首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The outermost layer of the Bacillus anthracis spore is the exosporium, which is composed of a paracrystalline basal layer and an external hair-like nap. The filaments of the nap are formed by a collagen-like glycoprotein called BclA, while the basal layer contains several different proteins. One of the putative basal layer proteins is ExsY. In this study, we constructed a DeltaexsY mutant of B. anthracis, which is devoid of ExsY, and examined the assembly of the exosporium on spores produced by this strain. Our results show that exosporium assembly on DeltaexsY spores is aberrant, with assembly arrested after the formation of a cap-like fragment that covers one end of the forespore-always the end near the middle of the mother cell. The cap contains a normal hair-like nap but an irregular basal layer. The cap is retained on spores prepared on solid medium, even after spore purification, but it is lost from spores prepared in liquid medium. Microscopic inspection of DeltaexsY spores prepared on solid medium revealed a fragile sac-like sublayer of the exosporium basal layer, to which caps were attached. Examination of purified DeltaexsY spores devoid of exosporium showed that they lacked detectable levels of BclA and the basal layer proteins BxpB, BxpC, CotY, and inosine-uridine-preferring nucleoside hydrolase; however, these spores retained half the amount of alanine racemase presumed to be associated with the exosporium of wild-type spores. The DeltaexsY mutation did not affect spore production and germination efficiencies or spore resistance but did influence the course of spore outgrowth.  相似文献   

2.
The outermost layer of the Bacillus anthracis spore consists of an exosporium comprised of two distinct layers, an outer hair-like nap layer and an internal basal layer. The hair-like nap is primarily comprised of the glycosylated collagen-like protein BclA. BclA is found in a trimeric form in close association with many other exosporium proteins in high-molecular weight complexes. We previously had characterized an N-terminal sequence of BclA that is sufficient for incorporation into the exosporium. Here we utilized site-directed mutagenesis to identify BclA residues critical to two steps in this process, positioning of the protein at the site of the developing exosporium basal layer and stable incorporation which includes a proteolytic cleavage of BclA after residue 19. The BxpB (ExsFA) protein is known to be important for proper incorporation of BclA onto the exosporium. BxpB and BclA were found to be expressed at the same time in sporulating cells of B. anthracis and immediately colocalize to high-molecular weight complexes. The BxpB protein was found to be in close proximity to the BclA NTD. BxpB and BclA are co-dependent for exosporium incorporation, with the BclA NTD being sufficient to deliver BxpB to the exosporium.  相似文献   

3.
The exosporium is the outermost layer of spores of Bacillus cereus and its close relatives Bacillus anthracis and Bacillus thuringiensis. For these pathogens, it represents the surface layer that makes initial contact with the host. To date, only the BclA glycoprotein has been described as a component of the exosporium; this paper defines 10 more tightly associated proteins from the exosporium of B. cereus ATCC 10876, identified by N-terminal sequencing of proteins from purified, washed exosporium. Likely coding sequences were identified from the incomplete genome sequence of B. anthracis or B. cereus ATCC 14579, and the precise corresponding sequence from B. cereus ATCC 10876 was defined by PCR and sequencing. Eight genes encode likely structural components (exsB, exsC, exsD, exsE, exsF, exsG, exsJ, and cotE). Several proteins of the exosporium are related to morphogenetic and outer spore coat proteins of B. subtilis, but most do not have homologues in B. subtilis. ExsE is processed from a larger precursor, and the CotE homologue appears to have been C-terminally truncated. ExsJ contains a domain of GXX collagen-like repeats, like the BclA exosporium protein of B. anthracis. Although most of the exosporium genes are scattered on the genome, bclA and exsF are clustered in a region flanking the rhamnose biosynthesis operon; rhamnose is part of the sugar moiety of spore glycoproteins. Two enzymes, alanine racemase and nucleoside hydrolase, are tightly adsorbed to the exosporium layer; they could metabolize small molecule germinants and may reduce the sensitivity of spores to these, limiting premature germination.  相似文献   

