首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
《The Journal of cell biology》1993,123(4):1007-1016
The interaction of lymphocyte function-associated antigen-1 (LFA-1) with its ligands mediates multiple cell adhesion processes of capital importance during immune responses. We have obtained three anti-ICAM-3 mAbs which recognize two different epitopes (A and B) on the intercellular adhesion molecule-3 (ICAM-3) as demonstrated by sequential immunoprecipitation and cross-competitive mAb-binding experiments. Immunoaffinity purified ICAM-3-coated surfaces were able to support T lymphoblast attachment upon cell stimulation with both phorbol esters and cross-linked CD3, as well as by mAb engagement of the LFA-1 molecule with the activating anti-LFA-1 NKI-L16 mAb. T cell adhesion to purified ICAM-3 was completely inhibited by cell pretreatment with mAbs to the LFA-1 alpha (CD11a) or the LFA-beta (CD18) integrin chains. Anti-ICAM-3 mAbs specific for epitope A, but not those specific for epitope B, were able to trigger T lymphoblast homotypic aggregation. ICAM-3-mediated cell aggregation was dependent on the LFA-1/ICAM-1 pathway as demonstrated by blocking experiments with mAbs specific for the LFA-1 and ICAM-1 molecules. Furthermore, immunofluorescence studies on ICAM-3-induced cell aggregates revealed that both LFA-1 and ICAM-1 were mainly located at intercellular boundaries. ICAM-3 was located at cellular uropods, which in small aggregates appeared to be implicated in cell-cell contacts, whereas in large aggregates it appeared to be excluded from cell-cell contact areas. Experiments of T cell adhesion to a chimeric ICAM-1-Fc molecule revealed that the proaggregatory anti-ICAM-3 HP2/19 mAb was able to increase T lymphoblast attachment to ICAM-1, suggesting that T cell aggregation induced by this mAb could be mediated by increasing the avidity of LFA-1 for ICAM-1. Moreover, the HP2/19 mAb was costimulatory with anti-CD3 mAb for T lymphocyte proliferation, indicating that enhancement of T cell activation could be involved in ICAM-3-mediated adhesive phenomena. Altogether, our results indicate that ICAM-3 has a regulatory role on the LFA-1/ICAM-1 pathway of intercellular adhesion.  相似文献   

2.
《The Journal of cell biology》1994,126(5):1277-1286
Intercellular adhesion molecule (ICAM)-3, a recently described counter- receptor for the lymphocyte function-associated antigen (LFA)-1 integrin, appears to play an important role in the initial phase of immune response. We have previously described the involvement of ICAM-3 in the regulation of LFA-1/ICAM-1-dependent cell-cell interaction of T lymphoblasts. In this study, we further investigated the functional role of ICAM-3 in other leukocyte cell-cell interactions as well as the molecular mechanisms regulating these processes. We have found that ICAM-3 is also able to mediate LFA-1/ICAM-1-independent cell aggregation of the leukemic JM T cell line and the LFA-1/CD18-deficient HAFSA B cell line. The ICAM-3-induced cell aggregation of JM and HAFSA cells was not affected by the addition of blocking mAb specific for a number of cell adhesion molecules such as CD1 1a/CD18, ICAM-1 (CD54), CD2, LFA-3 (CD58), very late antigen alpha 4 (CD49d), and very late antigen beta 1 (CD29). Interestingly, some mAb against the leukocyte tyrosine phosphatase CD45 were able to inhibit this interaction. Moreover, they also prevented the aggregation induced on JM T cells by the proaggregatory anti-LFA-1 alpha NKI-L16 mAb. In addition, inhibitors of tyrosine kinase activity also abolished ICAM-3 and LFA-1- mediated cell aggregation. The induction of tyrosine phosphorylation through ICAM-3 and LFA-1 antigens was studied by immunofluorescence, and it was found that tyrosine-phosphorylated proteins were preferentially located at intercellular boundaries upon the induction of cell aggregation by either anti-ICAM-3 or anti-LFA-1 alpha mAb. Western blot analysis revealed that the engagement of ICAM-3 or LFA-1 with activating mAb enhanced tyrosine phosphorylation of polypeptides of 125, 70, and 38 kD on JM cells. This phenomenon was inhibited by preincubation of JM cells with those anti-CD45 mAb that prevented cell aggregation. Altogether these results indicate that CD45 tyrosine phosphatase plays a relevant role in the regulation of both intracellular signaling and cell adhesion induced through ICAM-3 and beta 2 integrins.  相似文献   

