首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Summary To assess the potential for developing a salt resistant cultivar of chickpea (Cicer arietinum L.) 160 genotypes were screened for percent survival after 9 weeks in greenhouse solution cultures, with 50 mM NaCl or 25 mM Na2SO4. All plants grew well in the sulfate treatment but only cv. L-550 survived the chloride treatment. Salt damage appeared and developed slowly. To check these apparent effects of cultivar and kind of anion, three genotypes including cv. L-550 were then grown in solutions with isoosmotic NaCl or Na2SO4 at three levels (−0.044, −0.088, and −0.132 MPa), and in a separate experiment cv. L-550 was grown with NaCl and Na2SO4 at four levels: 10, 20, 30 and 50 mM Na. Salt composition affected shoot weight less than salt level or cultivar did. Shoot dry weight was only slightly less in chloride treatments than in isoosmotic sulfate, and for the least sensitive cultivar (L-550) this held only at the highest salt level, corresponding to that in the screening trial. Further, sensitivity to sulfate and to chloride was equal when sodium concentrations in shoots were equal, regardless of anion compositions of media. Shoot Na concentration was a useful negative indicator of growth under salt stress regardles of cultivar, and may be a useful tolerance indicator also for other species that neither accumulate nor efficiently exclude Na.  相似文献   

2.
Callus cultures from salt tolerant (CSR-10) and susceptible (Swarnadhan) varieties of Oryza sativa L. were established in Murashige and Skoog’s (MS) medium containing lethal concentrations (50 mM) of rubidium chloride (RbCl) as a selective agent. While 95–100% cells were viable in callus cultures grown without RbCl, viability was 75% in 50 mM RbCl selected cultures. Growth of RbCl selected calli in presence of salt was comparable to that of callus grown without it. Cells tolerant to RbCl showed more vacuoles and accumulated more K+ in comparison with their corresponding controls. Suspension cultures were established and uptake of 86Rb+ was measured at 10 and 20 min intervals, which revealed a linear relationship between the absorption of K+ and time. Callus cultures (560-day-old) tolerant to 50 mM RbCl regenerated shoots with 35–40% frequencies in both the varieties, but the same age-old callus grown in the medium devoid of RbCl did not show any organogenesis. Callus cultures that are tolerant to 50 mM RbCl when exposed to 25 mM LiCl, 50 mM NaCl, 50 mM KCl and 25 mM CsCl also exhibited cross tolerance in both the varieties. This is the first time that a callus line of rice resistant to RbCl was raised and shown to accumulate a major cation K+ and also an increased influx of it.  相似文献   

3.
Two divergent populations of T. repens cv. Haifa developed from two generations of recurrent selection for shoot chloride concentration, were grown in the greenhouse at 0 and 40 mol m–3 NaCl. Over two harvest cycles at 40 mol m–3 NaCl, the population selected for a low concentration of chloride in the shoot maintained a significantly lower chloride and sodium concentration compared with those plants selected for a high shoot chloride concentration. The distribution of chloride in the shoots was further examined in a subsample of plants from both populations. In all plants, concentrations of chloride were lower in the expanding and fully expanded leaves than in the older leaf tissue or petioles.While there were no significant differences in the photosynthetic rates between lines, shoot yields and relative leaf expansion rates were higher in the low chloride population. Plant death was greater in plants selected for high shoot chloride. These results suggest that selections based on measurements of low shoot chloride concentrations may be successful in developing a cultivar of T. repens with improved salt tolerance.  相似文献   

4.
Lotus tenuis (Wadst. & Kit.) is a perennial legume widely grown for pasture in the flood-prone and salt affected Pampa region of Argentina. The physiology of salt and waterlogging tolerance in L. tenuis (four cultivars) was evaluated, and compared with Lotus corniculatus (three cultivars); the most widely cultivated Lotus species. Overall, L. tenuis cultivars accumulated less Na+ and Cl, and more K+ in shoots than L. corniculatus cultivars, when exposed to 200 mM NaCl for 28 days in aerated or in stagnant solutions. Root porosity was higher in L. tenuis cultivars due to greater aerenchyma formation. In a NaCl dose–response experiment (0–400 mM NaCl in aerated solution), L. tenuis (cv. Chaja) accumulated half as much Cl in its shoots than L. corniculatus (cv. San Gabriel) at all external NaCl concentrations, and about 30% less shoot Na+ in treatments above 250 mM NaCl. Ion distributions in shoots were determined for plants at 200 mM NaCl. L. tenuis (cv. Chaja) again accumulated about half as much Cl in old leaves, young leaves and stems, compared with concentrations in L. corniculatus (cv. San Gabriel). There were not, however, significant differences between the two species for Na+ concentrations in the various shoot tissues. The higher root porosity, and maintenance of lower shoot Cl and Na+ concentrations in L. tenuis, compared with L. corniculatus, contributes to the greater tolerance to combined salt and waterlogging stress in L. tenuis. Moreover, significant variation for tolerance to combined salinity and waterlogging stress was identified within both L. tenuis and L. corniculatus.  相似文献   

