首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Yuan F  Zhou W  Zhang J  Zhang Z  Zou C  Huang L  Zhang Y  Dai Z 《Cryobiology》2008,57(1):60-65
Cryotherapy has been shown to be an important therapeutic alternative to surgery in the treatment of hepatocellular carcinoma (HCC). Here, the influence of cryo-chemotherapy on HCC was examined in vitro using the human HCC cell line Bel-7402, a drug-resistant HCC cell line originating from Bel-7402 cells (Bel-7402/R), as well as two control cell lines, the HCC cell line SMMC-7721 and a colorectal tumor cell line HIC-251. Cells were treated with either exposure to different freezing temperatures (ranging from −15 to −80 °C for 20 min), exposure to sub-lethal concentrations of anticancer chemotherapy drugs or a combination of cryotherapy and chemotherapy. Cell viability and apoptosis under each condition were investigated. We found that the combined treatment resulted in increases in both cell death and apoptosis compared to either treatment alone. The increased level of apoptosis observed in Bel-7402 cells after cryo-chemotherapy was inhibited in the presence of caspase inhibitors. Furthermore, Bax expression was increased 2- to 3-fold in cells exposed to the combination treatment compared with cells treated by freezing or drugs alone. In contrast, Bcl-2 levels remained constant. Although Bel-7402/R cells originated from the Bel-7402 cell line, they were more sensitive to the freezing procedure than the parental cell line. The level of Bax expression in Bel-7402/R cells was also higher than that observed in the parental cell line. In addition, we found that Bel-7402/R cells had lower levels of survivin mRNA than the parental Bel-7402 cells, in both untreated and treated cells. In conclusion, our data show that in HCC cells, apoptosis induced by cryotherapy can be synergistically enhanced using anticancer drugs.  相似文献   

2.
Cryosurgery offers a promising therapeutic alternative for the treatment of prostate cancer. While often successful, complete cryoablation of cancerous tissues sometimes fails due to technical challenges. Factors such as the end temperature, cooling rate, duration of the freezing episode, and repetition of the freezing cycle have been reported to influence cryosurgical outcome. Accordingly, we investigated the effects of these variables in an in vitro prostate cancer model. Human prostate cancer PC-3 and LNCaP cultures were exposed to a range of sub-zero temperatures (−5 to −40 °C), and cells were thawed followed by return to 37 °C. Post-thaw viability was assessed using a variety of fluorescent probes including alamarBlue™ (metabolic activity), calceinAM (membrane integrity), and propidium iodide (necrosis). Freeze duration following ice nucleation was investigated using single and double freezing cycles (5, 10, and 20 min). The results demonstrated that lower freezing temperatures yielded greater cell death, and that LNCaP cells were more susceptible to freezing than PC-3 cells. At −15 °C, PC-3 yielded 55% viability versus 20% viability for LNCaP. Double freezing cycles were found to be more than twice as destructive versus a single freeze–thaw cycle. Both cell types experienced increased cell death when exposed to freezing temperatures for longer durations. When thawing rates were considered, passive (slower) thawing following freezing yielded greater cell death than active (faster) thawing. A 20% difference in viability between passive and active thawing was observed for PC-3 for a 10 min freeze. Finally, the results demonstrate that just reaching −40 °C in vitro may not be sufficient to obtain complete cell death. The data support the use of extended freeze times, multiple freeze–thaw cycles, and passive thawing to provide maximum cell destruction.  相似文献   

