首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Genetic factors underpinning phenotypic variation are required if natural selection is to result in adaptive evolution. However, evolutionary and behavioural ecologists typically focus on variation among individuals in their average trait values and seek to characterize genetic contributions to this. As a result, less attention has been paid to if and how genes could contribute towards within‐individual variance or trait ‘predictability’. In fact, phenotypic ‘predictability’ can vary among individuals, and emerging evidence from livestock genetics suggests this can be due to genetic factors. Here, we test this empirically using repeated measures of a behavioural stress response trait in a pedigreed population of wild‐type guppies. We ask (a) whether individuals differ in behavioural predictability and (b) whether this variation is heritable and so evolvable under selection. Using statistical methodology from the field of quantitative genetics, we find support for both hypotheses and also show evidence of a genetic correlation structure between the behavioural trait mean and individual predictability. We show that investigating sources of variability in trait predictability is statistically tractable and can yield useful biological interpretation. We conclude that, if widespread, genetic variance for ‘predictability’ will have major implications for the evolutionary causes and consequences of phenotypic variation.  相似文献   

2.
    
Sex differences in the genetic architecture of behavioral traits can offer critical insight into the processes of sex‐specific selection and sexual conflict dynamics. Here, we assess genetic variances and cross‐sex genetic correlations of two personality traits, aggression and activity, in a sexually size‐dimorphic spider, Nuctenea umbratica. Using a quantitative genetic approach, we show that both traits are heritable. Males have higher heritability estimates for aggressiveness compared to females, whereas the coefficient of additive genetic variation and evolvability did not differ between the sexes. Furthermore, we found sex differences in the coefficient of residual variance in aggressiveness with females exhibiting higher estimates. In contrast, the quantitative genetic estimates for activity suggest no significant differentiation between males and females. We interpret these results with caution as the estimates of additive genetic variances may be inflated by nonadditive genetic effects. The mean cross‐sex genetic correlations for aggression and activity were 0.5 and 0.6, respectively. Nonetheless, credible intervals of both estimates were broad, implying high uncertainty for these estimates. Future work using larger sample sizes would be needed to draw firmer conclusions on how sexual selection shapes sex differences in the genetic architecture of behavioral traits.  相似文献   

3.
    
It has been predicted that environmental changes will radically alter the selective pressures on phenological traits. Long‐lived species, such as trees, will be particularly affected, as they may need to undergo major adaptive change over only one or a few generations. The traits describing the annual life cycle of trees are generally highly evolvable, but nothing is known about the strength of their genetic correlations. Tight correlations can impose strong evolutionary constraints, potentially hampering the adaptation of multivariate phenological phenotypes. In this study, we investigated the evolutionary, genetic and environmental components of the timing of leaf unfolding and senescence within an oak metapopulation along an elevation gradient. Population divergence, estimated from in situ and common‐garden data, was compared to expectations under neutral evolution, based on microsatellite markers. This approach made it possible (1) to evaluate the influence of genetic correlation on multivariate local adaptation to elevation and (2) to identify traits probably exposed to past selective pressures due to the colder climate at high elevation. The genetic correlation was positive but very weak, indicating that genetic constraints did not shape the local adaptation pattern for leaf phenology. Both spring and fall (leaf unfolding and senescence, respectively) phenology timings were involved in local adaptation, but leaf unfolding was probably the trait most exposed to climate change‐induced selection. Our data indicated that genetic variation makes a much smaller contribution to adaptation than the considerable plastic variation displayed by a tree during its lifetime. The evolutionary potential of leaf phenology is, therefore, probably not the most critical aspect for short‐term population survival in a changing climate.  相似文献   

4.
Consistent individual differences in behaviour, and behavioural correlations within and across contexts, are referred to as animal personalities. These patterns of variation have been identified in many animal taxa and are likely to have important ecological and evolutionary consequences. Despite their importance, genetic and environmental sources of variation in personalities have rarely been characterized in wild populations. We used a Bayesian animal model approach to estimate genetic parameters for aggression, activity and docility in North American red squirrels (Tamiasciurus hudsonicus). We found support for low heritabilities (0.08-0.12), and cohort effects (0.07-0.09), as well as low to moderate maternal effects (0.07-0.15) and permanent environmental effects (0.08-0.16). Finally, we found evidence of a substantial positive genetic correlation (0.68) and maternal effects correlation (0.58) between activity and aggression providing evidence of genetically based behavioural correlations in red squirrels. These results provide evidence for the presence of heritable variation in red squirrel behaviour, but also emphasize the role of other sources of variation, including maternal effects, in shaping patterns of variation and covariation in behavioural traits.  相似文献   

5.
    