5.
Callus cultures were initiated from soybean (Glycine max (L.) Merr cv. Acme) cotyledons onMiller's basal medium supplemented with 2 mg L–1NAA and 0.5 mg L–1 kinetin. Growing cells wereexposed to increasing concentrations of NaCl in themedium. A concentration of 100 mM NaCl completelyinhibited callus growth. After incubation for 28 d,cells which could tolerate this concentration of NaClgrew to form cell colonies. A NaCl-tolerant line wasobtained through continuous subculturing on 100 mMNaCl. Salt tolerance in this culture was characterizedby an altered growth behavior, reduced cell volume, and accumulation of Na+, Cl, proline and sugars when grown under salt stress, as well as on normal media. These characteristics, which proved tobe stable after the culture was transferred to asalt-free medium, is commonly associated with halophytes. Presented data suggest that this salt tolerance is the result of a shift towards a halophytic behavior.  相似文献   

6.
Callus cultures of Nicotiana tabacum L cv. Wisconsin 38 were initiated and grown on shoot-forming (SF) and callus proliferation (CP) medium with or without Na2SO4. Two cultures were maintained on SF medium with 0, 0.75, 1 or 1.5% Na2SO4 for 2.5 and 3.5 years. In the older culture only callus grown on salt formed shoots throughout the maintenance period, while in the younger culture the control responded best and Na2SO4 was inhibitory. Callus from the older culture which had been grown on salt continued to form shoots in the absence of salt. Na2SO4 caused adventitious shoot formation in three cultures on CP medium. These shoots were present for 7 subcultures after removal of Na2SO4; but established, control callus, did not form shoots when transferred to Na2SO4. Callus initiated and maintained on NaCl or mannitol showed a slight increase in shoot initiation. On NaCl, Na2SO4 or mannitol, the tissue osmotic potential became more negative and proline concentration increased.  相似文献   

7.
Screening for drought tolerance in Sorghum using cell culture   总被引:4,自引:0,他引:4  
Summary Callus growth from 10 cultivars ofSorghum bicolor (L.) Moench was measured with increasing levels of polyethylene glycol (PEG) as an osmoticum in the medium to determine whether differences among these cultivars at the cellular level in response to osmotic stress existed. These cellular ratings were compared to field ratings from the 10 tolerant-to-susceptible cultivars when grown under drought conditions to determine whether cellular ratings corresponded to differences in drought tolerance at the plant level. Callus cultures were grown on Murashige and Skoog inorganic salt formulation plus vitamins, 2,4-dichlorophenoxyacetic acid (2,4-D), kinetin and sucrose, supplemented with 0 to 25% (wt/vol) PEG corresponding to −0.2 to −1.62 MPa osmotic potential. Results suggest that PEG-induced osmotic stress on callus cultures can be used to screen sorghum cultivars for potential early field (preflowering) drought tolerance. This implies that at least a component of the early field drought tolerance in sorghum may have a cellular basis. This study was supported by U.S. Agency for International Development Grant AID/DSAN/XII/G-0149, and USDA Competitive Grants Program.  相似文献   

8.
The effects of increased salinity [NaCl + CaCl2] on seedlings of five accessions of pearl millet grown for 2 and 7 weeks, respectively, in salinised solution cultures at EC 0.6, 4, 8, 12, 16, and 20 ds m−1 and sand cultures at EC 0.6 and 20 were assessed. There were no consistent relationships between seedlings characters at two and seven weeks in response to increased salinity, and no single character provided an acceptable means of differentiating cultivar/line response. The line having lower shoot mortality had a high root weight, a shoot:root ratio approaching 1, the greatest shoot water content, and the greatest plant height. No relationship was found between these whole-plant characters which suggest greater salinity tolerance, and the pattern of ion distribution, particularly Na+ and Cl. Sufficient inter-cultivar/line variation in response to salinity was found to suggest that selection of individuals with increased salinity tolerance is possible within pearl millet.  相似文献   

