首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Activation of Gqprotein-coupled receptors usually causes a biphasic increase inintracellular calcium concentration ([Ca2+]i)that is crucial for secretion in nonexcitable cells. In gastric enterochromaffin-like (ECL) cells, stimulation with gastrin leads to aprompt biphasic calcium response followed by histamine secretion. Thisstudy investigates the underlying signaling events in this neuroendocrine cell type. In ECL cells, RT-PCR suggested the presence of inositol 1,4,5-trisphosphate receptor (IP3R) subtypes1-3. The IP3R antagonist 2-aminoethoxydiphenyl borateabolished both gastrin-induced elevation of[Ca2+]i and histamine release. Thapsigarginincreased [Ca2+]i, however, without inducinghistamine secretion. In thapsigargin-pretreated cells, gastrinincreased [Ca2+]i through calcium influxacross the plasma membrane. Both nimodipine and SKF-96365 inhibitedgastrin-induced histamine release. The protein kinase C (PKC) activatorphorbol 12-myristate 13-acetate induced histamine secretion, an effectthat was prevented by nimodipine. In summary, gastrin-stimulatedhistamine release depends on IP3R activation andplasmalemmal calcium entry. Gastrin-induced calcium influx wasmediated by dihydropyridine-sensitive calcium channels that appear tobe L-type channels activated through a pathway involving activation of PKC.

  相似文献   

2.
Many physiological functions of the stomach depend on an intact mucosal integrity; function reflects structure and vice versa. Histamine in the stomach is synthesized by histidine decarboxylase (HDC), stored in enterochromaffin-like (ECL) cells, and released in response to gastrin, acting on CCK(2) receptors on the ECL cells. Mobilized ECL cell histamine stimulates histamine H(2) receptors on the parietal cells, resulting in acid secretion. The parietal cells express H(2), M(3), and CCK(2) receptors and somatostatin sst(2) receptors. This review discusses the consequences of disrupting genes that are important for ECL cell histamine release and synthesis (HDC, gastrin, and CCK(2) receptor genes) and genes that are important for "cross-talk" between H(2) receptors and other receptors on the parietal cell (CCK(2), M(3), and sst(2) receptors). Such analysis may provide insight into the functional significance of gastric histamine.  相似文献   

3.
Gastrin-recognizing CCK2 receptors are expressed in parietal cells and in so-called ECL cells in the acid-producing part of the stomach. ECL cells are endocrine/paracrine cells that produce and store histamine and chromogranin A (CGA)-derived peptides, such as pancreastatin. The ECL cells are the principal cellular transducer of the gastrin-acid signal. Activation of the CCK2 receptor results in mobilization of histamine (and pancreastatin) from the ECL cells with consequent activation of the parietal cell histamine H2 receptor. Thus, release of ECL-cell histamine is a key event in the process of gastrin-stimulated acid secretion. The oxyntic mucosal histidine decarboxylase (HDC) activity and the serum pancreastatin concentration are useful markers for the activity of the gastrin-ECL cell axis. Powerful and selective CCK2 receptor antagonits have been developed from a series of benzodiazepine compounds. These agents are useful tools to study how gastrin controls the ECL cells. Conversely, the close control of ECL cells by gastrin makes the gastrin-ECL cell axis well suited for evaluating the antagonistic potential of CCK2 receptor antagonists with the ECL-cell HDC activity as a notably sensitive and reliable parameter. The CCK2 receptor antagonists YF476, YM022, RP73870, JB93182 and AG041R were found to cause prompt inhibition of ECL-cell histamine and pancreastatin secretion and synthesis. The circulating pancreastatin concentration is raised, was lowered when the action of gastrin on the ECL cells was blocked by the CCK2 receptor antagonists. These effects were associated with inhibition of gastrin-stimulated acid secretion. In addition, sustained receptor blockade was manifested in permanently decreased oxyntic mucosal HDC activity, histamine concentration and HDC mRNA and CGA mRNA concentrations. CCK2 receptor blockade also induced hypergastrinemia, which probably reflects the impaired gastric acid secretion (no acid feedback inhibition of gastrin release). Upon withdrawal of the CCK2 receptor antagonists, their effects on the ECL cells were readily reversible. In conclusion, gastrin mobilizes histamine from the ECL cells, thereby provoking the parietal cells to secrete acid. While CCK2 receptor blockade prevents gastrin from evoking acid secretion, it is without effect on basal and vagally stimulated acid secretion. We conclude that specific and potent CCK2 receptor antagonists represent powerful tools to explore the functional significance of the ECL cells.  相似文献   

