachariensis, and Viscum verrucosum) that parasitize Acacia karroo trees in a semi-arid savanna, southwest Zimbabwe. Element concentrations in mistletoe leaf litter were enriched relative to the host. Litterfall from mistletoes significantly increased overall litterfall by up to 173 %, with E. ngamicum and P. kalachariensis having greater litterfall than their host trees. Associated with these changes in litterfall was an increase in element returns and the below-canopy soil nutrient concentrations. The increase in nutrient returns was due to both the effect of enriched mistletoe litter and increased volumes of litterfall beneath host trees. Litterfall, element returns, and the below-canopy soil nutrient concentrations were significantly influenced by mistletoe density, with higher values at high mistletoe density. Overall, E. ngamicum and P. kalachariensis had greater influence on litterfall, element returns, and soil nutrient concentrations than V. verrucosum. These findings are consistent with current understanding of enhanced nutrient cycling in the presence of parasitic plants particularly in nutrient-poor ecosystems. We conclude that the introduction of nutrients and associated increase in resource heterogeneity play an important role in determining ecosystem structure and function in semi-arid savannas.  相似文献   

7.
Root foraging strategies and soil patchiness in a humid savanna   总被引:1,自引:0,他引:1  
In Lamto (Côte d'Ivoire), the savanna is a patchy environment as far as soil is concerned: tree clumps and termite mounds lead to higher nutrient contents than in the surrounding savanna. Mature Borassus aethiopum (Mart.) specimens are tall palm trees dominating the community, with aerial parts located out of these nutrient-rich patches.Palm root densities were compared under tree clumps and in the surrounding savanna, and were also sampled along transects between palm trees and nutrient-rich patches (two clumps and one mound). Palm root densities were far higher (up to 10 times) in the nitrogen-rich soil of both clumps and termite mounds than in the surrounding savanna. Evidence is given that palm trees are able to extend their root system as far as 20 m towards these nutrient-rich patches where they proliferate. These results point out a particular root foraging strategy, which is one of the first known for a woody perennial. They also provide new insights for understanding nitrogen cycling and savannas high rate of primary production.  相似文献   

8.
Both large herbivores and termites are key functional groups in savanna ecosystems, and in many savanna areas, large termite mounds (termitaria) are associated with distinct woody clusters. Studies on the effect of large mammals on tree regeneration are few, and the results are conflicting. Large herbivores have been found to be important seedling predators in some areas, but facilitate tree regeneration by outcompeting small mammals and reducing grass cover in other areas. Through the use of the experimental fencing of termite mounds and adjacent savanna areas in this study, we investigated how termites and large herbivores influence tree regeneration. Termite mounds had a higher number of seedlings, more species richness, more alpha diversity (OD) and lower evenness (E) than savanna plots. Large herbivores did not significantly affect overall seedling density, species richness, OD or E. Beta diversity was higher in savanna areas than on termitaria, and beta diversity decreased in savanna areas when herbivores were excluded. Herbivore exclusion increased the density of the 12 (40 %) most common seedling species, representing 79 % of all seedlings, and fenced plots had relatively taller seedlings than open plots. Thus, termites were the main determinants of tree regeneration in our study area, but large mammals regulated the most common species. Although our study confirms previous work suggesting that large herbivores affect tree regeneration, we found that termites were an even more important determinant. Termite impacts on tree regeneration deserve increased attention by savanna ecologists.  相似文献   

9.
The giant sable antelope (Hippotragus niger variani) is a critically endangered subspecies with a range restricted to a small area in the Angolan plateau. It is known to display geophagic behaviour, eating the soil of some Macrotermes termitaria. The aim of this study was to understand the importance of this behaviour for the giant sable and other ungulates sharing its range. We identified termite mounds used for geophagy based on local information confirmed by self‐triggering cameras. We collected and analysed soil samples of seven termitaria consumed by ungulates, the adjacent topsoil 50 m away from each, and seven control nonconsumed termitaria. Consumed termite mounds were richer in minerals than control mounds, and both were richer than the surrounding topsoil. Sodium levels showed the greatest contrasts and were about 20 times more abundant in consumed termitaria than in controls. The amount of sodium in background soil was extremely low (9.3 ppm), suggesting that this mineral is a limiting nutrient in the range of the giant sable. These results indicate that the observed geophagic habits may be driven by a need to compensate for a sodium deficiency. This situation should be considered in the planning of the species' conservation.  相似文献   