9.
Mungbean (Vigna radiata L. Wilczek cv. Sujata and cv. K851) seedlings were grown in paper towelins in dark under 0, 0.5, 1, 2 and 3 % (m/v) NaCl salinity. Germination percentage, shoot and root length, fresh mass of both cultivars decreased with salinity. Total soluble saccharides and proline accumulated in the root and shoot of salt stressed seedlings. The proline accumulation in the root was four to five times higher than that of the shoot of NaCl treated etiolated mungbean seedlings.  相似文献   

10.
Summary The present study aimed to evaluate the response to salinity of Populus euphratica, which is more salt-resistant than other poplar cultivars, at the cellular level. To this purpose, callus was induced from shoot segments of P. euphratica on Murashige and Skoog (MS) medium supplemented with 0.5 mg l−1 (2.2 μM) 6-benzyladenine (BA) and 0.5 mg l−1 (2.7 μM 1-naphthaleneacetic acid (NAA). Callus was transferred to MS medium supplemented with 0.25 mg l−1 (1.1 μM) BA and 0.5 mg l−1 NAA. The relative growth rate of callus reached a maximum in the presence of 50 mmol l−1 NaCl and growth was inhibited with increasing NaCl concentrations. Examination of the changes of osmotic substances under salt stress showed that accumulation of proline, glycine betaine, and total soluble sugars increased with increasing salt concentrations. The results indicate that the response of the callus of P. euphratica to salt stress is similar to that of the whole plant.  相似文献   

11.
Three clones, selected for their variation in salt tolerance, were examined regarding their growth and physiological responses on exposure to salt (NaCl) and abscisic acid (ABA) in vitro. The shoot proline levels significantly increased in two salt tolerant clones when exposed to 100 mM NaCl in the shoot multiplication medium. In contrast, proline in a salt sensitive clone did not change in comparison to the control treatment. When 10 M ABA was included in the medium all clones had an increase in proline regardless of whether they were salt tolerant or salt sensitive, linking proline production to the stress hormone ABA. Callus production was so variable that it was not possible to produce callus of consistent texture, colour and growth for all three clones. For the two clones where consistent growth was achievable, both the salt tolerant and salt sensitive clones increased proline production when exposed to salt. This response, however, was greater in the salt tolerant clone. Other parameters examined were growth (dry weight) and shoot chlorophyll content. These characteristics did not correlate with the salt tolerance of the clones, with similar weights being produced on non salt and salt media and similar chlorophyll in both salt sensitive and salt tolerant clones regardless of the medium in which they were grown. The production of proline is considered with regard to selection for differences in salt tolerance in vitro.  相似文献   

12.
The comparative responses of young olive trees (Olea europaea L. cv “Chemlali”) to different NaCl salinity levels were investigated over 11 months. One-year-old own rooted plants were grown in 10-L pots containing sand and perlite mixture (1:3 v/v). Trees were subjected to three irrigation treatments: CP (control plants that were irrigated with fresh water); SS1 (salt stressed plants irrigated with water containing 100 mM NaCl) and SS2 plants (salt stressed plants irrigated with water containing 200 mM NaCl). Shoot elongation rate, relative water content, leaf water potential and net carbon dioxide exchange rates decreased significantly with increased NaCl salinity level. Under stressed conditions, the increase of Na+ and Cl ions in both leaves and roots was accompanied with that of proline and soluble sugars. The above results show that the accumulation of proline and sugars under stressed conditions could play a role in salt tolerance. The absence of toxicity symptoms under both stress treatments and the superior photosynthetic activity recorded in SS1-treated plants suggest that cv Chemlali is better able to acclimatize to 100 mM NaCl than at 200 mM NaCl. Our findings indicate that saline water containing 100 mM NaCl, the most available water in arid region in Tunisia, can be recommended for the irrigation of cv Chemlali in the arid south of Tunisia.  相似文献   