Oxidative stress was recently demonstrated to affect several fitness‐related traits and is now well recognized to shape animal life‐history evolution. However, very little is known about how much resistance to oxidative stress is determined by genetic and environmental effects and hence about its potential for evolution, especially in wild populations. In addition, our knowledge of phenotypic sexual dimorphism and cross‐sex genetic correlations in resistance to oxidative stress remains extremely limited despite important evolutionary implications. In free‐living great tits (Parus major), we quantified heritability, common environmental effect, sexual dimorphism and cross‐sex genetic correlation in offspring resistance to oxidative stress by performing a split‐nest cross‐fostering experiment where 155 broods were split, and all siblings (n = 791) translocated and raised in two other nests. Resistance to oxidative stress was measured as both oxidative damage to lipids and erythrocyte resistance to a controlled free‐radical attack. Both measurements of oxidative stress showed low additive genetic variances, high common environmental effects and phenotypic sexual dimorphism with males showing a higher resistance to oxidative stress. Cross‐sex genetic correlations were not different from unity, and we found no substantial heritability in resistance to oxidative stress at adult age measured on 39 individuals that recruited the subsequent year. Our study shows that individual ability to resist to oxidative stress is primarily influenced by the common environment and has a low heritability with a consequent low potential for evolution, at least at an early stage of life.  相似文献   

6.
    
One challenge of evolutionary ecology is to predict the rate and mechanisms of population adaptation to environmental variations. The variations in most life history traits are shaped both by individual genotypic and by environmental variation. Forest trees exhibit high levels of genetic diversity, large population sizes, and gene flow, and they also show a high level of plasticity for life history traits. We developed a new Physio‐Demo‐Genetics model (denoted PDG) coupling (i) a physiological module simulating individual tree responses to the environment; (ii) a demographic module simulating tree survival, reproduction, and pollen and seed dispersal; and (iii) a quantitative genetics module controlling the heritability of key life history traits. We used this model to investigate the plastic and genetic components of the variations in the timing of budburst (TBB) along an elevational gradient of Fagus sylvatica (the European beech). We used a repeated 5 years climatic sequence to show that five generations of natural selection were sufficient to develop nonmonotonic genetic differentiation in the TBB along the local climatic gradient but also that plastic variation among different elevations and years was higher than genetic variation. PDG complements theoretical models and provides testable predictions to understand the adaptive potential of tree populations.  相似文献   

7.
    
We investigate competition between separate periodical cicada populations each possessing different life‐cycle lengths. We build an individual‐based model to simulate the cicada life cycle and allow random migrations to occur between patches inhabited by the different populations. We show that if hybridization between different cycle lengths produces offspring that have an intermediate life‐cycle length, then predation acts disproportionately to select against the hybrid offspring. This happens because they emerge in low densities without the safety‐in‐numbers provided by either parent population. Thus, prime‐numbered life cycles that can better avoid hybridization are favored. However, we find that this advantage of prime‐numbered cycles occurs only if there is some mechanism that can occasionally synchronize emergence between local populations in sufficiently many patches.  相似文献   

8.
    
The underlying basis of genetic variation in quantitative traits, in terms of the number of causal variants and the size of their effects, is largely unknown in natural populations. The expectation is that complex quantitative trait variation is attributable to many, possibly interacting, causal variants, whose effects may depend upon the sex, age and the environment in which they are expressed. A recently developed methodology in animal breeding derives a value of relatedness among individuals from high‐density genomic marker data, to estimate additive genetic variance within livestock populations. Here, we adapt and test the effectiveness of these methods to partition genetic variation for complex traits across genomic regions within ecological study populations where individuals have varying degrees of relatedness. We then apply this approach for the first time to a natural population and demonstrate that genetic variation in wing length in the great tit (Parus major) reflects contributions from multiple genomic regions. We show that a polygenic additive mode of gene action best describes the patterns observed, and we find no evidence of dosage compensation for the sex chromosome. Our results suggest that most of the genomic regions that influence wing length have the same effects in both sexes. We found a limited amount of genetic variance in males that is attributed to regions that have no effects in females, which could facilitate the sexual dimorphism observed for this trait. Although this exploratory work focuses on one complex trait, the methodology is generally applicable to any trait for any laboratory or wild population, paving the way for investigating sex‐, age‐ and environment‐specific genetic effects and thus the underlying genetic architecture of phenotype in biological study systems.  相似文献   