4.
The enterochromaffin-like (ECL) cell controls gastric acid secretion via histamine, generated by l-histidine decarboxylase (HDC). HDC expression is regulated by gastrin. However, gastrin is not alone in controlling ECL cell function. For example, the neural peptide pituitary adenylate cyclase-activating polypeptide (PACAP) also increases ECL cell proliferation. To investigate a potential role of PACAP in regulating HDC expression, we generated a series of HDC promoter-luciferase reporter constructs and transiently transfected them into PC12 cells (stably expressing the gastrin-CCK-2 receptor). We found that PACAP regulates HDC promoter activity. This is temporally biphasic, involving both adenyl cyclase and phospholipase C-dependent pathways. Deletional analysis, block mutation, and EMSA demonstrated a PACAP-response element at -177 to -170, wholly necessary for the effects of PACAP and discrete from known gastrin-responsive elements. Discrete neural and endocrine pathways regulate ECL cells through different patterns of postreceptor signaling and promoter activation, which may be appropriate to their functions in vivo.  相似文献   

5.
6.
The oxyntic mucosa of the rat stomach is rich in ECL cells which produce and secrete histamine in response to gastrin. Histamine and the histamine-forming enzyme histidine decarboxylase (HDC) have been claimed to occur also in the gastrin-secreting G cells in the antrum. In the present study, we used a panel of five HDC antisera and one histamine antiserum to investigate whether histamine and HDC are exclusive to the ECL cells. By immunocytochemistry, we could show that the ECL cells were stained with the histamine antiserum and all five HDC antisera. The G cells, however, were not stained with the histamine antiserum, but with three of the five HDC antisera. Thus, histamine and HDC coexist in the ECL cells (oxyntic mucosa) but not in G cells (antral mucosa). Western blot analysis revealed a typical pattern of HDC-immunoreactive bands (74, 63 and 54 kDa) in oxyntic mucosa extracts with all five antisera. In antral extracts, immunoreactive bands were detected with three of the five HDC antisera (same as above); the pattern of immunoreactivity differed from that in oxyntic mucosa. Food intake of fasted rats or treatment with the proton pump inhibitor omeprazole raised the HDC activity and the HDC protein content of the oxyntic mucosa but not of the antral mucosa; the HDC activity in the antrum was barely detectable. We suggest that the HDC-like immunoreactivity in the antrum represents a cross-reaction with non-HDC proteins and conclude that histamine and HDC are hallmark features of ECL cells but not of G cells.  相似文献   

7.
Agonist stimulation of human pulmonary artery smooth muscle cells (PASMC) and endothelial cells (PAEC) with histamine showed similar spatiotemporal patterns of Ca2+ release. Both sustained elevation and oscillatory patterns of changes in cytosolic Ca2+ concentration ([Ca2+]cyt) were observed in the absence of extracellular Ca2+. Capacitative Ca2+ entry (CCE) was induced in PASMC and PAEC by passive depletion of intracellular Ca2+ stores with 10 µM cyclopiazonic acid (CPA; 15–30 min). The pyrazole derivative BTP2 inhibited CPA-activated Ca2+ influx, suggesting that depletion of CPA-sensitive internal stores is sufficient to induce CCE in both PASMC and PAEC. The recourse of histamine-mediated Ca2+ release was examined after exposure of cells to CPA, thapsigargin, caffeine, ryanodine, FCCP, or bafilomycin. In PASMC bathed in Ca2+-free solution, treatment with CPA almost abolished histamine-induced rises in [Ca2+]cyt. In PAEC bathed in Ca2+-free solution, however, treatment with CPA eliminated histamine-induced sustained and oscillatory rises in [Ca2+]cyt but did not affect initial transient increase in [Ca2+]cyt. Furthermore, treatment of PAEC with a combination of CPA (or thapsigargin) and caffeine (and ryanodine), FCCP, or bafilomycin did not abolish histamine-induced transient [Ca2+]cyt increases. These observations indicate that 1) depletion of CPA-sensitive stores is sufficient to cause CCE in both PASMC and PAEC; 2) induction of CCE in PAEC does not require depletion of all internal Ca2+ stores; 3) the histamine-releasable internal stores in PASMC are mainly CPA-sensitive stores; 4) PAEC, in addition to a CPA-sensitive functional pool, contain other stores insensitive to CPA, thapsigargin, caffeine, ryanodine, FCCP, and bafilomycin; and 5) although the CPA-insensitive stores in PAEC may not contribute to CCE, they contribute to histamine-mediated Ca2+ release. intracellular calcium stores; oscillations; pulmonary hypertension  相似文献   