10.
In the semi-arid woodland of eastern Australia, soil mounds are often associated with fallen mulga (Acacia aneura) trees. Measurements of the physical and chemical properties of the soils in these mounds compared with surrounding soils, together with differences in herbage growth responses, indicate that these mounds are fertile patches, with possible importance as habitats for soil fauna and as refugia for a range of organisms during drought. The mound soil material may accumulate by fluvial, aeolian or rain-splash deposition about the fallen log, however, some of the mound material was derived from termite feeding gallery structures. The surface feeding gallery material may be comprised of soil particles from within the mound or from tunnels and storage galleries below the mound, and probably depends on the termite species.  相似文献   

11.
Fine-scale spatial heterogeneity influences biodiversity and ecosystem productivity at many scales. In savanna systems, Macrotermes termites, through forming spatially explicit mounds with unique woody plant assemblages, emerge as important sources of such heterogeneity. Despite a growing consensus regarding the importance of functional diversity (FD) to ecosystem processes, no study has quantified how termite mounds affect woody plant FD. We address whether termite mounds alter the distribution of functional traits, and increase FD of woody plant communities within Africa’s largest savanna woodland, the 2.7 million km2 miombo system. Using plant traits that change according to soil resources (for example, water and nutrients), and disturbance (for example, fire and elephant herbivory), we identified response functional groups and compared relative representation of these groups between mound and matrix habitats. We also asked whether mound and matrix habitats differed in their contribution to FD within the system. Although species representing most functional groups were found in both mound and matrix habitats, relative abundance of functional groups differed between mound and matrix. Mound plant assemblages had greater response diversity to soil resources than matrix plots, but there was no difference in response diversity to disturbance. High trait values on mounds included tree height, leaf nitrogen, phosphorus, and palatability. Species with root ectomycorrhizae dominated the matrix. In conclusion, these small patches of nutrient-enriched substrate emerge as drivers of FD in above-ground woody plant communities.  相似文献   

12.
The niche theory predicts that environmental heterogeneity and species diversity are positively correlated in tropical forests, whereas the neutral theory suggests that stochastic processes are more important in determining species diversity. This study sought to investigate the effects of soil nutrient (nitrogen and phosphorus) heterogeneity on tree species diversity in the Xishuangbanna tropical seasonal rainforest in southwestern China. Thirty‐nine plots of 400 m2 (20 × 20 m) were randomly located in the Xishuangbanna tropical seasonal rainforest. Within each plot, soil nutrient (nitrogen and phosphorus) availability and heterogeneity, tree species diversity, and community phylogenetic structure were measured. Soil phosphorus heterogeneity and tree species diversity in each plot were positively correlated, while phosphorus availability and tree species diversity were not. The trees in plots with low soil phosphorus heterogeneity were phylogenetically overdispersed, while the phylogenetic structure of trees within the plots became clustered as heterogeneity increased. Neither nitrogen availability nor its heterogeneity was correlated to tree species diversity or the phylogenetic structure of trees within the plots. The interspecific competition in the forest plots with low soil phosphorus heterogeneity could lead to an overdispersed community. However, as heterogeneity increase, more closely related species may be able to coexist together and lead to a clustered community. Our results indicate that soil phosphorus heterogeneity significantly affects tree diversity in the Xishuangbanna tropical seasonal rainforest, suggesting that deterministic processes are dominant in this tropical forest assembly.  相似文献   