9.
10.
    
Plasticity in the timing of transitions between stages of complex life cycles allows organisms to adjust their growth and development to local environmental conditions. Genetic variation in such plasticity is common, but the evolution of context‐dependent transition timing may be constrained by information reliability, lag‐time and developmental constraints. We studied the genetic architecture of hatching plasticity in embryos of the red‐eyed treefrog (Agalychnis callidryas) in response to simulated predator attacks using a series of paternal and maternal half‐sibs from a captive breeding colony of wild‐collected animals. We compared the developmental timing of induced early hatching across sibships and estimated cross‐environment genetic correlations between induced and spontaneous hatching traits. Additive genetic variance for induced early hatching was very low, indicating a constraint on the short‐term evolution of earlier hatching timing. This constraint is likely related to the maturation of the hatching mechanism. The most plastic genotypes produced the most extreme spontaneous hatching phenotypes, indicating that developmental range, per se, is not constrained. Cross‐environment genetic correlation in hatching timing was negligible, so the evolution of spontaneous hatching in this species has not depended on the evolution of risk‐induced hatching and vice versa.  相似文献   

11.
    
Forecasts of species distributions under future climates are inherently uncertain, but there have been few attempts to describe this uncertainty comprehensively in a probabilistic manner. We developed a Monte Carlo approach that accounts for uncertainty within generalized linear regression models (parameter uncertainty and residual error), uncertainty among competing models (model uncertainty), and uncertainty in future climate conditions (climate uncertainty) to produce site‐specific frequency distributions of occurrence probabilities across a species' range. We illustrated the method by forecasting suitable habitat for bull trout (Salvelinus confluentus) in the Interior Columbia River Basin, USA, under recent and projected 2040s and 2080s climate conditions. The 95% interval of total suitable habitat under recent conditions was estimated at 30.1–42.5 thousand km; this was predicted to decline to 0.5–7.9 thousand km by the 2080s. Projections for the 2080s showed that the great majority of stream segments would be unsuitable with high certainty, regardless of the climate data set or bull trout model employed. The largest contributor to uncertainty in total suitable habitat was climate uncertainty, followed by parameter uncertainty and model uncertainty. Our approach makes it possible to calculate a full distribution of possible outcomes for a species, and permits ready graphical display of uncertainty for individual locations and of total habitat.  相似文献   

12.
In this paper, we demonstrate how simulation studies can be used to answer questions about identifiability and consequences of omitting effects from a model. The methodology is presented through a case study where identifiability of genetic and/or individual (environmental) maternal effects is explored. Our study system is a wild house sparrow (Passer domesticus) population with known pedigree. We fit pedigree‐based (generalized) linear mixed models (animal models), with and without additive genetic and individual maternal effects, and use deviance information criterion (DIC) for choosing between these models. Pedigree and R‐code for simulations are available. For this study system, the simulation studies show that only large maternal effects can be identified. The genetic maternal effect (and similar for individual maternal effect) has to be at least half of the total genetic variance to be identified. The consequences of omitting a maternal effect when it is present are explored. Our results indicate that the total (genetic and individual) variance are accounted for. When an individual (environmental) maternal effect is omitted from the model, this only influences the estimated (direct) individual (environmental) variance. When a genetic maternal effect is omitted from the model, both (direct) genetic and (direct) individual variance estimates are overestimated.  相似文献   

13.
    
