首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The adsorption of [14C]carboxymethylated glyceraldehyde 3-phosphate dehydrogenase to negatively charged liposomes of phsphatidic acid/phosphatidylcholine (3:7, w/w) was investigated. The apparent association constant at I/2 = 60, pH 7.6, was 0.4 X 10(6)M-1. Adsorption decreased as ionic strength and pH were increased. 2. In the presence of negatively charged liposomes, the Km value for glyceraldehyde 3-phosphate of glyceraldehyde 3-phosphate dehydrogenase was increased and Vmax. decreased. In the presence of positively charged liposomes, the Km value for glyceraldehyde 3-phosphate decreased and there was no significant change in Vmax. Addition of Triton X-100 abolished the effect of both positively and negatively charged liposomes on the kinetic properties of the enzyme.  相似文献   

2.
The possibility of interaction between purified rabbit muscle aldolase and D-glyceraldehyde-3-phosphate dehydrogenase was studied by rapid kinetic methods, by analyzing the kinetics of the consecutive reaction catalyzed by the coupled enzyme system. The Km of the intermediary product, glyceraldehyde 3-phosphate, produced by aldolase was determined in the coupled reaction for glyceraldehyde-3-phosphate dehydrogenase. Its value corresponds to that of the aldehyde (active) form of glyceraldehyde 3-phosphate, although in the given conditions the aldehyde leads to diol interconversion is faster than the enzymic reaction catalyzed by glyceraldehyde-3-phosphate dehydrogenase. We suggest that above a certain concentration of the enzymes the glyceraldehyde 3-phosphate produced by aldolase gets direct access to glyceraldehyde-3-phosphate dehydrogenase without participating in the aldehyde leads to diol interconversion which otherwise would occur if the substrate were to mix with the bulk medium.  相似文献   

3.
The experimental conditions favouring the association of Sepharose-bound D-glyceraldehyde-3-phosphate dehydrogenase with soluble 3-phosphoglycerate kinase were studied. Acylation of D-glyceraldehyde-3-phosphate dehydrogenase by 1.3-bisphosphoglycerate was found to be a prerequisite for the complex formation.  相似文献   

4.
Pentalenolactone (PL) irreversibly inactivates the enzyme glyceraldehyde-3-phosphate dehydrogenase [D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating)] (EC 1.2.1.12) and thus is a potent inhibitor of glycolysis in both procaryotic and eucaryotic cells. We showed that PL-producing strain Streptomyces arenae TU469 contains a PL-insensitive glyceraldehyde-3-phosphate dehydrogenase under conditions of PL production. In complex media no PL production was observed, and a PL-sensitive glyceraldehyde-3-phosphate dehydrogenase, rather than the insensitive enzyme, could be detected. The enzymes had the same substrate specificity but different catalytic and molecular properties. The apparent Km values of the PL-insensitive and PL-sensitive enzymes for glyceraldehyde-3-phosphate were 100 and 250 microM, respectively, and the PL-sensitive enzyme was strongly inhibited by PL under conditions in which the PL-insensitive enzyme was not inhibited. The physical properties of the PL-insensitive enzyme suggest that the protein is an octamer, whereas the PL-sensitive enzyme, like other glyceraldehyde-3-phosphate dehydrogenases, appears to be a tetramer.  相似文献   

5.
E. coli D-glyceraldehyde-3-phosphate dehydrogenase covalently bound to Sepharose was shown to form a complex with soluble E. coli 3-phosphoglycerate kinase with a stoichiometry of 1.77 +/- 0.61 kinase molecules per tetramer of the dehydrogenase and an apparent Kd of 1.03 +/- 0.68 microM (10 mM sodium phosphate, 0.15 M NaCl). No interaction was detected between E. coli D-glyceraldehyde-3-phosphate dehydrogenase and rabbit muscle 3-phosphoglycerate kinase. The species-specificity of the bienzyme association made it possible to develop a kinetic approach to demonstrate the functionally significant interaction between E. coli D-glyceraldehyde-3-phosphate dehydrogenase and E. coli 3-phosphoglycerate kinase, which consists of an increase in steady-state rate of the coupled reaction.  相似文献   