13.
Ludwig  Fulco  de Kroon  Hans  Berendse  Frank  Prins  Herbert H.T. 《Plant Ecology》2004,170(1):93-105
In an East African savanna herbaceous layer productivity and species composition were studied around Acacia tortilis trees of three different age classes, as well as around dead trees and in open grassland patches. The effects of trees on nutrient, light and water availability were measured to obtain an insight into which resources determine changes in productivity and composition of the herbaceous layer. Soil nutrient availability increased with tree age and size and was lowest in open grassland and highest under dead trees. The lower N:P ratios of grasses from open grassland compared to grasses from under trees suggested that productivity in open grassland was limited by nitrogen, while under trees the limiting nutrient was probably P. N:P ratios of grasses growing under bushes and small trees were intermediate between large trees and open grassland indicating that the understorey of Acacia trees seemed to change gradually from a N-limited to a P-limited vegetation. Soil moisture contents were lower under than those outside of canopies of large Acacia trees suggesting that water competition between trees and grasses was important. Species composition of the herbaceous layer under Acacia trees was completely different from the vegetation in open grassland. Also the vegetation under bushes of Acacia tortilis was different from both open grassland and the understorey of large trees. The main factor causing differences in species composition was probably nutrient availability because species compositions were similar for stands of similar soil nutrient concentrations even when light and water availability was different. Changes in species composition did not result in differences in above-ground biomass, which was remarkably similar under different sized trees and in open grassland. The only exception was around dead trees where herbaceous plant production was 60% higher than under living trees. The results suggest that herbaceous layer productivity did not increase under trees by a higher soil nutrient availability, probably because grass production was limited by competition for water. This was consistent with the high plant production around dead trees because when trees die, water competition disappears but the high soil nutrient availability remains. Hence, in addition to tree soil nutrient enrichment, below-ground competition for water appears to be an important process regulating tree-grass interactions in semi-arid savanna.  相似文献   

14.
Wu H T  Wu D H  Lu X G  Yin X M 《农业工程》2010,30(5):270-275
Ants constitute a dominant element of soil mesofauna due to their biomass, abundance, richness of species and distribution within terrestrial ecosystems. They are important regulators of soil aggregate structure as they translocate large amounts of soil from the bottom to the soil surface. In doing so, they form biogenic structures (BS) made up of aggregates of different sizes and characteristics, i.e. ant mounds. These BS have varying characteristics according to the ant species and the soil where they carry their activities. Ants are considered soil engineers because of their effects on soil properties, availability of resource and flow of energy and nutrients in soil. Thus, it is important to gain information on their distribution and abundance. Relatively little is known about the spatial distribution of mounds and their role in the soil physical properties in wetlands of the Sanjiang plain, China. We conducted a survey of ant mounds and measured the density, height, and diameter and material composition of different ant mounds. The ecological characteristics of wetlands that ant mounds wide occurrence were also investigated, including soil type, hydrology characters and plant composition. Differences in soil particle composition, bulk density and soil moisture between ant mound and natural meadow were measured to assess the influences of ant mounds on soil physical properties. We also studied the effects of ant mounds on the microtopography of meadows. Ant mounds were found mainly in the transition zone between terrestrial and aquatic habitats, with wetland type, including Calamagrostis augustifolia wet meadow, C.augustifolia marsh meadow, shrubs marsh meadow and Carexmeyeriana–Carexappendiculata wetland, being a significant factor. Most of the mounds detected were inhabited by Lasius flavus Fabricius, Lasius niger Linnaeus and Formica sanguinea Latreille, which occupied 52.9%, 26.5% and 20.6% of the mounds surveyed, respectively. The density, height, diameter and mound composition were significantly different among the mounds of F. sanguinea Latreille, L. flavus Fabricius and L. niger Linnaeus. The average density and diameter of L. flavus mounds was significantly higher than those of other ant mounds. The average height of F. sanguinea mounds was highest among the mounds detected. Mound building activities changed soil particle size distribution, with the silt and clay content of mounds higher than for non-mound soil. Compared with adjacent, non-mound soil, the bulk density (0–30 cm) and water content (0–25 cm) of mound soil were significantly lower, but there were no significant differences between the mound soil of F. sanguinea Latreille and L. flavus Fabricius. The spatial distribution of ant mounds with different height and diameter also changed the micro-geomorphology of the soil surface, increasing the degree of fluctuation of the microtopography. The ant distribution characteristics and their ecological roles respond to a wide range of environmental alterations. The biogenic structures of ant and the specific environment associated with them have been defined as the “functional domain”, a sphere of influence that may significantly affect soil processes at certain spatial and temporal scales. Our results suggest that the distribution and structure of ant mounds can indicate wetland environmental changes, with mounds influencing ecosystem functions and enhancing wetland degradation.  相似文献   