3.
4.
TNP-specific B cells interact with carrier-specific T hybridoma cells in an antigen-specific, MHC-restricted manner. The formation of T cell/B cell conjugates is time and temperature dependent and results in the formation of a broad area of close contact between the interacting cells. In order to determine which surface molecules on the two cells cluster at the interaction site. T cell/B cell conjugates were formalin-fixed at different times following conjugation and were stained with antibodies directed against cell surface molecules. Results of these studies indicate that the alpha- and beta-subunits of LFA-1 on B cells transiently cluster in the area of cell contact. Maximum clustering of LFA-1 occurs at 45 min, after which time LFA-1 redistributes on the surface of the B cells. Several other B cell-associated molecules (MHC Class II, ICAM-1, Ig, B220, J11D, or CD23) do not cluster at the interaction site at any time point. T cell-associated LFA-1 does not cluster with any specific pattern, but ICAM-1 does. Maximum clustering of ICAM-1 occurs 60 to 90 min after intercellular contact. After this time, ICAM-1 redistributes on the surface of the T cells. Although both the alpha- and beta-subunits of LFA-1 cluster at the interaction site on B cells, antibodies recognizing these subunits differ in their ability to affect conjugation. One antibody recognizing the alpha chain of LFA-1 (M17/4.2) inhibits T-cell/B cell conjugation, whereas another antibody that also recognizes the alpha chain-(G-48) enhances conjugation. In contrast, an antibody that recognizes LFA-1 beta (M18/2.a.8) has no effect. An antibody that recognizes ICAM-1 (YN/1.7), the ligand for LFA-1, inhibits conjugation. These data show that, during T cell/B cell interaction. LFA-1 on B cells and ICAM-1 on T cells transiently cluster with similar, albeit not identical, kinetics to the site of cell-cell contact.  相似文献   

5.
Regulation of integrin affinity on cell surfaces   总被引:1,自引:0,他引:1  
Lymphocyte activation triggers adhesiveness of lymphocyte function-associated antigen-1 (LFA-1; integrin α(L)β(2)) for intercellular adhesion molecules (ICAMs) on endothelia or antigen-presenting cells. Whether the activation signal, after transmission through multiple domains to the ligand-binding αI domain, results in affinity changes for ligand has been hotly debated. Here, we present the first comprehensive measurements of LFA-1 affinities on T lymphocytes for ICAM-1 under a broad array of activating conditions. Only a modest increase in affinity for soluble ligand was detected after activation by chemokine or T-cell receptor ligation, conditions that primed LFA-1 and robustly induced lymphocyte adhesion to ICAM-1 substrates. By stabilizing well-defined LFA-1 conformations by Fab, we demonstrate the absolute requirement of the open LFA-1 headpiece for adhesiveness and high affinity. Interaction of primed LFA-1 with immobilized but not soluble ICAM-1 triggers energy-dependent affinity maturation of LFA-1 to an adhesive, high affinity state. Our results lend support to the traction or translational motion dependence of integrin activation.  相似文献   

6.
ORF7a is an accessory protein common to SARS-CoV1 and the recently discovered SARS-CoV2, which is causing the COVID-19 pandemic. The ORF7a protein has a structural homology with ICAM-1 which binds to the T lymphocyte integrin receptor LFA-1. As COVID-19 has a strong immune component as part of the disease, we sought to determine whether SARS-CoV2 would have a similar structural interaction with LFA-1. Using molecular docking simulations, we found that SARS-CoV2 ORF7a has the key structural determinants required to bind LFA-1 but also the related leukocyte integrin Mac-1, which is also known to be expressed by macrophages. Our study shows that SARS-CoV2 ORF7a protein has a conserved Ig immunoglobulin-like fold containing an integrin binding site that provides a mechanistic hypothesis for SARS-CoV2’s interaction with the human immune system. This suggests that experimental investigation of ORF7a-mediated effects on immune cells such as T lymphocytes and macrophages (leukocytes) could help understand the disease further and develop effective treatments.  相似文献   