Ecological theory suggests that co‐infecting parasite species can interact within hosts directly, via host immunity and/or via resource competition. In mice, competition for red blood cells (RBCs) between malaria and bloodsucking helminths can regulate malaria population dynamics, but the importance of RBC competition in human hosts was unknown. We analysed infection density (i.e. the concentration of parasites in infected hosts), from a 2‐year deworming study of over 4000 human subjects. After accounting for resource‐use differences among parasites, we find evidence of resource competition, priority effects and a competitive hierarchy within co‐infected individuals. For example reducing competition via deworming increased Plasmodium vivax densities 2.8‐fold, and this effect is limited to bloodsucking hookworms. Our ecological, resource‐based perspective sheds new light into decades of conflicting outcomes of malaria–helminth co‐infection studies with significant health and transmission consequences. Beyond blood, investigating within‐human resource competition may bring new insights for improving human health.  相似文献   

14.
    
Evolutionary processes are expected to be crucial for the adaptation of natural populations to environmental changes. In particular, the capacity of rear edge populations to evolve in response to the species limiting conditions remains a major issue that requires to address their evolutionary potential. In situ quantitative genetic studies based on molecular markers offer the possibility to estimate evolutionary potentials manipulating neither the environment nor the individuals on which phenotypes are measured. The goal of this study was to estimate heritability and genetic correlations of a suite of leaf functional traits involved in climate adaptation for a natural population of the tree Fagus sylvatica, growing at the rear edge of the species range. Using two marker‐based quantitative genetics approaches, we obtained consistent and significant estimates of heritability for leaf phenological (phenology of leaf flush), morphological (mass, area, ratio mass/area) and physiological (δ13C, nitrogen content) traits. Moreover, we found only one significant positive genetic correlation between leaf area and leaf mass, which likely reflected mechanical constraints. We conclude first that the studied population has considerable genetic diversity for important ecophysiological traits regarding drought adaptation and, second, that genetic correlations are not likely to impose strong genetic constraints to future population evolution. Our results bring important insights into the question of the capacity of rear edge populations to evolve.  相似文献   

15.
    
Behavioural syndromes, that is correlated behaviours, may be a result from adaptive correlational selection, but in a new environmental setting, the trait correlation might act as an evolutionary constraint. However, knowledge about the quantitative genetic basis of behavioural syndromes, and the stability and evolvability of genetic correlations under different ecological conditions, is limited. We investigated the quantitative genetic basis of correlated behaviours in the freshwater isopod Asellus aquaticus. In some Swedish lakes, A. aquaticus has recently colonized a novel habitat and diverged into two ecotypes, presumably due to habitat‐specific selection from predation. Using a common garden approach and animal model analyses, we estimated quantitative genetic parameters for behavioural traits and compared the genetic architecture between the ecotypes. We report that the genetic covariance structure of the behavioural traits has been altered in the novel ecotype, demonstrating divergence in behavioural correlations. Thus, our study confirms that genetic correlations behind behaviours can change rapidly in response to novel selective environments.  相似文献   

16.
    
Comparisons of to can provide insights into the evolutionary processes that lead to differentiation, or lack thereof, among the phenotypes of different groups (e.g., populations, species), and these comparisons have been performed on a variety of taxa, including humans. Here, I show that for neutrally evolving (i.e., by genetic drift, mutation, and gene flow alone) quantitative characters, the two commonly used estimators have somewhat different interpretations in terms of coalescence times, particularly when the number of groups that have been sampled is small. A similar situation occurs for estimators. Consequently, when observations come from only a small number of groups, which is not an unusual situation, it is important to match estimators appropriately when comparing to .  相似文献   

17.
    
Individual‐based data sets tracking organisms over space and time are fundamental to answering broad questions in ecology and evolution. A ‘permanent’ genetic tag circumvents a need to invasively mark or tag animals, especially if there are little phenotypic differences among individuals. However, genetic tracking of individuals does not come without its limits; correctly matching genotypes and error rates associated with laboratory work can make it difficult to parse out matched individuals. In addition, defining a sampling design that effectively matches individuals in the wild can be a challenge for researchers. Here, we combine the two objectives of defining sampling design and reducing genotyping error through an efficient Python‐based computer‐modelling program, wisepair . We describe the methods used to develop the computer program and assess its effectiveness through three empirical data sets, with and without reference genotypes. Our results show that wisepair outperformed similar genotype matching programs using previously published from reference genotype data of diurnal poison frogs (Allobates femoralis) and without‐reference (faecal) genotype sample data sets of harbour seals (Phoca vitulina) and Eurasian otters (Lutra lutra). In addition, due to limited sampling effort in the harbour seal data, we present optimal sampling designs for future projects. wisepair allows for minimal sacrifice in the available methods as it incorporates sample rerun error data, allelic pairwise comparisons and probabilistic simulations to determine matching thresholds. Our program is the lone tool available to researchers to define parameters a priori for genetic tracking studies.  相似文献   

18.
    