3.
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) mediates apoptosis in cancer cells through death receptors DR4 and DR5 preferring often one receptor over another in the cells expressing both receptors. Receptor selective mutant variants of TRAIL and agonistic antibodies against DR4 and DR5 are highly promising anticancer agents. Here using DR5 specific mutant variant of TRAIL - DR5-B we have demonstrated for the first time that the sensitivity of cancer cells can be shifted from one TRAIL death receptor to another during co-treatment with anticancer drugs. First we have studied the contribution of DR4 and DR5 in HCT116 p53+/+ and HCT116 p53−/− cells and demonstrated that in HCT116 p53+/+ cells the both death receptors are involved in TRAIL-induced cell death while in HCT116 p53−/− cells prevailed DR4 signaling. The expression of death (DR4 and DR5) as well as decoy (DcR1 and DcR2) receptors was upregulated in the both cell lines either by TRAIL or by bortezomib. However, combined treatment of cells with two drugs induced strong time-dependent and p53-independent internalization and further lysosomal degradation of DR4 receptor. Interestingly DR5-B variant of TRAIL which do not bind with DR4 receptor also induced elimination of DR4 from cell surface in combination with bortezomib indicating the ligand-independent mechanism of the receptor internalization. Eliminatory internalization of DR4 resulted in activation of DR5 receptor thus DR4-dependent HCT116 p53−/− cells became highly sensitive to DR5-B in time-dependent manner. Internalization and degradation of DR4 receptor depended on activation of caspases as well as of lysosomal activity as it was completely inhibited by Z-VAD-FMK, E-64 and Baf-A1. In light of our findings, it is important to explore carefully which of the death receptors is active, when sensitizing drugs are combined with agonistic antibodies to the death receptors or receptor selective variants of TRAIL to enhance cancer treatment efficiency.  相似文献   

4.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent because of its tumor selectivity. TRAIL is known to induce apoptosis in cancer cells but spare most normal cells. In this study, we examined whether treatment of docetaxel (DTX) can enhance apoptotic cell death by TRAIL against androgen-independent prostate cancer (AIPC). The cell death effect of combinations of TRAIL and docetaxel on prostate cancer cell lines (androgen-dependent LNCaP and its derived androgen-independent, metastatic C4-2B) was evaluated by synergisms of apoptosis. Western blot assay and DNA fragmentation assay were used to study the underlying mechanisms of cell death and search for any mechanisms of enhancement of TRAIL induced apoptosis in the presence of docetaxel. In addition, we investigated the in vitro anti-tumor effects of combined docetaxel and TRAIL using MAP kinase inhibitors. Docetaxel itself could not induce apoptotic cell death in 24 h even in high concentration. Apoptotic cell death, however, was drastically enhanced by pretreatment of docetaxel 20 h before TRAIL treatment. Docetaxel enhanced the PARP-1 cleavage and caspases activation by TRAIL especially in androgen-independent, metastatic C4-2B cell line, mainly by phosphorylation of Bcl-2 by JNK activation. It appears that apoptotic cell death was protected by the JNK inhibitor SP600125. The results of our study show that pretreatment of docetaxel is able to enhance the apoptosis produced by TRAIL in prostate cancer cells, especially in hormone-refractory prostate cancer (HRPC).  相似文献   

5.
Despite continuing research and the development of alternate therapeutic options, prostate cancer remains problematic. Chemotherapy has played a minor role as a treatment option due to its lack of efficacy. Whereas cryotherapy has received renewed attention as a treatment modality, it too fails to offer an absolute curative option. Previously, we reported on the utilization of a therapeutic model, which, in combination, increases cell death in a canine renal cell model. Based upon that study, we investigated a combination therapy model as an alternative for the treatment modality for prostate cancer. We hypothesized that the combination of chemotherapy and cryosurgery would result in enhanced cell death, thereby presenting a more effective treatment of prostate cancer. A human prostate cancer cell (PC-3) model was exposed to 5-fluorouracil (5-FU) for 2 and 4 days (prefreeze), freezing (-5 to -100 degrees C), or a combination of the two treatments, and each was assessed for effectiveness over a 2-week posttreatment period. Additionally, investigation into the mechanisms of cell death initiated by the respective therapies was performed through DNA cleavage analysis. For chemotherapy, cultures exposed to 5-FU (2-4 days) yielded a 15-25% loss in cell survival. For cryotherapy, cultures exposed to a temperature window of -5 to -20 degrees C yielded an initial 5-70% loss of viability but cells propagated over time. Cultures exposed to temperatures of -25 to -80 degrees C yielded a 90-99% (+/-4.5%) initial loss in viability with repopulation observed by 12 days postthaw. Cells frozen to -100 degrees C yielded 100% (+/-0.3%) loss of viability and exhibited no signs of propagation. For chemo-cryo therapy, combination treatment at milder temperatures (-5 to -25 degrees C) resulted in an enhanced loss of cell viability compared to that for either treatment alone. Combination treatment at lower temperatures (-40 to -80 degrees C) resulted in a complete loss of cell viability. DNA fragmentation analysis at 48 h posttreatment revealed that dead (detached) cells treated with 5-FU died primarily through apoptosis, whereas dead cells from freezing (-15 degrees C) alone died primarily through freeze-rupture and necrosis. Detached cell analysis from combination treatment at -15 degrees C revealed the presence of apoptotic, necrotic, and freeze-rupture cell death. Scanning electron micrographs of cells exposed to freezing contributing to cell death. These data demonstrate that the combination of 5-FU at sublethal doses and freezing temperatures improves human prostate cancer cell death efficacy. Further, we suggest that chemo-cryo therapy offers a potential alternative treatment for the control and eradication of prostate cancer.  相似文献   