8.
Enterochromaffin-like (ECL) cells are histamine-containingendocrine cells in the gastric mucosa that maintain a negative membranepotential of about 50 mV, largely due to voltage-gated K+ currents [D. F. Loo, G. Sachs, and C. Prinz. Am. J. Physiol. 270 (Gastrointest Liver Physiol. 33):G739-G745, 1996]. The current study investigated thepresence of voltage-gated Ca2+channels in single ECL cells. ECL cells were isolated from rat fundicmucosa by elutriation, density gradient centrifugation, and primaryculture to a purity >90%. Voltage-gatedCa2+ currents were measured insingle ECL cells using the whole cell configuration of the patch-clamptechnique. Depolarization-activated currents were recorded in thepresence of Na+ orK+ blocking solutions and additionof 20 mM extracellular Ca2+. ECLcells showed inward currents in response to voltage steps that wereactivated at a test potential of around 20 mV with maximalinward currents observed at +20 mV and 20 mM extracellular Ca2+. The inactivation rate of thecurrent decreased with increasingly negative holding potentials and wastotally abolished at a holding potential of 30 mV. Addition ofextracellular 20 mM Ba2+ insteadof 20 mM Ca2+ increased thedepolarization-induced current and decreased the inactivation rate. Theinward current was fully inhibited by the specific L-typeCa2+ channel inhibitor verapamil(0.2 mM) and was augmented by the L-typeCa2+ channel activator BAY K 8644 (0.07 mM). We conclude that depolarization activateshigh-voltage-activated Ca2+channels in ECL cells. Activation characteristics,Ba2+ effects, and pharmacologicalresults imply the presence of L-type Ca2+ channels, whereasinactivation kinetics suggest the presence of additional N-typechannels in rat gastric ECL cells.

  相似文献   

9.
Histamine-containing enterochromaffin-like (ECL) cells are numerous in the gastric mucosa. They operate under the control of gastrin. ECL-cell tumors (gastric carcinoids) may arise as a consequence of sustained hypergastrinemia. For reasons unknown, such tumors have a female preponderance both in laboratory animals and humans. The present study consisted of four experiments exploring the possibility that gender-related factors might affect rat ECL cells. 1) A gender difference in terms of serum gastrin concentration and oxyntic mucosal histidine decarboxylase (HDC) activity appeared in Sprague-Dawley but not Wistar rats. Ultrastructural appearance of the ECL cells did not differ between genders. 2) During the different phases of the estrous cycle, the serum gastrin concentration, HDC activity and histamine concentration did not change. 3) During pregnancy, the serum gastrin concentration was suppressed, while it was increased during lactation. The HDC activity and the histamine concentration of the oxyntic mucosa were correlated with the levels of circulating gastrin. 4) Twelve-month treatment with estrogen-like agents, dieldrin and/or toxaphene (alone or in combination) was without any effect on the ECL cells neither in male nor in female rats. In conclusion, the ECL cells are under the control of gastrin, but probably not hormones that involve in the estrous cycle and pregnancy and lactation in rats. Possible gender-related factors behind the female preponderance of ECL-cell tumors remain unknown.  相似文献   

10.
Synaptotagmin (syt) I is a Ca2+-binding protein that is well accepted as a major sensor for Ca2+-regulated release of transmitter. However, controversy remains as to whether syt I is the only protein that can function in this role and whether the remaining syt family members also function as Ca2+ sensors. In this study, we generated a PC12 cell line that continuously expresses a short hairpin RNA (shRNA) to silence expression of syt I by RNA interference. Immunoblot and immunocytochemistry experiments demonstrate that expression of syt I was specifically silenced in cells that stably integrate the shRNA-syt I compared with control cells stably transfected with the empty shRNA vector. The other predominantly expressed syt isoform, syt IX, was not affected, nor was the expression of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins when syt I levels were knocked down. Resting Ca2+ and stimulated Ca2+ influx imaged with fura-2 were not altered in syt I knockdown cells. However, evoked release of catecholamine detected by carbon fiber amperometry and HPLC was significantly reduced, although not abolished. Human syt I rescued the release events in the syt I knockdown cells. The reduction of stimulated catecholamine release in the syt I knockdown cells strongly suggests that although syt I is clearly involved in catecholamine release, it is not the only protein to regulate stimulated release in PC12 cells, and another protein likely has a role as a Ca2+ sensor for regulated release of transmitter. RNA interference; amperometry; exocytosis  相似文献   