15.
Termitaria are major sites of functional heterogeneity in tropical ecosystems, through their strong influence on soil characteristics, in particular soil physico-chemical properties and water status. These factors have important consequences on nutrient availability for plants, plant spatial distribution, and vegetation dynamics. However, comprehensive information about the influence of termite-rehandled soil on soil water regime is lacking. In a humid shrubby savanna, we characterized the spatial variations in soil texture, soil structure and maximum soil water content available for plants (AWC max) induced by a large termite mound, at three deepths (0–0.10, 0.20–0.30 and 0.50–0.60 m). In addition, during a three month period at the end of the rainy season, soil water potential was surveyed by matrix sensors located on the termite mound and in the surrounding soil at the same depths and for the 80–90 cm layer. Concurrently, the leaf shedding patterns of two coexisting deciduous shrub species exhibiting contrasted soil water uptake patterns were compared for individuals located on termite mounds and in undisturbed control areas. For all the soil layers studied, clay and silt contents were higher for the mound soil. Total soil clods porosity was higher on the mound than in control areas, particularly in the 0.20-0.60 m layer, and mound soil exhibited a high shrinking/swelling capacity. AWCmax of the 0-0.60 m soil layer was substantially higher on the termite mound (112 mm) than in the surroundings (84 mm). Furthermore, during the beginning of the dry season, soil water potential measured in situ for the 0.20-0.90 m soil layer was higher on the mound than in the control soil. In contrast, soil water potential of the 0-0.10 m soil layer was similar on the mound and in the control soil. In the middle of the dry season, the leaf shedding pattern of Crossopteryx febrifuga shrubs (which have limited access to soil layers below 0.60 m) located on mounds was less pronounced than that of individuals located on control soil. In contrast, the leaf shedding pattern of the shrub Cussonia barteri (which has a good access to deep soil layers) was not influenced by the termite mound. We conclude that in this savanna ecosystem, termite mounds appear as peculiar sites which exhibit improved soil water availability for plants in upper soil layers, and significantly influence aspects of plant function. Implications of these results for understanding and modelling savanna function and dynamics, and particularly competitive interactions between plant species, are discussed.  相似文献   

16.
Throughout the savanna biome, woody vegetation is cleared to increase productivity of herbaceous pasture. While clearing can result in increased pasture production of semi-arid dystrophic savannas in the short term, it is uncertain whether production is sustained in the long term. There is insufficient knowledge of how clearing affects soil nutrient and organic carbon (SOC) stocks. Using cleared-uncleared site pairs, we evaluated techniques for time-integrated assessment of nutrient and carbon relations in Australian savanna. Short-term in situ resin incubation showed that soil at cleared sites had a higher time-integrated availability of ammonium and nitrate, indicating that nitrogen (N) may turn over faster and/or is taken up slower at cleared sites than uncleared savanna. Nitrate and ammonium availability was approximately 2-fold higher in spring than in summer, likely due to greater uptake and/or loss of nitrate during summer rains. Nitrate was a prominent N source for evergreen trees, especially before summer rain, pointing to a role of trees as permanent N sinks. Stable isotope signatures of soil and vegetation indicate that N input occurs via N2 fixing microbiotic crusts and Acacia species. 30 years after clearing, SOC contained more C4 grass-derived carbon than uncleared savanna, but this shift in C source was not associated with the net C gain often observed in grasslands. Interactions between altered nutrient and C relations and composition of the understorey should be assessed in context of introduced buffelgrass (Cenchrus ciliaris) which had higher macronutrient concentrations than native grasses. Heterogeneity of the studied soils highlights the need for replication at several spatial scales to infer long-term dynamics with space-for-time chronosequences. We conclude that the techniques presented here are useful for gaining knowledge of the biogeochemical processes governing savannas and the systems that result from clearing.  相似文献   

17.
The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites (Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 m). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2–20 m fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.This revised version was published online in November 2004 with corrections to Volume 48.  相似文献   