6.
FAD-linked L-glycerol-3-phosphate dehydrogenase purified from liver mitochondria of hyperthyroid rats was incorporated into unilamellar phospholipid liposomes. The incorporation influenced both Vmax,app and Km,app values of the enzyme for its substrate, L-glycerol 3-phosphate. The Km,app for the electron acceptor remained unchanged with a simultaneous slight enhancement of the corresponding Vmax,app value. The steady-state fluorescence anisotropies of the fluorescein isothiocyanate and trimethylammoniumdiphenylhexatriene labels were affected by sodium oleate and calcium ions in the case of both solubilized and liposome-incorporated L-glycerol-3-phosphate dehydrogenase. These results indicate that calcium ions cause a significant alteration of the enzyme conformation. Sodium oleate (used as a model of free fatty acids), besides its direct action on the enzyme itself, affects the enzyme indirectly as well, via alteration of the physical properties of the membrane.  相似文献   

7.
6,7-Dideoxy-D-gluco-heptonic-7-phosphonic acid, the isosteric phosphonate analogue of gluconate 6-phosphate, was prepared by incubation of the corresponding analogue of glucose 6-phosphate with glucose 6-phosphate dehydrogenase and NADP+ in the presence of an enzyme NADPH-NADP+ recycling system. The analogue of gluconate 6-phosphate is a substrate for yeast gluconate 6-phosphate dehydrogenase, showing Michaelis-Menten kinetics at pH 7.5 and 8.0. At both pH values the Km values are approx. 3-fold higher and the Vmax. values approx. 7-fold lower than those of the natural substrate.  相似文献   

8.
The stereospecificity of the reaction catalysed by the spinach chloroplast enzyme NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NADP+ oxidoreductase (phosphorylating), EC 1.2.1.13) with respect to the C4 nicotinamide hydrogen transfer was investigated. NADPH deuterated at the C4 HA position was synthesized using aldehyde dehydrogenase. 1H-NMR spectroscopy was used to examine the NADP+ product of the GPDH reaction for the presence or absence of the C4 deuterium atom. Chloroplast NADP-dependent glyceraldehyde-3-phosphate dehydrogenase retains the deuterium at the C4 HA position (removing the hydrogen atom), and is therefore a B (pro-S) specific dehydrogenase.  相似文献   

9.
By initial velocity measurements and two different methods of plotting the experimental data, the Km and Vmax of enzyme action and the first-order rate constant of substrate decomposition can be determined simultaneously under the same conditions. This method permits the determination of Km and Vmax even if the presence of the enzyme (or any impurity in the solutions used) influences the rate of substrate decomposition. The theoretical treatment was proved by determining the Michaelis-Menten parameters of D-glyceraldehyde-3-phosphate dehydrogenase and the first-order rate constant of hydrolysis of the unstable substrate, bisphosphoglycerate.  相似文献   

10.
A mutant of Bacillus stearothermophilus D-glyceraldehyde-3-phosphate dehydrogenase, Ser148----Ala, was produced by oligonucleotide-directed mutagenesis. The study of the catalytic properties of this mutant has shown that this mutation significantly affects the Michaelis constant of inorganic phosphate and to a lesser extent that of 1,3-diphosphoglycerate and D-glyceraldehyde-3-phosphate. This result is consistent with model-building studies which show that, for the phosphorylation step of catalysis, inorganic phosphate must bind to the anion recognition site designated Pi with the C(3) phosphate of the acyl-enzyme intermediate in the alternative anion site Ps. Studies of the enantiomeric specificity using D- and L-glyceraldehyde as substrates show that the hydroxyl group of Ser148, combined with the presence of the C(3) phosphate of the substrate, enhances stereospecificity as well as catalysis. However, the stereospecific effect cannot be a consequence of the direct interaction of Ser148 with the C(2)-hydroxyl of the substrate. The changed Km for glyceraldehyde-3-phosphate suggests that the initial step of hemithioacetal formation may take place with its C(3) phosphate bound in the Pi site. This supports the molecular mechanism proposed by Moody (1984). Therefore, catalysis could be enhanced through interactions of the serine hydroxyl group not only with inorganic phosphate but also with the C(3) phosphate of glyceraldehyde-3-phosphate.  相似文献   