7.
We have previously reported that stimulation of human fibroblasts (FB) with interferon-gamma (IFN-gamma) leads to their increased adhesiveness for resting peripheral blood T lymphocytes. With the use of blocking monoclonal antibodies, we determined that intercellular adhesion molecule-1 (ICAM-1) and its T cell ligand, lymphocyte function-associated antigen-1 (LFA-1) are the major, if not only ligands involved in this system. Using an ELISA, we have confirmed earlier reported observations that IFN-gamma induces an increase of ICAM-1 expression on the surface of FB suggesting that this increase mediates lymphocyte adhesion. However, we show that treatment of FB with IL-1, while leading to comparable increases in ICAM-1 synthesis and expression, failed to induce increased adhesion. In contrast, treatment of fibroblasts with the phorbol ester, TPA, stimulated ICAM-1-dependent adhesion without an increase in ICAM-1 surface expression. This suggested that the detection of ICAM-1 by monoclonal antibody techniques may not always correlate with its functional capabilities. The contrasting effects of IFN-gamma and IL-1 on ICAM-1-dependent FB adhesion suggest that qualitative as well as quantitative alterations of the ICAM-1 molecule may regulate ligand interaction.  相似文献   

8.
Intercellular adhesion molecule-1 (ICAM-1) is found on the surface of many hemopoietic and non-hemopoietic cells and can function as an adhesive ligand for the integrin, leukocyte function associated molecule-1 (LFA-1, CD11a/CD18). ICAM-1/LFA-1 interaction is thought to be of importance in many immune mediated cell-cell adhesion reactions. Recently, the major human rhinovirus (HRV) receptor has been identified as ICAM-1. HRV has been shown to bind specifically to ICAM-1 on transfected COS cells and to purified ICAM-1, which has been adsorbed to plastic microtiter wells. We have compared the ability of ICAM-1 expressed on the surface of human fibroblasts (FB) to function as a receptor for HRV as well as a receptor for LFA-1-bearing human T lymphocytes. We show that FB stimulation by the cytokines IFN-gamma or IL-1, both known inducers of ICAM-1 synthesis and expression in FB, induced an increase in HRV binding to treated cells, which could be inhibited by antibody to ICAM-1. In contrast, only IFN-gamma and not IL-1 treatment of FB resulted in an increased adhesion of T lymphocytes. Binding of HRV to IFN-gamma-treated FB inhibited the subsequent adhesion of T cells. We also show that prior stimulation of FB with IL-1 enhanced the adhesion of HRV to IFN-gamma-stimulated cells, although IL-1 pretreatment was inhibitory for T cell adhesion. As these two cytokines both up-regulate ICAM-1 on the surface of human FB, the contrasting effects of IFN-gamma and IL-1 on human FB ICAM-1 adhesion to HRV and to LFA-1 suggest that qualitative as well as quantitative alterations of the ICAM-1 molecule may contribute to its specificity of ligand recognition.  相似文献   

9.
An antibody response against a thymic-dependent Ag requires cognate recognition of the Ag by B and T cells. Functional T-B cell (T-B) interaction involves binding of Ag by B cell surface Ig, internalization and processing of Ag, expression of an Ag fragment in the context of Ia, binding of Ag/Ia by the TCR and binding of T cell-derived lymphokines by B cell lymphokine receptors. It is becoming increasingly evident that B and T cell accessory molecules also are involved in T-B interactions. To determine the role of accessory molecules in T-B collaboration, we have designed a system in which T-B interaction was artificially induced in the absence of carrier protein. TNP-modified, turkey gamma-globulin-specific, Th cells were allowed to form conjugates with TNP-specific B cells in the absence of hapten-carrier complex. Both B and T cells were induced to proliferate and B cells partially differentiated into antibody-secreting cells when B cells were cultured with TNP-modified but not unmodified T cells. The activation of B cells by TNP-modified T cells was not MHC restricted but was blocked by anti-Ia antibodies, suggesting a role for Ia distinct from Ag presentation. Furthermore, B cell proliferation was also inhibited by antibodies to L3T4 and LFA-1, suggesting a functional accessory role for these molecules in induction of B cell proliferation/differentiation.  相似文献   