18.
Phytogenic mounds (nebkhas) formed by shrubs are a common phenomenon in arid and semi-arid areas and play important roles in preventing soil erosion and nutrient loss. One feature of nebkhas is the development of fertile islands. We investigated whether fertile islands were present inside and underneath Caragana tibetica-formed nebkhas in the northwest portion of the Ordos on the Inner Mongolia Plateau, China, and if such a fertile island effect increased with the age of the nebkhas. We also analyzed the spatial heterogeneity of the soil properties and quantified the amount of sand trapped by C. tibetica. The morphometric characteristics of C. tibetica nebkhas were investigated in a 4.5 ha area. Soil samples were collected inside, underneath and outside of the nebkhas and the soil organic matter (SOM), total phosphorus (TP), soil moisture (SM) and soil texture were determined. The SOM, TP and SM inside and underneath nebkhas at later stages of growth were higher than those at smaller, younger growth stages, which in turn were higher than those outside the nebkhhas. Inside the nebkhas at the establishment and early growth stages, SOM and TP first increased and then decreased with increasing soil depth, but SM steadily increased. The amount of sand trapped by C. tibetica per unit area was 0.0313 m3m?2. Nebkhas of C. tibetica primarily accumulated fine sand, which accounted for 74% of the soil, and is significantly higher than that outside the nebkhas. Caragana tibetica significantly increased sand entrapment, and fertile islands are formed inside and underneath C. tibetica nebkhas.  相似文献   

19.
Bonnet macaques (Macaca radiata) in the Marakkanam Reserved Forest of southern India consume termitaria soils. Samples from the ingested termite mounds are compared with samples taken from the surrounding uneaten soils in an attempt to determine why the termitaria soils are eaten. Particle size, clay and primary mineral composition, geochemistry, and scanning electron microscopic analyses are used to search for a possible explanation for geophagy among the bonnet macaques. Kaolin minerals abound throughout the Marakkanam soil sample suite. But the termitaria soils are distinguished by the presence of small amounts of smectite. An abundance of kaolin minerals in combination with small amounts of smectite strongly resembles the mineralogy ofeko, a traditional African remedy for stomach ailments, and Kaopectate™, a western anti-diarrhoeal preparation. The percentage of mature leaves and fruits ofAzadirachta indica consumed by the bonnet macaques is relatively high. Plant feeding deterrents, such as, acid detergent fibre (ADF) and the inherent nature of the fruits ofAzadirachta indica, when consumed in large quantities to act as a purgative, could cause gastrointestinal upsets and diarrhoea. At Marakkanam, bonnet macaques ingest termitaria earth that would act as a pharmaceutical agent to alleviate gastrointestinal upsets and control diarrhoea.  相似文献   

20.
Geophagy, or soil consumption, has been documented in diverse animal taxa, including many primates. Physiological functions such as mineral supplementation, detoxification of secondary compounds, and antacid properties are possible causes for this behavior. We report on observations of geophagy at arboreal termitaria by free-ranging Pithecia rylandsi at La Estación Biológica Los Amigos (EBLA) in Perú between 2008 and 2015. Characteristics of geophagy events, including saki monkey behavior at the termitaria, were recorded and geochemical analyses were conducted on consumed termitaria, nearby topsoils, and unvisited termitaria. We observed 76 feeding bouts at 26 different termitaria by two groups of P. rylandsi during 1125 observational hours (0.07 bouts/obs. h). Geophagy occurred throughout the year, but rates peaked in January during the rainy season. All age and sex classes visited both active and inactive mounds. Feeding bouts were brief (171 ± SD 154 s), and no differences were observed in time spent feeding at active or inactive termitaria. Analyses showed that consumed soils contained higher concentrations of phosphorous, potassium, calcium, and magnesium than did topsoil. Consumed soils also contained a higher total cation exchange capacity than topsoil. Our analysis of consumed versus control termitaria revealed no differences in their chemical composition. We discuss these results in the context of the two primary hypotheses proposed for geophagy in pitheciins: mineral supplementation and toxin adsorption. Our data are consistent with the interpretation that P. rylandsi consume soils from arboreal termitaria to aid in adsorption of toxins found in immature seeds, which are a year-round component of their diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号