11.
A mathematical model based on kinetic data taken from the literature is presented for the pentose phosphate pathway in fasted rat liver steady-state. Since the oxidative and non oxidative pentose phosphate pathway can act independently, the complete (oxidative + non oxidative) and the non oxidative pentose pathway were simulated.Sensitivity analyses are reported which show that the fluxes are mainly regulated by D-glucose-6-phosphate dehydrogenase (for the oxidative pathway) and by transketolase (for the non oxidative pathway). The most influent metabolites were the group ATP, ADP, P1 and the group NADPH, NADP+ (for the non oxidative pathway).Abbreviations GK Glucokinase, (E.C. 2.7.1.2.) - G6PDH D-glucose-6-phosphate dehydrogenase, (E.C. 1.1.1.49) - PLase 6-Phosphogluconelactonase, (E.C. 3.1.1.31.) - PGIcDH 6-Phosphogluconate dehydrogenase, (E.C. 1.1.1.44) - RPI D-ribose-5-phosphate keto-isomerase, (E.C. 5.3.1.6) - TK D-sedoheptulose-7-phosphate: D-glyceraldehyde-3-phosphate glycol-aldehyde transferase, (E.C. 2.2.1.1.) - TA D-sedoheptulose-7-phosphate: D-glyceraldehyde-3-phosphate dihydroxyacetone transferase, (E.C. 2.2.1.2) - EP D-ribulose-5-phosphate-3-epimerase, (E.C. 5.1.3.1) - PGI D-glucose-6-phosphate keto-isomerase, (E.C. 5.3.1.9) - TPI D-glyceraldehyde-3-phosphate keto-isomerase, (E.C.5.3.1.1)  相似文献   

12.
The sugar phosphate specificity of the active site of 6-phosphofructo-2-kinase and of the inhibitory site of fructose-2,6-bisphosphatase was investigated. The Michaelis constants and relative Vmax values of the sugar phosphates for the 6-phosphofructo-2-kinase were: D-fructose 6-phosphate, Km = 0.035 mM, Vmax = 1; L-sorbose 6-phosphate, Km = 0.175 mM, Vmax = 1.1; D-tagatose 6-phosphate, Km = 15 mM, Vmax = 0.15; and D-psicose 6-phosphate, Km = 7.4 mM, Vmax = 0.42. The enzyme did not catalyze the phosphorylation of 1-O-methyl-D-fructose 6-phosphate, alpha- and beta-methyl-D-fructofuranoside 6-phosphate, 2,5-anhydro-D-mannitol 6-phosphate, D-ribose 5-phosphate, or D-arabinose 5-phosphate. These results indicate that the hydroxyl group at C-3 of the tetrahydrofuran ring must be cis to the beta-anomeric hydroxyl group and that the hydroxyl group at C-4 must be trans. The presence of a hydroxymethyl group at C-2 is required; however, the orientation of the phosphonoxymethyl group at C-5 has little effect on activity. Of all the sugar monophosphates tested, only 2,5-anhydro-D-mannitol 6-phosphate was an effective inhibitor of the kinase with a Ki = 95 microM. The sugar phosphate specificity for the inhibition of the fructose-2,6-bisphosphatase was similar to the substrate specificity for the kinase. The apparent I0.5 values for inhibition were: D-fructose 6-phosphate, 0.01 mM; L-sorbose 6-phosphate, 0.05 mM; D-psicose 6-phosphate, 1 mM; D-tagatose 6-phosphate, greater than 2 mM; 2,5-anhydro-D-mannitol 6-phosphate, 0.5 mM. 1-O-Methyl-D-fructose 6-phosphate, alpha- and beta-methyl-D-fructofuranoside 6-phosphate, and D-arabinose 5-phosphate did not inhibit. Treatment of the enzyme with iodoacetamide decreased sugar phosphate affinity in the kinase reaction but had no effect on the sensitivity of fructose-2,6-bisphosphatase to sugar phosphate inhibition. The results suggest a high degree of homology between two separate sugar phosphate binding sites for the bifunctional enzyme.  相似文献   