10.
Large granular lymphocytes, mediators of NK activity, bind to other cells using both the LFA (lymphocyte function-associated)-1-ICAM and the CD2-LFA-3 adhesion pathways. Here we have studied the motility and ultrastructure of large granule lymphocyte (LGL) on lipid bilayers containing purified LFA-1, ICAM-1, and the transmembrane and glycophosphatidylinositol isoforms of LFA-3. LGLs moved at 8 microns/min on ICAM-1 but poorly (less than 1 microns/min) on its receptor pair LFA-1. TM-LFA-3 promoted locomotion at a rate close to ICAM-1, whereas the cells were less motile on GPI-LFA-3. The difference in the rates of locomotion on the two isoforms of LFA-3 is presumably attributable to their difference in anchoring and lateral mobility in the bilayer. In spite of the variation in motility the ultrastructure of the adhering cells was similar on all four ligands. LGLs contacted the membrane variably, i.e., cells adhering only in a few small areas or in larger areas were detected on each ligand. The relative percentage of the plasma membrane facing the lipid bilayer was greatest on ICAM-1 and least on the transmembrane isoform of LFA-3, demonstrating no correlation with motility. The ratio of adjacent plasma membrane to lipid bilayer was virtually constant for all four ligands. Activation of the LGLs with a combination of CD2 mAb T11(2) and T11(3) (T11(2/3) mAb) reduced the movement on ICAM-1 and virtually immobilized the cells on the other bilayers. In the presence of T11(2/3) mAb, the area of cell membrane attaching to bilayers containing ICAM-1 and GPI-LFA-3 was decreased and the percentage of plasma membrane facing other cells was increased. No preferential orientation of the Golgi apparatus or degranulation was detected in the absence or presence of T11(2/3) mAb, but a significantly lower percentage of LGLs on ICAM-1 contained a profile of the Golgi apparatus after exposure to T11(2/3) mAb. The results demonstrate that the motility of LGLs depends on the type of receptor in the opposing bilayer, the receptor mobility in the bilayer, and the activation of the cells. The ultrastructure of LGLs binding to any of the adhesion molecules does not have the characteristics of LGLs in cytolytic contact with target cells, suggesting that the mediation of an attack on a target requires more complex stimulus than any one of the single adhesion proteins tested here.  相似文献   

11.
Species restrictions in immune cell interactions have been demonstrated both in Ag-specific responses of T lymphocytes and the phenomenon of natural attachment. To determine the possible contribution of adhesion receptors to these restrictions, we have studied binding between the murine and human homologues of LFA-1 (CD11a/CD18) and ICAM employing purified human LFA-1 and ICAM-1 (CD54) bound to solid substrates. Murine cell lines bind to purified human LFA-1 through ICAM-1 and at least one other counter-receptor. This provides evidence for multiple counter-receptors for LFA-1 in the mouse as well as in the human. In contrast to binding of murine ICAM-1 to human LFA-1, murine LFA-1 does not bind to human ICAM-1. The species specificity maps to the LFA-1 alpha subunit, because mouse x human hybrid cells expressing the human alpha subunit associated with a mouse beta subunit bind to human ICAM-1, whereas those with a human beta subunit associated with a murine alpha subunit do not. Increased adhesiveness for ICAM-1 stimulated by phorbol esters could be demonstrated for hybrid LFA-1 molecules with human alpha and murine beta subunits.  相似文献   

12.
Chemokines presented on endothelial tissues instantaneously trigger LFA-1-mediated arrest on ICAM-1 via rapid inside-out and outside-in (ligand-driven) LFA-1 activation. The GTPase RhoA was previously implicated in CCL21-triggered LFA-1 affinity triggering in murine T lymphocytes and in LFA-1-dependent adhesion strengthening to ICAM-1 on Peyer's patch high endothelial venules stabilized over periods of at least 10 s. In this study, we show that a specific RhoA 23/40 effector region is vital for the initial LFA-1-dependent adhesions of lymphocytes on high endothelial venules lasting 1-3 s. Blocking the RhoA 23/40 region in human T lymphocytes in vitro also impaired the subsecond CXCL12-triggered LFA-1-mediated T cell arrest on ICAM-1 by eliminating the rapid induction of an extended LFA-1 conformational state. However, the inflammatory chemokine CXCL9 triggered robust LFA-1-mediated T lymphocyte adhesion to ICAM-1 at subsecond contacts independently of the RhoA 23/40 region. CXCL9 did not induce conformational changes in the LFA-1 ectodomain, suggesting that particular chemokines can activate LFA-1 through outside-in post ligand binding stabilization changes. Like CXCL9, the potent diacylglycerol-dependent protein kinase C agonist PMA was found to trigger LFA-1 adhesiveness to ICAM-1 also without inducing integrin extension or an a priori clustering and independently of the RhoA 23/40 region. Our results collectively suggest that the 23/40 region of RhoA regulates chemokine-induced inside-out LFA-1 extension before ligand binding, but is not required for a variety of chemokine and non-chemokine signals that rapidly strengthen LFA-1-ICAM-1 bonds without an a priori induction of high-affinity extended LFA-1 conformations.  相似文献   