13.
The mechanisms of potato (Solanum tuberosum L.) plants’ tolerance to chloride salinity were investigated in cv. Lugovskoi regionalized in Russia. Regenerated plants were produced in vitro from apical meristem and grown on half-strength Murashige and Skoog medium (0.5 MS) using a hydroponic unit in controlled-climate conditions. At the age of six weeks, the plants were exposed to salt stress (50–150 mM NaCl, 7 days). Plant response to salt stress was estimated by growth parameters (fresh and dry biomass of the aboveground and underground parts of plants, linear dimensions of shoot and root, area of leaf surface, and number of stolons) and physiological characteristics (level of photosynthetic pigments, accumulation of sodium, potassium, and calcium ions in the aboveground and underground parts of plants, content of proline, activity of antioxidant enzymes, plant tissue hydration, osmotic potential, and POL). It was found that, in response to salinity, the plants of potato, cv. Lugovskoi, showed a considerable inhibition of growth processes, reduction in chlorophyll a content, and suppression of stolon formation, which points to a rather low salinity tolerance of the cultivar. At the same time, under weak or moderate salt stress, the plants preserved water homeostasis owing to effective osmoregulation, actively accumulated proline that acted as a stress protector, and showed hardly any signs of oxidative stress. It was assumed that low salt tolerance of this cultivar depends on the inability of its root system to retain sodium ions and ensure selective ion transport to the aboveground part of the plant and on inefficiency of the system of sodium ions’ removal from the cytoplasm of leaf cells and their compartmentalization in the central vacuole with the purpose of reducing their toxic effect. The obtained results may be useful for working out a technique of improving salt tolerance of this cultivar by the methods of molecular genetics.  相似文献   

14.
Wheat (Triticum aestivum L.) genotypes K-65 (salt tolerant) and HD 2329 (salt sensitive) were grown in pots under natural conditions and irrigated with NaCl solutions of electrical conductivity (ECe) 4.0, 6.0, and 8.0 dS m−1. Control plants were irrigated without saline water. Observations were made on the top most fully expanded leaf at tillering, anthesis, and grain filling stages. The net photosynthetic rate (P N), stomatal conductance (g s), and transpiration rate (E) were reduced with the addition of NaCl. The reduction was higher in HD 2329 than in K-65. Salinity enhanced leaf to air temperature gradient (ΔT) in both the genotypes. NaCl increased the activities of superoxide dismutase (SOD) and peroxidase (POX); the percent increment was higher in K-65. The sodium and potassium contents were higher in the roots and leaves of K-65 over HD 2329. Thus at cellular level K-65 has imparted salt tolerance by manipulating P N, E, g s, and K accumulation in leaves along with overproduction of antioxidative enzyme activities (SOD and POX).  相似文献   

15.
The effects of paclobutrazol (PBZ) (0, 30, 60, and 90 ppm) and NaCl (0, 75, 150, and 225 mM) treatments on a salt-tolerant (Karchia-65) cultivar of wheat (Triticum aestivum L.) at the pollination stage were studied. Salt stress decreased plant height, the length and area of the flag leaf, fresh and dry weights of the shoot, roots, and flag leaf, and water content. On the background of salinity, PBZ treatment further suppressed plant height. Although plants growth was suppressed in PBZ-treated plants, PBZ treatment moderated the negative effect of salinity on some growth parameters. Under PBZ treatments, plants tissues accumulated more watersoluble carbohydrates and reducing sugars than control plants, with the exception of water-soluble carbohydrates in the roots. The Na+ content in roots significantly (p ≤ 0.05) increased at 150 and 225 mM NaCl, but PBZ treatment moderated the harmful effect of the highest levels of salinity. Salinity with or without PBZ treatment improved the K+, P, and N contents in plants. It is reasonably to suggest that the protection and increasing salt tolerance caused by PBZ was due to the mechanism nearly similar to the salt-tolerant cultivar physiological systems. These observations suggest that PBZ treatment has the potential to increase salt tolerance with a limiting damage caused by salt stress even in salt-tolerant plants. This text was submitted by the authors in English. Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 2, pp. 278–284.  相似文献   