13.
An interaction of rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase labeled with FITC was studied by following the changes in fluorescence intensity of the bound dye. The association between the two enzymes was found to be a rather slow process characterized by a second order rate constant of 1.1 +/- 0.2.10(3) M-1 s-1, the KD of the complex between apoenzymes being 3.2.10(-7) M. The stability of the complex increased upon increase of temperature and ionic strength of the medium, suggesting a hydrophobic character of association. The ligands which bind at the active centers of the two enzymes (NAD+, ATP, 3-phosphoglycerate) weakened the bienzyme association. Unlabeled 3-phosphoglycerate kinase was unable to displace the FITC-labeled enzyme from the complex. Taken together, the results indicate that interaction between D-glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase labeled by FITC is assisted by the dye, which may bind at nucleotide-binding sites of GPDH. No interaction was observed between the FITC-labeled 3-phosphoglycerate kinase and lactate dehydrogenase, which suggests that protein-protein interaction at specific "recognition" sites may be a prerequisite for the complex formation.  相似文献   

14.
At the normal pH of the cytosol (7.0 to 7.1) and in the presence of physiological (1.0 mM) levels of free Mg2+, the Vmax of the NADPH oxidation is only slightly lower than the Vmax of NADH oxidation in the cytosolic glycerol-3-phosphate dehydrogenase (E.C. 1.1.1.8) reaction. Under these conditions physiological (30 microM) levels of cytosolic malate dehydrogenase (E.C. 1.1.1.37) inhibited oxidation of 20 microM NADH but had no effect on oxidation of 20 microM NADPH by glycerol-3-phosphate dehydrogenase. Consequently malate dehydrogenase increased the ratio of NADPH to NADH oxidation of glycerol-3-phosphate dehydrogenase. On the basis of the measured KD of complexes between malate dehydrogenase and these reduced pyridine nucleotides, and their Km in the glycerol-3-phosphate dehydrogenase reactions, it could be concluded that malate dehydrogenase would have markedly inhibited NADPH oxidation and inhibited NADH oxidation considerably more than observed if its only effect were to decrease the level of free NADH or NADPH. This indicates that due to the opposite chiral specificity of the two enzymes with respect to reduced pyridine nucleotides, complexes between malate dehydrogenase and NADH or NADPH can function as substrates for glycerol-3-phosphate dehydrogenase, but the complex with NADH is less active than free NADH, while the complex with NADPH is as active as free NADPH. Mg2+ enhanced the interactions between malate dehydrogenase and glycerol-3-phosphate dehydrogenase described above. Lactate dehydrogenase (E.C. 1.1.1.27) had effects similar to those of malate dehydrogenase only in the presence of Mg2+. In the absence of Mg2+, there was no evidence of interaction between lactate dehydrogenase and glycerol-3-phosphate dehydrogenase.  相似文献   

15.
The D-glyceraldehyde-3-phosphate dehydrogenase from the extremely thermophilic archaebacterium Methanothermus fervidus was purified and crystallized. The enzyme is a homomeric tetramer (molecular mass of subunits 45 kDa). Partial sequence analysis shows homology to the enzymes from eubacteria and from the cytoplasm of eukaryotes. Unlike these enzymes, the D-glyceraldehyde-3-phosphate dehydrogenase from Methanothermus fervidus reacts with both NAD+ and NADP+ and is not inhibited by pentalenolactone. The enzyme is intrinsically stable up to 75 degrees C. It is stabilized by the coenzyme NADP+ and at high ionic strength up to about 90 degrees C. Breaks in the Arrhenius and Van't Hoff plots indicate conformational changes of the enzyme at around 52 degrees C.  相似文献   