13.
We here demonstrate that ligand binding to MHC class I molecules induces homotypic cell adhesion of lymphocytes and monocytes. mAb to beta 2-microglobulin caused sustained, largely LFA-1-independent adhesion whereas mAb to the MHC class I alpha H chain caused transient LFA-1-dependent adhesion. Both the protein kinase C inhibitor sphingosine and the tyrosine kinase inhibitor genistein abrogated MHC class I-mediated cellular adhesion. These results indicate that MHC class I molecules transduce signals that induce cell adhesion and suggest that interaction between MHC class I-restricted T cells and APC may result in reciprocal enhanced adhesiveness of these cells.  相似文献   

14.
A patient and his parents, deficient for lymphocyte function associated antigen-1 (LFA-1) and Mo1 (OKM1), were studied with respect to leukocyte surface marker expression and functional properties. The patient had a history of severe recurrent bacterial infections. Two siblings had already died of bacterial infections. The patient's granulocytes, monocytes, and lymphocytes expressed low but detectable amounts (less than or equal to 10%) of LFA-1 and Mo1. Intracellularly, LFA-1 and Mo1 (OKM1) were detectable and LFA-1 expression was enhanced on patient T cells stimulated with phytohemagglutinin. Granulocytes and monocytes of both the patient's parents expressed markedly decreased amounts of LFA-1 and Mo1. Lymphocytes of the mother expressed 40 to 60% of the amount of LFA-1 expressed on control lymphocytes, but his father's lymphocytes showed a normal LFA-1 expression. Granulocytes of the patient and of his deceased sister showed normal phagocytosis, but they had a dysfunction in the activation of the oxidative metabolism. Functional activities mediated by patient T cells were all normal. Moreover, all lymphocyte functions, including killer (K), natural killer (NK), cytotoxic T cell activity, helper activity for in vitro immunoglobulin (Ig) production by normal B cells, and PHA-induced proliferation were inhibitable by anti-LFA-1 monoclonal antibodies. K and NK activity mediated by patient leukocytes was 100-fold more sensitive to the inhibiting effect of anti-LFA-1 antibody than K and NK activity of normal donor leukocytes. Thus, although the amount of LFA-1 expressed was strongly reduced, it was still sufficient and required for the functional activity exhibited by patient T cells. The major functional defect observed with leukocytes of the patient and his father was an apparent B cell defect. B cells of the father and of the patient failed to produce Ig in the pokeweed mitogen (PWM)-driven system. The B cells of patient and of his father only produced Ig when cultured with T cells of the father, and not with normal donor T cells or T cells of the mother, in the presence of exogenous interleukin 2 (IL 2). In addition, the father's B cells produced Ig when cocultivated with patient T cells in the IL 2-driven system. This restriction of helper T cell activity is noteworthy because PWM- and IL 2-driven Ig synthesis by normal lymphocytes show no histocompatibility requirements between cooperating T and non-T cell populations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Intercellular adhesion molecule 1 (ICAM-1, CD54) is a member of the Ig superfamily and is a counterreceptor for the beta 2 integrins: lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18), complement receptor 1 (MAC-1, CD11b/CD18), and p150,95 (CD11c/CD18). Binding of ICAM-1 to these receptors mediates leukocyte-adhesive functions in immune and inflammatory responses. In this report, we describe a cell-free assay using purified recombinant extracellular domains of LFA-1 and a dimeric immunoadhesin of ICAM-1. The binding of recombinant secreted LFA-1 to ICAM-1 is divalent cation dependent (Mg2+ and Mn2+ promote binding) and sensitive to inhibition by antibodies that block LFA-1-mediated cell adhesion, indicating that its conformation mimics that of LFA-1 on activated lymphocytes. We describe six novel anti-ICAM-1 monoclonal antibodies, two of which are function blocking. Thirty-five point mutants of the ICAM-1 immunoadhesin were generated and residues important for binding of monoclonal antibodies and purified LFA-1 were identified. Nineteen of these mutants bind recombinant LFA-1 equivalently to wild type. Sixteen mutants show a 66-2500-fold decrease in LFA-1 binding yet, with few exceptions, retain binding to the monoclonal antibodies. These mutants, along with modeling studies, define the LFA-1 binding site on ICAM-1 as residues E34, K39, M64, Y66, N68, and Q73, that are predicted to lie on the CDFG beta-sheet of the Ig fold. The mutant G32A also abrogates binding to LFA-1 while retaining binding to all of the antibodies, possibly indicating a direct interaction of this residue with LFA-1. These data have allowed the generation of a highly refined model of the LFA-1 binding site of ICAM-1.  相似文献   