6.
Lung cancers are among the most frequent and the most lethal tumours. They are mainly treated by surgery or by chemotherapy, but in the most advanced stages a local cryotherapy can be proposed as a palliative option for bronchial clearance. This therapy, based on the cytotoxic effects of low temperatures, acts by mechanisms which are not yet totally understood. The aim of this work was to investigate in vivo the biological effects of cryotherapy in a model of human non-small-cell lung cancer. We used a xenograft system: cells from the A549 cell line (adenocarcinoma) were injected subcutaneously into SCID mice. Cryotherapy was performed (three cycles, nitrous oxide cryoprobe). Chemotherapy (intravenous injection of Vinorelbine (Navelbine), 4.8 mg/kg) was used as a control treatment. Tumour nodes were excised at variable time points and studied morphologically. The induction of apoptosis was analysed by immunohistochemical staining of cleaved caspase-3 and by TUNEL. Results showed that cryotherapy was an efficient technique to induce cell death either by necrosis or by apoptosis. Necrosis was found near the cryoprobe impact site and was maximal 2 h after treatment (65%); a second peak was observed after 4 days (77%). Around this central necrotic area, apoptotic cells were found. Apoptosis was maximal after 8 h (47%). Chemotherapy induced apoptosis in a fewer number of cells and this effect was not time-dependent. Taken together, these results demonstrate the differential effects of cryotherapy and chemotherapy in vivo, suggesting different modes of action and the potential benefit to combine them.  相似文献   

7.
Understanding the molecular underpinnings of chemoresistance is vital to design therapies to restore chemosensitivity. In particular, metadherin (MTDH) has been demonstrated to have a critical role in chemoresistance. Over-expression of MTDH correlates with poor clinical outcome in breast cancer, neuroblastoma, hepatocellular carcinoma and prostate cancer. MTDH is also highly expressed in advanced endometrial cancers, a disease for which new therapies are urgently needed. In this present study, we focused on the therapeutic benefit of MTDH depletion in endometrial cancer cells to restore sensitivity to cell death. Cells were treated with a combination of tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL), which promotes death of malignant cells of the human reproductive tract, and histone deacetylase (HDAC) inhibitors, which have been shown to increase the sensitivity of cancer cells to TRAIL-induced apoptosis. Our data indicate that depletion of MTDH in endometrial cancer cells resulted in sensitization of cells that were previously resistant in response to combinatorial treatment with TRAIL and the HDAC inhibitor LBH589. MTDH knockdown reduced the proportion of cells in S and increased cell arrest in G2/M in cells treated with LBH589 alone or LBH589 in combination with TRAIL, suggesting that MTDH functions at the cell cycle checkpoint to accomplish resistance. Using microarray technology, we identified 57 downstream target genes of MTDH, including calbindin 1 and galectin-1, which may contribute to MTDH-mediated therapeutic resistance. On the other hand, in MTDH depleted cells, inhibition of PDK1 and AKT phosphorylation along with increased Bim expression and XIAP degradation correlated with enhanced sensitivity to cell death in response to TRAIL and LBH589. These findings indicate that targeting or depleting MTDH is a potentially novel avenue for reversing therapeutic resistance in patients with endometrial cancer.  相似文献   