4.
Bacillus anthracis spores, the cause of anthrax, are enclosed by a prominent loose-fitting structure called the exosporium. The exosporium is composed of a basal layer and an external hair-like nap. The filaments of the hair-like nap are apparently formed by a single collagen-like glycoprotein called BclA, whereas several different proteins form or are tightly associated with the basal layer. In this study, we used immunogold electron microscopy to demonstrate that BxpB (also called ExsF) is a component of the exosporium basal layer. Binding to the basal layer by an anti-BxpB monoclonal antibody was greatly increased by the loss of BclA. We found that BxpB and BclA are part of a stable complex that appears to include the putative basal layer protein ExsY and possibly other proteins. Previous results suggested that BxpB was glycosylated; however, our results indicate that it is not a glycoprotein. We showed that DeltabxpB spores, which lack BxpB, contain an exosporium devoid of hair-like nap even though the DeltabxpB strain produces normal levels of BclA. These results indicated that BxpB is required for the attachment of BclA to the exosporium. Finally, we found that the efficiency of production of DeltabxpB spores and their resistance properties were similar to those of wild-type spores. However, DeltabxpB spores germinate faster than wild-type spores, indicating that BxpB suppresses germination. This effect did not appear to be related to the absence from DeltabxpB spores of a hair-like nap or of enzymes that degrade germinants.  相似文献   

5.
Anthrax is a highly fatal disease caused by the gram-positive, endospore-forming, rod-shaped bacterium Bacillus anthracis. Spores, rather than vegetative bacterial cells, are the source of anthrax infections. Spores of B. anthracis are enclosed by a prominent loose-fitting structure called the exosporium. The exosporium is composed of a basal layer and an external hair-like nap. Filaments of the hair-like nap are made up largely of a single collagen-like glycoprotein called BclA. A second glycoprotein, BclB, has been identified in the exosporium layer. The specific location of this glycoprotein within the exosporium layer and its role in the biology of the spore are unknown. We created a mutant strain of B. anthracis DeltaSterne that carries a deletion of the bclB gene. The mutant was found to possess structural defects in the exosporium layer of the spore (visualized by electron microscopy, immunofluorescence, and flow cytometry) resulting in an exosporium that is more fragile than that of a wild-type spore and is easily lost. Immunofluorescence studies also indicated that the mutant strain produced spores with increased levels of the BclA glycoprotein accessible to the antibodies on the surface. The resistance properties of the mutant spores were unchanged from those of the wild-type spores. A bclB mutation did not affect spore germination or kinetics of spore survival within macrophages. BclB plays a key role in the formation and maintenance of the exosporium structure in B. anthracis.  相似文献   

6.
The exosporium of Bacillus anthracis is comprised of two distinct layers: a basal layer and a hair-like nap that covers the basal layer. The hair-like nap contains the glycoproteins BclA and, most likely, BclB. BclA and BclB are directed to assemble into the exosporium by motifs in their N-terminal domains. Here, we identify a previously uncharacterized putative gene encoding this motif, which we have named betA (Bacillus exosporium-targeted protein of B. anthracis). Like bclA, betA encodes a putative collagenlike repeat region. betA is present in several genomes of exosporium-producing Bacillus species but, so far, not in any others. Using fluorescence microscopic localization of a BetA-enhanced green fluorescent protein (eGFP) fusion protein and immunofluorescence microscopy with anti-BetA antibodies, we showed that BetA resides in the exosporium basal layer, likely underneath BclA. BetA assembles at the spore surface at around hour 5 of sporulation and under the control of BxpB, similar to the control of deposition of BclA. We suggest a model in which BclA and BetA are incorporated into the exosporium by a mechanism that depends on their similar N termini. These data suggest that BetA is a member of a growing family of exosporium proteins that assemble under the control of targeting sequences in their N termini.  相似文献   