16.
A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1   总被引:139,自引:0,他引:139  
Homotypic adhesion by phorbol ester-stimulated lymphocytes requires LFA-1 and Mg+2 and does not involve like-like interactions between LFA-1 molecules on adjacent cells. The latter finding suggested that a second molecule, distinct from LFA-1, also participates in LFA-1-dependent adhesion. The identification of such a molecule was the object of this investigation. After immunization with LFA-1-deficient EBV-transformed lymphoblastoid cells, a MAb was obtained that inhibits phorbol ester-stimulated aggregation of LFA-1+ EBV lines. This MAb defines a novel cell surface molecule, which is designated intercellular adhesion molecule 1 (ICAM-1). ICAM-1 is distinct from LFA-1 in both cell distribution and structure. In SDS-PAGE, ICAM-1 isolated from JY cells is a single chain of Mr = 90,000. As shown by MAb inhibition, ICAM-1 participates in phorbol ester-stimulated adhesion reactions of B lymphocyte and myeloid cell lines and T lymphocyte blasts. However, aggregation of one T lymphocyte cell line (SKW-3) was inhibited by LFA-1 but not ICAM-1 MAb. It is proposed that ICAM-1 may be a ligand in many, but not all, LFA-1-dependent adhesion reactions.  相似文献   

17.
The role of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18) and intercellular adhesion molecule 1 (ICAM-1, CD54) interactions in human T cell and B cell collaboration was examined by studying the effect of mAb to these determinants on B cell proliferation and differentiation stimulated by culturing resting B cells with CD4+ T cells activated with immobilized mAb to the CD3 molecular complex. In this model system, mAb to either the alpha (CD11a) or beta (CD18) chain of LFA-1 or ICAM-1 (CD54) inhibited B cell responses significantly. The mAb did not directly inhibit B cell function, inasmuch as T cell-independent activation induced by formalinized Staphylococcus aureus and IL-2 was not suppressed. Moreover, DNA synthesis and IL-2 production by immobilized anti-CD3-stimulated CD4+ T cells were not suppressed by the mAb to LFA-1 or ICAM-1. Although the mAb to LFA-1 inhibited enhancement of IL-2 production by co-culture of immobilized anti-CD3-stimulated CD4+ T cells with B cells, addition of exogenous IL-2 or supernatants of mitogen-activated T cells could not abrogate the inhibitory effects of the mAb to LFA-1 or ICAM-1 on B cell responses. Inhibition was most marked when the mAb were present during the initial 24 h in culture. Immobilized anti-CD3-stimulated LFA-1-negative CD4+ T cell clones from a child with leukocyte adhesion deficiency could induce B cell responses, which were inhibited by mAb to LFA-1 or ICAM-1. These results indicate that the interactions between LFA-1 and ICAM-1 play an important role in mediating the collaboration between activated CD4+ T cells and B cells necessary for the induction of B cell proliferation and differentiation, and for enhancement of IL-2 production by CD4+ T cells. Moreover, the data are consistent with a model of T cell-B cell collaboration in which interactions between LFA-1 on resting B cells and ICAM-1 on activated CD4+ T cells play a critical role in initial T cell-dependent B cell activation.  相似文献   