8.
TNF-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in many types of cancer cells. TRAIL is considered a therapeutic target, therefore, it was of interest to examine molecular mechanisms that may modulate sensitivity to TRAIL signaling in prostate cancer cells. LNCaP cells were found to be relatively resistant to TRAIL induced cell death while PC3 cells were sensitive. PI3-kinase (PI3 K) inhibitors were able to render LNCaP cells sensitive to TRAIL but conferred resistance to PC3 cells. PI3 K inhibitors were associated with an increase in p21waf1, cip1 expression in PC3 cells where as p21 decreases in LNCaP cells suggesting that p21 may impart TRAIL resistance. Since androgen receptor (AR) signaling can be modulated by AKT, and p21 is an AR responsive gene, the impact of PI3 K inhibition on TRAIL sensitivity was evaluated in AR transfected PC3 cells (PC3AR). The expression of AR was significantly downregulated by PI3 K inhibition in LNCaP cells, which have an intact AR signaling axis. PC3AR cells expressed higher levels of p21 protein and were relatively resistant to TRAIL compared to control cells. Finally, using adenoviral p21 gene transfer we directly demonstrated that p21 can confer resistance to TRAIL-induced cell death. These results suggest that TRAIL resistance is not regulated simply by a PI3 K/AKT survival pathway associated with inactivating PTEN mutations but may also be modulated by downstream AR responsive targets such as p21. These findings may have significant clinical implications for the utility of TRAIL in the management of prostate cancer.  相似文献   

9.

Background  

Many cancer cells develop resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, necessitating combination with chemotherapy, and normal cells manifest side effects due to the combined treatment regimen of TRAIL and chemotherapeutic drugs. A novel cancer therapy utilizing TRAIL is thus urgently needed.  相似文献   

10.
Si T  Guo Z  Hao X 《Cryobiology》2008,57(1):66-71
Objective: To assess whether a specific cytotoxic T-cell response can be induced in patients with prostate cancer after cryoablation.Material and Methods: Twenty Patients with high-risk prostate cancer underwent cryoablation. Blood was sampled prior to, 4 and 8 weeks after treatment. Serum cytokine levels were analyzed by ELISA, and the Th1/Th2 ratio was estimated from the IFN-γ/IL-4 ratio. Peripheral blood mononuclear cells (PBMC) were stimulated with autologous prostate cancer-derived protein lysates, and frequency of tumor-specific T-cells was tested ex vivo in an IFN-γ ELISPOT assay. To assess cytolytic activity, T-cells were co-incubated with human prostate cancer cells, LNCaP, or with renal cancer cells, GRC-1, and release of cytosolic adenylate kinase was measured by a luciferase assay.Result: 4 weeks after cryoablation significantly higher levels of TNF-α and IFN-γ were observed compared to before treatment, and to 8 weeks after treatment. No changes in IL-4 or IL-10 were observed. The Th1/Th2 ratio (10.47 ± 0.80), 4 weeks after treatment, was increased compared to before treatment (3.98 ± 0.45), but decreased 8 weeks later (7.65 ± 0.64). Tumor-specific T-cell responses were evident after cryosurgery in PBMC. Cytolytic activity against LNCaP was increased 4 weeks after treatment compared to before treatment (594.49 ± 154.84 versus 4.20 ± 0.68, P < 0.01), but was decreased 8 weeks later (79.70 ± 18.73). No response was found in cytolytic activity against GRC-1.Conclusion: Cryoablation of prostate cancer can improve tumor-specific cytotoxic T-cell stimulation with a dramatically increased tumor specific cytolytic activity. However, the response is not sufficiently maintained to prevent cancer relapse.  相似文献   

11.
12.
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) induces apoptosis in a variety of cancer cell lines with little or no effect on normal cells. However, its effect is limited as some cancers including pancreatic cancer show de novo resistance to TRAIL induced apoptosis. In this study we report that GSK-3 inhibition using the pharmacologic agent AR-18, enhanced TRAIL sensitivity in a range of pancreatic and prostate cancer cell lines. This sensitization was found to be caspase-dependent, and both pharmacological and genetic knock-down of GSK-3 isoforms resulted in apoptotic features as shown by cleavage of PARP and caspase-3. Elevated levels of reactive oxygen intermediates and disturbance of mitochondrial membrane potential point to a mitochondrial amplification loop for TRAIL-induced apoptosis after GSK-3 inhibition. Consistent with this, overexpression of anti-apoptotic mitochondrial targets such as Bcl-XL, Mcl-1, and Bcl-2 rescued PANC-1 and PPC-1 cells from TRAIL sensitization. However, overexpression of the caspase-8 inhibitor CrmA also inhibited the sensitizing effects of GSK-3 inhibitor, suggesting an additional role for GSK-3 that inhibits death receptor signaling. Acute treatment of mice bearing PANC-1 xenografts with a combination of AR-18 and TRAIL also resulted in a significant increase in apoptosis, as measured by caspase-3 cleavage. Sensitization to TRAIL occurred despite an increase in β-catenin due to GSK-3 inhibition, suggesting that the approach might be effective even in cancers with dysregulated β-catenin. These results suggest that GSK-3 inhibitors might be effectively combined with TRAIL for the treatment of pancreatic cancer.  相似文献   

13.