7.
The outermost layer of the Bacillus anthracis spore consists of an exosporium comprised of an outer hair‐like nap layer and an internal basal layer. A major component of the hair‐like nap is the glycosylated collagen‐like protein BclA. A second collagen‐like protein, BclB, is also present in the exosporium. BclB possesses an N‐terminal sequence that targets it to the exosporium and is similar in sequence to a cognate targeting region in BclA. BclB lacks, however, sequence similarity to the region of BclA thought to mediate attachment to the basal layer via covalent interactions with the basal layer protein BxpB. Here we demonstrate that BxpB is critical for correct localization of BclB during spore formation and that the N‐terminal domains of the BclA and BclB proteins compete for BxpB‐controlled assembly sites. We found that BclB is located principally in a region of the exosporium that excludes a short arc on one side of the exosporium (the so‐called bottle‐cap region). We also found that in bclB mutant spores, the distribution of exosporium proteins CotY and BxpB is altered, suggesting that BclB has roles in exosporium assembly. In bclB mutant spores, the distance between the exosporium and the coat, the interspace, is reduced.  相似文献   

8.
Bacillus anthracis spores, which cause anthrax, are enclosed by an exosporium consisting of a basal layer and an external hair-like nap. The filaments of the nap are composed of BclA, a glycoprotein containing distinct N-terminal (NTD) and C-terminal (CTD) domains separated by an extended collagen-like central region. In this study, we used immunogold electron microscopy to show that the CTD of BclA forms the distal end of each filament of the hair-like nap, indicating that the NTD is attached to the basal layer. Ten randomly chosen anti-BclA monoclonal antibodies, raised against spores or exosporium, reacted with the CTD, consistent with its exterior location. We showed that recombinant BclA (rBclA), encoded by the B. anthracis Sterne strain and synthesized in Escherichia coli, forms a collagen-like triple helix as judged by collagenase sensitivity and circular dichroism spectroscopy. In contrast, native BclA in spores was resistant to collagenase digestion. Thermal denaturation studies showed that the collagen-like region of rBclA exhibited a melting temperature (T(m)) of 37 degrees C, like mammalian collagen. However, rBclA trimers exhibited T(m) values of 84 degrees C and 95 degrees C in buffer with and without sodium dodecyl sulfate, respectively. CTD trimers exhibited the same T(m) values, indicating that the high temperature and detergent resistances of rBclA were due to strong CTD interactions. We observed that CTD trimers are resistant to many proteases and readily form large crystalline sheets. Structural data indicate that the CTD is composed of multiple beta strands. Taken together, our results suggest that BclA and particularly its CTD form a rugged shield around the spore.  相似文献   

9.
Bacillus anthracis, the aetiological agent of anthrax, is a Gram-positive spore-forming bacterium. The exosporium is the outermost integument surrounding the mature spore. Here, we describe the purification and the characterization of an immunodominant protein of the spore surface. This protein was abundant, glycosylated and part of the exosporium. The amino-terminal sequence was determined and the corresponding gene was identified. It encodes a protein of 382 amino acid residues, the central part of which contains a region of GXX motifs presenting similarity to mammalian collagen proteins. Thus, this collagen-like surface protein was named BclA (for Bacillus collagen-like protein of anthracis). BclA was absent from vegetative cells; it was detected only in spores and sporulating cells. A potential promoter, dependent on the sigma factor sigma(K), which is required for a variety of events late in sporulation, was found upstream from the bclA gene. A bclA deletion mutant was constructed and analysed. Electron microscopy studies showed that BclA is a structural component of the filaments covering the outer layer of the exosporium.  相似文献   

10.
Spores of Bacillus anthracis are enclosed by an exosporium composed of a basal layer and an external hair-like nap. The nap is formed by a collagen-like glycoprotein called BclA, while the basal layer contains many different proteins, one of which is a spore-specific alanine racemase (Alr). In this study, we employed fluorescence microscopy and a fluorescently labelled anti-Alr monoclonal antibody (mAb) to examine the distribution of Alr within the exosporium. Binding of the mAb occurred over approximately three-quarters of the exosporium but not in a cap-like region at one end of the spore, indicating the absence or inaccessibility of Alr in this region. We also determined that the cap-like region, or cap, corresponds to the first part of the exosporium assembled within the mother cell during sporulation and the only part of the exosporium assembled in a DeltaexsY mutant strain of B. anthracis. Our results provide the first direct evidence that exosporium assembly is a non-uniform process and suggest that exosporium formation is discontinuous. Finally, we demonstrated that during spore germination and outgrowth, the outgrowing cell always escapes from its exosporium shell by popping through the cap, suggesting that the cap is designed to facilitate the emergence of the outgrowing cell.  相似文献   