16.
Callus cultures were established from seedling root tips of mungbean (Vigna radiata (L.) Wilczek var. radiata) cv. K 851. The growing calli were exposed to increasing concentrations of thioproline — an analog of proline, in the medium. A concentration of 3.0 mM thioproline completely inhibited the growth of the cells. However, after 25 days incubation 5 cell clones were obtained which could grow on this concentration of thioproline. Out of them one vigorously growing cell clone was further characterized. This selected clone contained higher endogenous levels of free proline (5 fold) and K+ (1.5 fold) and exhibited elevated tolerance, not only to thioproline but also to exogenously applied NaCl in the growth medium, as compared to the normal sensitive callus cells. Higher endogenous levels of free proline and K+ appear to impart dual resistance to thioproline and NaCl to the selected cell strain.  相似文献   

17.
18.
Salt tolerance of maize (Zea mays L.): the role of sodium exclusion   总被引:5,自引:2,他引:3  
The influence of NaCl and Na2SO4 on growth of two maize cultivars (Zea mays cv. Pioneer 3906 and cv. Across 8023) differing in Na+ uptake was investigated in two green-house experiments. Na+ treatment with different accompanying anions (Cl?/SO42?) showed that ion toxicity was caused by Na+. While shoot growth of the two cultivars was markedly affected by salt in comparison to the control during the first 2–3 weeks, there were only slight differences between the cultivars. The shoot Ca2+ concentration was reduced in both cultivars, and the youngest leaves contained an even lower concentration compared with the rest of the shoot. During this first phase, Across 8023 tended to have higher concentrations of Ca2+ than Pioneer 3906. The Na+-excluding cultivar Pioneer 3906 showed continuous, although reduced, growth compared with the control, while the Na+ concentration in the shoot decreased until flowering. Cultivar Across 8023 accumulated Na+ until flowering: the reduction in the growth of stressed plants was greater than that for Pioneer 3906. Leaves of cultivar Across 8023 showed clear toxic symptoms, while those of the more salt-tolerant cultivar Pioneer 3906 did not. It is concluded that Na+ exclusion contributes to the salt tolerance of maize.  相似文献   

19.
Callus cultures were initiated from seedling root segments ofmungbean (Vigna radiata (L.) Wilczek var. radiata) cv. K 851on modified PC-L2 basal medium. Growing cells were exposed toincreasing concentrations of NaCl in the medium. A concentrationof 300 mol m–3 NaCl proved completely inhibitory to growthof the calli. On incubation for 25 d, cells which could toleratethis concentration of NaCl grew to form cell clones. Selectedclones were characterized with regard to their growth behaviour,K+, Na+ and free proline content when grown under stress aswell as on normal media and were compared with the normal sensitivecallus. The selected callus was capable of growing on mediumcontaining NaCl at the inhibitory concentration. The K+ contentof the selected callus was lower in the case of the NaCl mediumthan for the normal medium. However, the selected clones maintainedhigher K+ and Na+ levels, with increased salinization comparedwith the wild-type cells. Salt-selected cells accumulated higherlevels of free proline under NaCl stress compared to wild-typecells. Under normal conditions, however, the amounts of freeproline in selected and non-selected calli were comparable. Key words: Vigna radiata, callus culture, NaCl stress  相似文献   

20.
The comparative alterations of short term NaCl stress and recovery on growth, water relations, ionic composition, lipid peroxidation and antioxidants in roots of two rice cultivars differing in salt tolerance were studied. Exposed for 24 h to increasing (50, 100 and 150 mmol l−1) concentrations of NaCl, roots of 12D Oryza sativa L. cv. Lunishree and cv. Begunbitchi decreased in fresh weight, dry weight and relative water content. Increased Na+ and decreased K+ ion were determined at increasing NaCl concentrations. Both peroxide content and lipid peroxidation measured in terms of MDA level increased and the ratio was higher in Begunbitchi compared to Lunishree. Recovered roots showed lower peroxide and MDA content. Ascorbate and glutathione contents increased in the stressed and recovered roots of Lunishree, but decreased in Begunbitchi with increasing NaCl concentrations. Although SOD, CAT and GR activities decreased in the stressed roots, CAT activity also increased in recovered roots of both the cultivars. The POX activity increased in stressed and recovered roots of both Lunishree and Begunbitchi. Higher free radicals scavenging capacity and more efficient protection mechanism of Lunishree against salt stress, as revealed by the lower level of lipid peroxidation and improved plant water status as well as activities of some of the antioxidants, suggest that significant cultivar differences in response to salt stress in rice are closely related to differences in the activities of antioxidants and ion content. Another possible conclusion is that improved tolerance to salt stress may be accomplished by increased capacity of antioxidative system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号