16.
Summary In this communication an enzyme histochemical multistep technique for the demonstration of class 1 fructose-1,6-diphosphate aldolase in heart and skeletal muscle sections is described. With this technique a semipermeable membrane is interposed between the incubating solution and the tissue sections preventing diffusion of the enzyme into the medium during incubation. In the histochemical system the enzyme cleaves the substrate D-fructose-1,6-diphosphate to dihydroxyacetone phosphate and D-glyceraldehyde-3-phosphate. The dihydroxyacetone phosphate is reversibly converted into D-glyceraldehyde-3-phosphate by exogenous and endogenous triose phosphate isomerase. Next the D-glyceraldehyde-3-phosphate is oxidized by exogenous and endogenous glyceraldehyde-3-phosphate dehydrogenase and the electrons are transported concomitantly via NAD+, phenazine methosulphate and menadione to nitro-BT. Sodium azide and amytal are incorporated to block electron transfer to the cytochromes.  相似文献   

17.
Interactions of glucose-6-phosphate isomerase (D-glucose-6-phosphate ketol-isomerase, EC 5.3.1.9), aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate lyase, EC 4.1.2.13), glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12), triose-phosphate isomerase (D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1), phosphoglycerate mutase (D-phosphoglycerate 2,3-phosphomutase, EC 5.4.2.1), phosphoglycerate kinase (ATP:3-phospho-D-glycerate 1-phosphotransferase, EC 2.7.3), enolase (2-phospho-D-glycerate hydro-lyase, EC 4.2.1.11), pyruvate kinase (ATP:Pyruvate O2-phosphotransferase, EC 2.7.1.40) and lactate dehydrogenase [S)-lactate:NAD+ oxidoreductase, EC 1.1.1.27) with F-actin, among the glycolytic enzymes listed above, and with phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) were studied in the presence of poly(ethylene glycol). Both purified rabbit muscle enzymes and rabbit muscle myogen, a high-speed supernatant fraction containing the glycolytic enzymes, were used to study enzyme-F-actin interactions. Following ultracentrifugation, F-actin and poly(ethylene glycol) tended to increase and KCl to decrease the pelleting of enzymes. In general, the greater part of the pelleting occurred in the presence of both F-actin and poly(ethylene glycol) and the absence of KCl. Enzymes that pelleted more in myogen preparations than as individual purified enzymes in the presence of poly(ethylene glycol) and the absence of F-actin were tested for specific enzyme-enzyme associations, several of which were observed. Such interactions support the view that the internal cell structure is composed of proteins that interact with one another to form the microtrabecular lattice.  相似文献   