11.
Spores of Bacillus anthracis, the causative agent of anthrax, are enclosed by a prominent loose-fitting, balloon-like layer called the exosporium. Although the exosporium serves as the source of surface antigens and a primary permeability barrier of the spore, its molecular structure and function are not well characterized. In this study, we identified five major proteins in purified B. anthracis (Sterne strain) exosporia. One protein was the recently identified collagen-like glycoprotein BclA, which appears to be a structural component of the exosporium hair-like nap. Using a large panel of unique antispore monoclonal antibodies, we demonstrated that BclA is the immunodominant antigen on the B. anthracis spore surface. We also showed that the BclA protein and not a carbohydrate constituent directs the dominant immune response. In addition, the length of the central (GXX)(n) repeat region of BclA appears to be strain specific. Two other unique proteins, BxpA and BxpB, were identified. BxpA is unusually rich in Gln and Pro residues and contains several different tandem repeats, which also exhibit strain-specific variation. In addition, BxpA was found to be cleaved approximately in half. BxpB appears to be glycosylated or associated with glycosylated material and is encoded by a gene that (along with bclA) may be part of an exosporium genomic island. The other two proteins identified were alanine racemase and superoxide dismutase, both of which were reported to be associated with the surface of other Bacillus spores. Possible functions of the newly identified proteins are discussed.  相似文献   

12.
The exosporium is the outermost layer of the Bacillus anthracis spore. The predominant protein on the exosporium surface is BclA, a collagen-like glycoprotein. BclA is incorporated on the spore surface late in the B. anthracis sporulation pathway. A second collagen-like protein, BclB, has been shown to be surface-exposed on B. anthracis spores. We have identified sequences near the N-terminus of the BclA and BclB glycoproteins responsible for the incorporation of these proteins into the exosporium layer of the spore and used these targeting domains to incorporate reporter fluorescent proteins onto the spore surface. The BclA and BclB proteins are expressed in the mother cell cytoplasm and become spore-associated in a two-step process involving first association of the protein with the spore surface followed by attachment of the protein in a process that involves a proteolytic cleavage event. Protein domains associated with each of these events have been identified. This novel targeting system can be exploited to incorporate foreign proteins into the exosporium of inactivated, spores resulting in the surface display of recombinant immunogens for use as a potential vaccine delivery system.  相似文献   

13.
炭疽杆菌芽孢外壁胶原样蛋白(BclA)的多态性分析   总被引:1,自引:0,他引:1  
炭疽杆菌芽孢外壁胶原样蛋白(BclA)是芽孢外壁发状菌丝的主要结构成分,也是芽孢的主要免疫原。从国内分离的3株炭疽杆菌中克隆出BclA基因并进行了序列分析,结果发现有2株(A16R和40048)的BclA与国外报道菌株长度不同,分别含有388个和322个氨基酸,72个和50个GXX三氨基酸重复序列,5个和3个含21个氨基酸的(GPT)5 GDTGTT重复序列(BclA重复)。另一株40022的BclA与国外报道的53169株完全一敛,含有370个氨基酸,66个GXX重复,5个BclA重复。对我国炭疽杆菌BclA蛋白多态性的分析为进行炭疽杆菌的基因分型以及研究炭疽芽孢的免疫原性和致病机理打下基础。  相似文献   