11.
12.
We previously reported that human growth hormone (hGH) increases cytoplasmic Ca2+ concentration ([Ca2+]i) and proliferation in pancreatic -cells (Sjöholm Å, Zhang Q, Welsh N, Hansson A, Larsson O, Tally M, and Berggren PO. J Biol Chem 275: 21033–21040, 2000) and that the hGH-induced rise in [Ca2+]i involves Ca2+-induced Ca2+ release facilitated by tyrosine phosphorylation of ryanodine receptors (Zhang Q, Kohler M, Yang SN, Zhang F, Larsson O, and Berggren PO. Mol Endocrinol 18: 1658–1669, 2004). Here we investigated the tyrosine kinases that convey the hGH-induced rise in [Ca2+]i and insulin release in BRIN-BD11 -cells. hGH caused tyrosine phosphorylation of Janus kinase (JAK)2 and c-Src, events inhibited by the JAK2 inhibitor AG490 or the Src kinase inhibitor PP2. Although hGH-stimulated rises in [Ca2+]i and insulin secretion were completely abolished by AG490 and JAK2 inhibitor II, the inhibitors had no effect on insulin secretion stimulated by a high K+ concentration. Similarly, Src kinase inhibitor-1 and PP2, but not its inactive analog PP3, suppressed [Ca2+]i elevation and completely abolished insulin secretion stimulated by hGH but did not affect responses to K+. Ovine prolactin increased [Ca2+]i and insulin secretion to a similar extent as hGH, effects prevented by the JAK2 and Src kinase inhibitors. In contrast, bovine GH evoked a rise in [Ca2+]i but did not stimulate insulin secretion. Neither JAK2 nor Src kinase inhibitors influenced the effect of bovine GH on [Ca2+]i. Our study indicates that hGH stimulates rise in [Ca2+]i and insulin secretion mainly through activation of the prolactin receptor and JAK2 and Src kinases in rat insulin-secreting cells. c-Src; growth hormone receptor; prolactin receptor; Ca2+-induced Ca2+ release  相似文献   

13.
Gastrin is one of the main factors controlling enterochromaffin-like (ECL) cell endocrine function and growth. Long-standing hypergastrinemia may give rise to ECL cell carcinoids in the gastric corpus in man and in experimental models. We have analysed the expression and function of CCK-B/gastrin receptors in normal ECL cells and in ECL cell tumours (gastric carcinoids) of the African rodent Mastomys natalensis. Hypergastrinemia induced by short-term (5 days) histamine2-receptor blockade (loxtidine) resulted in increased histidine decarboxylase (HDC) mRNA expression in the gastric oxyntic mucosa. This increase was significantly and dose-dependently reversed by selective CCK-B/gastrin receptor blockade (YM022). Long-term (12 months) hypergastrinemia, induced by histamine2-receptor blockade, gave rise to ECL cell carcinoids in the gastric oxyntic mucosa. CCK-B/gastrin receptor mRNA was only slightly elevated while HDC mRNA expression was eight-fold elevated in ECL cell carcinoids and was not influenced by CCK-B/gastrin receptor blockade. Thus CCK-B/gastrin receptor blockade of hypergastrinemic animals reduces the HDC mRNA expression in normal mucosa but not in ECL cell carcinoids. These results demonstrate that HDC mRNA expression in neoplastic ECL cells is not controlled by CCK-B/gastrin receptors.  相似文献   

14.
In the oxyntic mucosa of the mammalian stomach, histamine is stored in ECL cells and in mucosal mast cells. In the rat, at least 80 percent of oxyntic mucosal histamine resides in the ECL cells. Histamine is a key factor in the regulation of gastric acid secretion. Following depletion of ECL-cell histamine by treatment with alpha-fluoromethylhistidine (alpha-FMH), basal acid secretion was reduced, and gastrin-stimulated acid secretion was abolished. Vagally-induced acid secretion (by insulin injection or pylorus ligation) was unaffected by alpha-FMH treatment but inhibited by an H2 antagonist. These results suggest that gastrin stimulates acid secretion via release of ECL-cell histamine, whereas vagally-induced acid secretion--although histamine-dependent--does not rely on ECL-cell histamine. Gastrin is known to have a trophic effect on the oxyntic mucosa. By combining long-term hypergastrinemia with continuous infusion of alpha-FMH, we were able to show that gastrin-evoked trophic effects in the stomach do not depend on ECL-cell histamine.  相似文献   