In vertebrates, darker individuals are often found to be more active and willing to take risks (representing characteristics of a ‘proactive’ coping style), whereas lighter individuals are instead more cautious and less active (representing characteristics of a ‘reactive’ coping style). It is thus generally expected that melanin‐based coloration and proactivity form a suite of positively integrated traits at the among‐individual level. Here, we use a multigenerational pedigree of free‐living great tits (Parus major) to partition variation in, and the correlation between, melanin‐based breast stripe (‘tie’) size and exploration behaviour (a proxy for coping style) into its among‐ and within‐individual components. We show that both traits harbour heritable variation. Against predictions, tie size and speed of exploration were negatively correlated at the among‐individual level due to the combined influences of permanent environmental and additive genetic effects. By contrast, the two traits were weakly positively correlated within individuals (i.e. individuals increasing in tie size after moult tended to become more explorative). The patterns of among‐individual covariance were not caused by correlational selection as we found additive and opposite selection pressures acting on the two traits. These findings imply that testing hypotheses regarding the existence of a ‘syndrome’ at the among‐individual level strictly requires variance partitioning to avoid inappropriate interpretations as the negative ‘unpartitioned’ phenotypic correlation between exploration and tie size resulted from counteracting effects of within‐ and among‐individual correlations. Identifying sources and levels of (co)variation in phenotypic traits is thus critical to our understanding of biological patterns and evolutionary processes.  相似文献   

19.
    
Adult sex ratio (ASR) has critical effects on behavior and life history and has implications for population demography, including the invasiveness of introduced species. ASR exhibits immense variation in nature, yet the scale dependence of this variation is rarely analyzed. In this study, using the generalized multilevel models, we investigated the variation in ASR across multiple nested spatial scales and analyzed the underlying causes for an invasive species, the golden apple snail Pomacea canaliculata. We partitioned the variance in ASR to describe the variations at different scales and then included the explanatory variables at the individual and group levels to analyze the potential causes driving the variation in ASR. We firstly determined there is a significant female‐biased ASR for this species when accounting for the spatial and temporal autocorrelations of sampling. We found that, counter to nearly equal distributed variation at plot, habitat and region levels, ASR showed little variation at the town level. Temperature and precipitation at the region level were significantly positively associated with ASR, whereas the individual weight, the density characteristic, and sampling time were not significant factors influencing ASR. Our study suggests that offspring sex ratio of this species may shape the general pattern of ASR in the population level while the environmental variables at the region level translate the unbiased offspring sex ratio to the female‐biased ASR. Future research should consider the implications of climate warming on the female‐biased ASR of this invasive species and thus on invasion pattern.  相似文献   

20.
Next‐generation sequencing allows access to a large quantity of genomic data. In plants, several studies used whole chloroplast genome sequences for inferring phylogeography or phylogeny. Even though the chloroplast is a haploid organelle, NGS plastome data identified a nonnegligible number of intra‐individual polymorphic SNPs. Such observations could have several causes such as sequencing errors, the presence of heteroplasmy or transfer of chloroplast sequences in the nuclear and mitochondrial genomes. The occurrence of allelic diversity has practical important impacts on the identification of diversity, the analysis of the chloroplast data and beyond that, significant evolutionary questions. In this study, we show that the observed intra‐individual polymorphism of chloroplast sequence data is probably the result of plastid DNA transferred into the mitochondrial and/or the nuclear genomes. We further assess nine different bioinformatics pipelines’ error rates for SNP and genotypes calling using SNPs identified in Sanger sequencing. Specific pipelines are adequate to deal with this issue, optimizing both specificity and sensitivity. Our results will allow a proper use of whole chloroplast NGS sequence and will allow a better handling of NGS chloroplast sequence diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号