14.
Bacteria of the genera Bacillus and Clostridium form highly resistant spores, which in the case of some pathogens act as the infectious agents. An exosporium forms the outermost layer of some spores; it plays roles in protection, adhesion, dissemination, host targeting in pathogens and germination control. The exosporium of the Bacillus cereus group, including the anthrax pathogen, contains a 2D‐crystalline basal layer, overlaid by a hairy nap. BclA and related proteins form the hairy nap, and require ExsFA (BxpB) for their localization on the basal layer. Until now, the identity of the main structural protein components of the basal layer was unknown. We demonstrate here that ExsY forms one of the essential components. Through heterologous expression in Escherichia coli, we also demonstrate that ExsY can self‐assemble into ordered 2D arrays that mimic the structure of the exosporium basal layer. Self‐assembly is likely to play an important role in the construction of the exosporium. The ExsY array is stable to heat and chemical denaturants, forming a robust layer that would contribute to overall spore resistance. Our structural analysis also provides novel insight into the location of other molecular components anchored onto the exosporium, such as BclA and ExsFA.  相似文献   

15.
Spores of Bacillus anthracis, the causative agent of anthrax, are enclosed by an exosporium, which consists of a basal layer surrounded by a nap of hair-like filaments. The major structural component of the filaments is called BclA, which comprises a central collagen-like region (CLR) and a globular C-terminal domain. Here, the entire CLR coding sequence of BclA was removed, and the resulting protein (tBclA) produced in Escherichia coli. The crystallographic structure of tBclA was determined to 1.35 A resolution, and consists of an all-beta structure with a TNF-like jelly fold topology (12 beta-strands which form 2 beta-sheets of five strands each) consistent with previous studies on wild-type BclA. These globular domains are tightly packed into trimeric structures (surface shape complementarity; S (c) = 0.83), demonstrating that formation of the core structure of BclA is independent of the anchoring collagen-like region. A polyclonal antibody raised against tBclA recognized B. anthracis spores directly, and showed little cross-reactivity (<10%) with the spores of the closely related species Bacillus cereus and Bacillus thuringiensis, when compared to two other polyclonal antibodies raised against B. anthracis spore extracts and inactivated spores. The tBclA protein was used to purify a pool of specific antibodies from bovine colostrum whey samples from cows inoculated with the Sterne strain anthrax vaccine, which also showed reactivity with B. anthracis spores. Together, these results demonstrate that tBclA provides a safer and more effective way to the production and purification of antibodies with high binding affinity for B. anthracis spores. Biotechnol. Bioeng. 2008;99: 774-782. (c) 2007 Wiley Periodicals, Inc.  相似文献   

16.
Lysinibacillus sphaericus produces mosquitocidal binary toxins (Bin toxins) deposited within a balloon-like exosporium during sporulation. Unlike Bacillus cereus group strains, the exosporium of L. sphaericus is usually devoid of the hair-like nap, an external filamentous structure formed by a collagen-like protein, BclA. In this study, a new collagen-like exosporium protein encoded by Bsph_0411 (BclS) from L. sphaericus C3-41 was characterized. Thin-section electron microscopy revealed that deletion of bclS resulted in the loss of the filamentous structures that attach to the exosporium basal layer and spread through the interspace of spores. In vivo visualization of BclS-green fluorescent protein (GFP)/mCherry fusion proteins revealed a dynamic pattern of fluorescence that encased the spore from the mother cell-distal (MCD) pole of the forespore, and the BclS-GFP fusions were found to be located in the interspace of the spore, as confirmed by three-dimensional (3D) superresolution fluorescence microscopy. Further studies demonstrated that the bclS mutant spores were more sensitive to wet-heat treatment and germinated at a lower rate than wild-type spores and that these phenotypes were significantly restored in the bclS-complemented strain. These results suggested novel roles of collagen-like protein in exosporium assembly and spore germination, providing a hint for a further understanding of the genetic basis of the high level of persistence of Bin toxins in nature.  相似文献   

17.
Bacillus cereus spores are surrounded by a loose-fitting layer called the exosporium, whose distal part is mainly formed from glycoproteins. The role played by the exosporium glycoproteins of B. cereus ATCC 14579 (BclA and ExsH) was investigated by considering hydrophobicity and charge, as well as the properties of spore adhesion to stainless steel. The absence of BclA increased both the isoelectric point (IEP) and hydrophobicity of whole spores while simultaneously reducing the interaction between spores and stainless steel. However, neither the hydrophobicity nor the charge associated with BclA could explain the differences in the adhesion properties. Conversely, ExsH, another exosporium glycoprotein, did not play a significant role in spore surface properties. The monosaccharide analysis of B. cereus ATCC 14579 showed different glycosylation patterns on ExsH and BclA. Moreover, two specific glycosyl residues, namely, 2-O-methyl-rhamnose (2-Me-Rha) and 2,4-O-methyl-rhamnose (2,4-Me-Rha), were attached to BclA, in addition to the glycosyl residues already reported in B. anthracis.  相似文献   