15.
Ethanol strongly augments secretin-stimulated, but not acetylcholine (ACh)-stimulated, fluid secretion from pancreatic duct cells. To understand its mechanism of action, we examined the effect of short-chain n-alcohols on fluid secretion and intracellular Ca2+ concentration ([Ca2+]i) in guinea pig pancreatic ducts. Fluid secretion was measured by monitoring the luminal volume of isolated interlobular ducts. [Ca2+]i was estimated using fura-2 microfluorometry. Methanol and ethanol at 0.3–10 mM concentrations significantly augmented fluid secretion and induced a transient elevation of [Ca2+]i in secretin- or dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP)-stimulated ducts. However, they failed to affect fluid secretion and [Ca2+]i in unstimulated and ACh-stimulated ducts. In contrast, propanol and butanol at 0.3–10 mM concentrations significantly reduced fluid secretion and decreased [Ca2+]i in unstimulated ducts and in ducts stimulated with secretin, DBcAMP, or ACh. Both stimulatory and inhibitory effects of n-alcohols completely disappeared after their removal from the perfusate. Propanol and butanol inhibited the plateau phase, but not the initial peak, of [Ca2+]i response to ACh as well as the [Ca2+]i elevation induced by thapsigargin, suggesting that they inhibit Ca2+ influx. Removal of extracellular Ca2+ reduced [Ca2+]i in duct cells and completely abolished secretin-stimulated fluid secretion. In conclusion, there is a distinct cutoff point between ethanol (C2) and propanol (C3) in their effects on fluid secretion and [Ca2+]i in duct cells. Short-chain n-alcohols appear to affect pancreatic ductal fluid secretion by activating or inhibiting the plasma membrane Ca2+ channel. intracellular calcium; acetylcholine  相似文献   

16.
Mucin secretion by airway goblet cells is under the control ofapical P2Y2, phospholipaseC-coupled purinergic receptors. In SPOC1 cells, the mobilization ofintracellular Ca2+ by ionomycin orthe activation of protein kinase C (PKC) by phorbol 12-myristate13-acetate (PMA) stimulates mucin secretion in a fully additive fashion[L. H. Abdullah, J. D. Conway, J. A. Cohn, and C. W. Davis.Am. J. Physiol. 273 (Lung Cell. Mol. Physiol. 17):L201-L210, 1997]. This apparent independence between PKC andCa2+ in the stimulation of mucinsecretion was tested in streptolysin O-permeabilized SPOC1 cells. Thesecells were fully competent to secrete mucin whenCa2+ was elevated from 100 nM to3.1 µM for 2 min following permeabilization; theCa2+EC50 was 2.29 ± 0.07 µM.Permeabilized SPOC1 cells were exposed to PMA or 4-phorbol atCa2+ activities ranging from 10 nMto 10 µM. PMA, but not 4-phorbol, increased mucin release at allCa2+ activities tested: at 10 nMCa2+ mucin release was 2.1-foldgreater than control and at 4.7 µM Ca2+ mucin release was maximal(3.6-fold increase). PMA stimulated 27% more mucin release at 4.7 µMthan at 10 nM Ca2+. Hence, SPOC1cells possess Ca2+-insensitive,PKC-dependent, and Ca2+-dependentPKC-potentiated pathways for mucin granule exocytosis.

  相似文献   

17.
Using immunohistochemistry at the conventional light, confocal and electron microscopic levels, we have demonstrated that rat stomach ECL cells store histamine and pancreastatin in granules and secretory vesicles, while histidine decarboxylase occurs in the cytosol. Furthermore the ECL cells display immunoreactivity for vesicular monoamine transporter type 2 (VMAT-2), synaptophysin, synaptotagmin III, vesicle-associated membrane protein-2, cysteine string protein, synaptosomal-associated protein of 25 kDa, syntaxin and Munc-18. Using electron microscopy in combination with stereological methods, we have evidence to suggest the existence of both an exocytotic and a crinophagic pathway in the ECL cells. The process of exocytosis in the ECL cells seems to involve a class of proteins that promote or participate in the fusion between the granule/vesicle membrane and the plasma membrane. The granules take up histamine by VMAT-2 from the cytosol during transport from the Golgi zone to the more peripheral parts of the cells. As a result, they turn into secretory vesicles. As a consequence of stimulation (e.g., by gastrin), the secretory vesicles fuse with the cell membrane to release their contents by exocytosis. The crinophagic pathway was studied in hypergastrinemic rats. In the ECL cells of such animals, the secretory vesicles were found to fuse not only with the cell membrane but also with each other to form vacuoles. Subsequent lysosomal degradation of the vacuoles and their contents resulted in the development of lipofuscin bodies.  相似文献   