18.
Tetrameric D-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) isolated from rabbit skeletal muscle was covalently bound to CNBr-activated Sepharose 4B via a single subunit. Catalytically active immobilized dimer and monomeric forms of the enzyme were prepared after urea-induced dissociation of the tetramer. A study of the coenzyme-binding properties of matrix-bound tetrameric, dimeric and monomeric species has shown that: (1) an immobilized tetramer binds NAD+ with negative cooperativity, the dissociation constants being 0.085 microM for the first two coenzyme molecules and 1.3 microM for the third and the fourth one; (2) coenzyme binding to the dimeric enzyme form also displays negative cooperativity with Kd values of 0.032 microM and 1.1 microM for the first and second sites, respectively; (3) the binding of NAD+ to a monomer can occur with a dissociation constant of 1.6 microM which is close to the Kd value for low-affinity coenzyme binding sites of the tetrameric or dimeric enzyme forms. In the presence of NAD+ an immobilized monomer acquires a stability which is not inferior to that of a holotetramer. The catalytic properties of monomeric and tetrameric enzyme forms were compared and found to be different under certain conditions. Thus, the monomers of rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase displayed a hyperbolic kinetic saturation curve for NAD+, whereas the tetramers exhibited an intermediary plateau region corresponding to half-saturating concentrations of NAD+. At coenzyme concentrations below half-saturating a monomer is more active than a tetramer. This difference disappears at saturating concentrations of NAD+. Immobilized monomeric and tetrameric forms of D-glyceraldehyde-3-phosphate dehydrogenase from baker's yeast were also used to investigate subunit interactions in catalysis. The rate constant of inactivation due to modification of essential arginine residues in the holoenzyme decreased in the presence of glyceraldehyde 3-phosphate, probably as a result of conformational changes accompanying catalysis. This effect was similar for monomeric and tetrameric enzyme forms at saturating substrate concentrations, but different for the two enzyme species under conditions in which about one-half of the active centers remained unsaturated. Taken together, the results indicate that association of D-glyceraldehyde-3-phosphate dehydrogenase monomers into a tetramer imposes some constraints on the functioning of the active centers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The presence of glycolytic enzymes and a GLUT-1-type glucose transporter in rod and cone outer segments was determined by enzyme activity assays, glucose uptake measurements, Western blotting, and immunofluorescence microscopy. Enzyme activities of six glycolytic enzymes including hexokinase, phosphofructokinase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, pyruvate kinase, and lactate dehydrogenase, were found to be present in purified rod outer segment (ROS) preparations. Immunofluorescence microscopy of bovine and chicken retina sections labeled with monoclonal antibodies against glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, and lactate dehydrogenase have confirmed that these enzymes are present in rod and cone outer segments and not simply contaminants from the inner segments or other cells. Rod outer segments were also found to contain glucose transport activity as detected by 3-O-[14C]methylglucose uptake and exchange. The glucose transporter had a Km of 6.3 mM and a Vmax of 0.15 nmol of 3-O-methylglucose/s/mg of ROS membrane protein for net uptake and a Km of 29 mM and a Vmax of 1.06 nmol of 3-O-methylglucose/s/mg of ROS membrane protein for equilibrium exchange. These Km values for net uptake and equilibrium exchange are similar to values obtained for human red blood cells and are characteristic of GLUT-1-type glucose transporter. The transport was inhibited by both cytochalasin B and phloretin. Western blot analysis and immunofluorescence microscopy using type-specific glucose transporter antibodies indicated that both rod and cone outer segment plasma membranes have a GLUT-1 glucose transporter of Mr 45K as found in red blood cells and brain microsomal membranes. Solid-phase radioimmune competitive inhibition studies indicated that rod outer segment plasma membranes contained 15% the number of glucose transporters found in human red blood cell membranes and had an estimated density of 400 glucose transporter per micron2 of plasma membrane. These studies support the view that outer segments can generate energy in the form of ATP and GTP by anaerobic glycolysis to supply at least some of the energy requirements for phototransduction and other metabolic processes.  相似文献   

20.
Ornithine uptake by rat kidney mitochondria is here first shown by monitoring the reduction of the intramitochondrial pyridine nucleotides which occurs as a result of metabolism of imported ornithine via ornithine aminotransferase and 1-pyrroline-carboxylate dehydrogenase. Ornithine uptake shows saturation features (Km and Vmax values, measured at 20 degrees C and at pH 7.20, were found to be about 0.85 mM and 23 nmoles/min x mg protein, respectively) and proves to be inhibited by D-ornithine, inorganic phosphate, praseodimium chloride and mersalyl. Neither malate nor glutamate, but phosphate was found to exchange with ornithine. Phosphate efflux caused by externally added ornithine was shown both as revealed by a c colorimetric assay and as continuously monitored by measuring extramitochondrial reduction of NAD+ in the presence of glyceraldehyde-3-phosphate, glyceraldehyde-3-phosphate dehydrogenase, ADP and 3-phosphoglycerate kinase. The role of ornithine carrier in kidney metabolism will also be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号