18.
The exosporium-defective phenotype of a transposon insertion mutant of Bacillus cereus implicated ExsY, a homologue of B. subtilis cysteine-rich spore coat proteins CotY and CotZ, in assembly of an intact exosporium. Single and double mutants of B. cereus lacking ExsY and its paralogue, CotY, were constructed. The exsY mutant spores are not surrounded by an intact exosporium, though they often carry attached exosporium fragments. In contrast, the cotY mutant spores have an intact exosporium, although its overall shape is altered. The single mutants show altered, but different, spore coat properties. The exsY mutant spore coat is permeable to lysozyme, whereas the cotY mutant spores are less resistant to several organic solvents than is the case for the wild type. The exsY cotY double-mutant spores lack exosporium and have very thin coats that are permeable to lysozyme and are sensitive to chloroform, toluene, and phenol. These spore coat as well as exosporium defects suggest that ExsY and CotY are important to correct formation of both the exosporium and the spore coat in B. cereus. Both ExsY and CotY proteins were detected in Western blots of purified wild-type exosporium, in complexes of high molecular weight, and as monomers. Both exsY and cotY genes are expressed at late stages of sporulation.  相似文献   

19.
Bacillus anthracis spores are enclosed by an exosporium comprised of a basal layer and an external hair-like nap. The filaments of the nap are composed of trimers of the collagen-like glycoprotein BclA. The attachment of essentially all BclA trimers to the exosporium requires the basal layer protein BxpB, and both proteins are included in stable high-molecular-mass exosporium complexes. BclA contains a proteolytically processed 38-residue amino-terminal domain (NTD) that is essential for basal-layer attachment. In this report, we identify three NTD submotifs (SM1a, SM1b, and SM2, located within residues 21 to 33) that are important for BclA attachment and demonstrate that residue A20, the amino-terminal residue of processed BclA, is not required for attachment. We show that the shortest NTD of BclA—or of a recombinant protein—sufficient for high-level basal-layer attachment is a 10-residue motif consisting of an initiating methionine, an apparently arbitrary second residue, SM1a or SM1b, and SM2. We also demonstrate that cleavage of the BclA NTD is necessary for efficient attachment to the basal layer and that the site of cleavage is somewhat flexible, at least in certain mutant NTDs. Finally, we propose a mechanism for BclA attachment and discuss the possibility that analogous mechanisms are involved in the attachment of many different collagen-like proteins of B. anthracis and closely related Bacillus species.Bacillus anthracis, a Gram-positive, rod-shaped, aerobic bacterium, is the causative agent of anthrax (17). When vegetative cells of B. anthracis are starved for certain essential nutrients, they form dormant spores that can survive in harsh soil environments for many years (12, 19). Spore formation starts with asymmetric septation that divides the starved vegetative cell into two genome-containing compartments, a mother cell compartment and a smaller forespore compartment. The mother cell then engulfs the forespore and surrounds it with three protective layers: a cortex composed of peptidoglycan, a closely apposed proteinaceous coat, and a loosely fitting exosporium (11). After a spore maturation stage, the mother cell lyses and releases the mature spore. When spores encounter an aqueous environment containing nutrients, they can germinate and grow as vegetative cells (18). Anthrax is typically caused by contact with spores (17).The outermost layer of B. anthracis spores, the exosporium, has been studied intensively in recent years because it is both the first point of contact with the immune system of an infected host and the target of new detectors for agents of bioterrorism (21, 28, 32). The exosporium of B. anthracis and closely related pathogenic species, such as Bacillus cereus and Bacillus thuringiensis, is a prominent structure consisting of a paracrystalline basal layer and an external hair-like nap (1, 9). The filaments of the nap are formed by trimers of the collagen-like glycoprotein BclA (2, 29). Recent studies suggest that BclA plays a major role in pathogenesis by directing