18.
We examined the effects of a newly synthesized gastrin receptor antagonist, AG-041R, on the growth of enterochromaffin-like (ECL) carcinoid tumors in Mastomys natalensis both in vitro and in vivo. AG-041R was as potent as the well known gastrin antagonist L365,260 in inhibiting not only the gastrin-induced release of histamine from but also histidine decarboxylase (HDC) gene expression in the ECL carcinoid tumor cells. AG-041R also inhibited gastrin-induced DNA synthesis and c-fos gene expression in the tumor cells. Furthermore, AG-041R significantly inhibited the growth of the transplanted Mastomys ECL carcinoid tumors in vivo. From these data, it is concluded that endogenous gastrin is involved in the growth of ECL carcinoid tumors in Mastomys natalensis. Moreover, AG-041R is shown to have a potential as an anti-neoplastic agent for ECL carcinoid tumor of the stomach.  相似文献   

19.
Osteoblasts subjected to fluid shearincrease the expression of the early response gene, c-fos, andthe inducible isoform of cyclooxygenase, COX-2, two proteins linked tothe anabolic response of bone to mechanical stimulation, in vivo. Theseincreases in gene expression are dependent on shear-induced actinstress fiber formation. Here, we demonstrate that MC3T3-E1osteoblast-like cells respond to shear with a rapid increase inintracellular Ca2+ concentration([Ca2+]i) that wepostulate is important to subsequent cellular responses to shear. Totest this hypothesis, MC3T3-E1 cells were grown on glass slides coatedwith fibronectin and subjected to laminar fluid flow (12 dyn/cm2). Before application of shear, cells were treatedwith two Ca2+ channel inhibitors or various blockers ofintracellular Ca2+ release for 0.5-1 h. Althoughgadolinium, a mechanosensitive channel blocker, significantly reducedthe [Ca2+]i response, neithergadolinium nor nifedipine, an L-type channel Ca2+ channelblocker, were able to block shear-induced stress fiber formation andincrease in c-fos and COX-2 in MC3T3-E1 cells. However, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraaceticacid-AM, an intracellular Ca2+ chelator, or thapsigargin,which empties intracellular Ca2+ stores, completelyinhibited stress fiber formation and c-fos/COX-2 production in shearedosteoblasts. Neomycin or U-73122 inhibition of phospholipase C, whichmediates D-myo-inositol 1,4,5-trisphosphate (IP3)-induced intracellular Ca2+ release, alsocompletely suppressed actin reorganization and c-fos/COX-2 production.Pretreatment of MC3T3-E1 cells with U-73343, the inactive isoform ofU-73122, did not inhibit these shear-induced responses. These resultssuggest that IP3-mediated intracellular Ca2+release is required for modulating flow-induced responses in MC3T3-E1 cells.

  相似文献   

20.
Synaptotagmin I (Syt I),a low-affinity Ca2+-binding protein, is thought to serve asthe Ca2+ sensor in the release of neurotransmitter.However, functional studies on the calyx of Held synapse revealed thatthe rapid release of neurotransmitter requires only approximatelymicromolar [Ca2+], suggesting that Syt I may play a morecomplex role in determining the high-affinity Ca2+dependence of exocytosis. Here we tested this hypothesis by studying pituitary cells, which possess high- and low-affinityCa2+-dependent exocytic pathways and express Syt I. Usingpatch-clamp capacitance measurements to monitor secretion and the acuteantisense deletion of Syt I from differentiated cells, we have shownthat the rapid and the most Ca2+-sensitive pathway ofexocytosis in rat melanotrophs requires Syt I. Furthermore, stimulationof the Ca2+-dependent exocytosis by cytosol dialysis withsolutions containing 1 µM [Ca2+] was completelyabolished in the absence of Syt I. Similar results were obtained by thepreinjection of antibodies against the CAPS (Ca2+-dependentactivator protein for secretion) protein. These results indicate thatsynaptotagmin I and CAPS proteins increase the probability of vesiclefusion at low cytosolic [Ca2+].

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号