18.
The cell surface molecules involved in the human cytolytic T lymphocyte (CTL)-synovial cell interaction may play an important role in T cell interactions with connective tissue mesenchymal cells. To examine the molecular basis for the CTL-synovial cell interaction, we immortalized synovial cell explants to establish the cell line SYN.SPP. The SYN.SPP cell line was compared to the established B lymphoblastoid cell line JY. Cell surface immunofluorescence demonstrated significantly different levels of the immunologically relevant cell surface molecules ICAM-1 and LFA-3. Both cell lines were used to stimulate CTL precursors. After several months in culture, CTL lines stimulated by the SYN.SPP and JY cell lines demonstrated HLA class I-directed cytolytic activity. The cell surface molecules utilized by the anti-SYN.SPP and anti-JY CTL lines were identified by monoclonal antibody (MAb) inhibition. MAb recognizing the CTL cell surface molecules CD3, CD8 and LFA-1 (CD11a) significantly inhibited CTL-mediated lysis of both target cells. An interesting observation was that the anti-SYN.SPP CTL line appeared to utilize the ICAM-1 and not the LFA-3 target cell molecule. In contrast, the anti-JY CTL line utilized the LFA-3 and not the ICAM-1 membrane molecule. These results indicate that CTL interactions with connective tissue mesenchymal cells may be regulated by a unique pattern of antigen nonspecific cell-cell interaction molecules.  相似文献   

19.
Regulation of the avidity of LFA-1 (CD11a/CD18, alpha L beta 2) for its ligand ICAM-1 (CD54) was studied in human B cells by evaluating the effects of a phorbol ester, anti-IgM antibodies, staurosporine, and okadaic acid. We monitored changes in LFA-1 avidity by quantifying binding of cells to an immobilized rICAM-1 fusion protein. In this assay, the protein kinase C-activating phorbol ester PDB and anti-IgM antibodies, as well as the protein kinase inhibitor, staurosporine, were able to induce LFA-1-dependent binding to ICAM-1. This demonstrates that the high avidity state of LFA-1 can be induced by a protein kinase C-dependent and by a protein kinase C-independent pathway. Furthermore, treatment of the cells with the protein phosphatase inhibitor, okadaic acid, inhibited binding to ICAM-1. Treatment with staurosporine before addition of okadaic acid not only induced enhanced binding of cells to ICAM-1, but also dramatically reduced the ability of okadaic acid to inhibit binding. These results suggest a critical role for a protein phosphatase in inducing the high avidity state of LFA-1 as well as a role for a protein kinase in inducing the low avidity state of LFA-1.  相似文献   

20.
These studies demonstrate that the murine intercellular adhesion molecule-1 (ICAM-1) performs at least two roles in enhancing T cell activation. These two roles are evident in both of our experimental systems: with ICAM-1 expressed on the surface of transfected fibroblast cells, and with purified ICAM-1 immobilized on plastic. First, as has been documented by many investigators, ICAM-1 mediates adhesion between ICAM-1- and lymphocyte function-associated Ag-1 (LFA-1)-bearing cells. This adhesive interaction occurs even in the absence of T cell stimulation, although it is increased by addition of phorbol ester and calcium ionophore. Although ICAM-1 expression does markedly increase intercellular adhesion, the increase is significantly less than the improvement ICAM-1 expression makes in the Ag-presenting ability of MHC class II-transfected fibroblast cells. We have investigated whether this difference is due to LFA-1-mediated signaling, and we present data that demonstrates that although ICAM-1 does not deliver costimulatory signals required for T cell activation, the interaction of LFA-1 with ICAM-1 does synergize with TCR-transduced signals. This synergy is observed for ICAM-1 on live and on chemically fixed accessory cells, and for purified ICAM-1 molecules, but in all cases occurs only when the ICAM-1 and the TCR ligands are on the same surface. Finally, when the ICAM-1 is present on the surface of accessory cells, it enhances T cell activation by changing the Ag dose-dependence of the T cell, but when ICAM-1 and CD3 mAb are co-immobilized, ICAM-1 increases the peak response of the T cell without affecting the dose dependence of the response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号