spores to professional phagocytic cells, a critical step in disease progression (4, 21). The basal layer is composed of approximately 20 different proteins (23, 25, 26), several of which have been shown to play key roles in exosporium assembly (3, 13, 27). One of these proteins is BxpB (also called ExsFA) (25, 30, 34), which is required for the attachment of approximately 98% of spore-bound BclA to the basal layer (26, 30). Residual BclA attachment requires the basal layer protein ExsFB, a paralog of BxpB (30).BclA contains three distinct domains: a 38-residue amino-terminal domain (NTD), a central collagen-like region containing a strain-specific number of XXG (mostly PTG) repeats, and a 134-residue carboxyl-terminal domain (CTD) (25, 29, 31). The CTD apparently functions as the major nucleation site for trimerization of BclA (24), and CTD trimers form the globular distal ends of the filaments in the nap (2). The highly extended collagen-like region is extensively glycosylated (5), and its length determines the depth of the nap (2, 31). The NTD is the site of attachment of BclA to the basal layer, and deletion of the NTD prevents this attachment (2). The NTD is normally proteolytically processed to remove the first 19 amino acids, and it is this mature form of BclA that is attached to the basal layer (25, 29). In an earlier report, we suggested that NTD processing of BclA is required for basal-layer attachment, perhaps through a direct covalent linkage to BxpB (26).Recently, Thompson and Stewart identified conserved 11-residue sequences in the NTDs of BclA and the minor B. anthracis collagen-like glycoprotein BclB and showed that these sequences are involved in the incorporation of BclA and BclB into the exosporium. These investigators used a truncated BclA NTD that lacked residues 2 through 19 but included the conserved 11-amino-acid sequence to target enhanced green fluorescent protein (EGFP) to the surface of the developing forespore (33). Thompson and Stewart also reported that cleavage of the BclA NTD occurred after its association with the forespore and suggested that this cleavage was involved indirectly in the attachment process. Actual cleavage sites were not determined in these studies, however. We have performed related studies of the attachment of BclA to the exosporium that provide a more detailed and somewhat different view of this process. In our studies, which are reported here, we identified short segments, or submotifs, of the BclA NTD that can be arranged in different combinations to produce 10-amino-acid motifs sufficient for tight attachment of BclA, and probably most proteins, to the exosporium basal layer. Additionally, we present direct evidence showing that BclA NTD cleavage is required for efficient attachment to the basal layer and that selection of the cleavage site can be somewhat flexible. Finally, we discuss a possible mechanism for BclA attachment and the likelihood that similar mechanisms are used for attachment of many different collagen-like proteins of B. anthracis and closely related Bacillus species.  相似文献   

20.
We recently identified a Bacillus anthracis glycoprotein which is a structural constituent of the exosporium filaments (P. Sylvestre, E. Couture-Tosi, and M. Mock, Mol. Microbiol. 45:169-178, 2002). This Bacillus collagen-like protein (BclA) contains an internal collagen-like region (CLR) of GXX repeats which includes a large proportion of GPT triplets. Here, we report that the polymorphic marker Ceb-Bams13, for which there are nine alleles (P. Le Flèche et al., BMC Microbiol. 1:2, 2001), maps within the open reading frame encoding BclA. The bclA gene in 11 B. anthracis strains representative of seven Ceb-Bams13 alleles was sequenced and compared to the Ames bclA gene sequence. The amino- and carboxy-terminal sequences surrounding the CLR are conserved. The CLR itself is highly polymorphic: it contains between 17 and 91 GXX repeats and one to eight copies of the 21-amino-acid sequence (GPT)(5)GDTGTT, named the BclA repeat. The length of the filament on the spore surface differed between the strains. We exchanged the bclA gene between strains with different CLRs and examined the spore surfaces by electron microscopy analysis. The length of the BclA CLR is responsible for the variation in filament length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号