Background

We have recently shown that curcumin (a diferuloylmethane) inhibits growth and induces apoptosis, and also demonstrated that TRAIL induces apoptosis by binding to specific cell surface death receptors in prostate cancer cells. The objectives of this paper were to investigate the molecular mechanisms by which curcumin enhanced the apoptosis-inducing potential of TRAIL in prostate cancer cells.

Results

Curcumin enhanced the apoptosis-inducing potential of TRAIL in androgen-unresponsive PC-3 cells and sensitized androgen-responsive TRAIL-resistant LNCaP cells. Curcumin inhibited the expressions of Bcl-2, Bcl-XL, survivin and XIAP, and induced the expressions Bax, Bak, PUMA, Bim, and Noxa and death receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5) in both cell lines. Overexpression of dominant negative FADD inhibited the interactive effects of curcumin and TRAIL on apoptosis. Treatment of these cells with curcumin resulted in activation of caspase-3, and caspase-9, and drop in mitochondrial membrane potential, and these events were further enhanced when combined with TRAIL. Curcumin inhibited capillary tube formation and migration of HUVEC cells and these effects were further enhanced in the presence of MEK1/2 inhibitor PD98059.

Conclusion

The ability of curcumin to inhibit capillary tube formation and cell migration, and enhance the therapeutic potential of TRAIL suggests that curcumin alone or in combination with TRAIL can be used for prostate cancer prevention and/or therapy.  相似文献   

14.
In this study we investigated E6 and E7 oncogenes from the Human Papilloma Virus as targets for siRNA knockdown in order to boost the efficacy of the anti-cancer drug ‘tumor necrosis factor-related apoptosis inducing ligand’ (TRAIL). SiHa cells were treated with TRAIL following transfection with E6/E7 siRNA and the expression of death receptors DR4 and DR5, cell viability, apoptosis, senescence and cell cycle analysis were undertaken using flow cytometry, MTT viability assay and cellular β-galactosidase activity assays. E6/E7 siRNA resulted in significant upregulation of death receptors DR4 and DR5 but did not result in an enhanced sensitivity to TRAIL. Our results indicate that E6/E7-siRNA induces senescence rather than apoptosis in SiHa cells. The occurrence of senescence in drug resistant cervical cancer cells such as the SiHa cell line by E6/E7 siRNA, among other factors, may prevent TRAIL induced activation of extrinsic and intrinsic pathways that lead to apoptotic cell death. Our findings are significant for combinatorial strategies for cancer therapy since the induction of senescence can preclude apoptosis rendering cells to be recalcitrant to TRAIL treatment.  相似文献   

15.
16.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in many cancer cells without causing toxicity in vivo. However, to date, TRAIL-receptor agonists have only shown limited therapeutic benefit in clinical trials. This can, most likely, be attributed to the fact that 50% of all cancer cell lines and most primary human cancers are TRAIL resistant. Consequently, future TRAIL-based therapies will require the addition of sensitizing agents that remove crucial blocks in the TRAIL apoptosis pathway. Here, we identify PIK-75, a small molecule inhibitor of the p110α isoform of phosphoinositide-3 kinase (PI3K), as an exceptionally potent TRAIL apoptosis sensitizer. Surprisingly, PI3K inhibition was not responsible for this activity. A kinome-wide in vitro screen revealed that PIK-75 strongly inhibits a panel of 27 kinases in addition to p110α. Within this panel, we identified cyclin-dependent kinase 9 (CDK9) as responsible for TRAIL resistance of cancer cells. Combination of CDK9 inhibition with TRAIL effectively induced apoptosis even in highly TRAIL-resistant cancer cells. Mechanistically, CDK9 inhibition resulted in downregulation of cellular FLICE-like inhibitory protein (cFlip) and Mcl-1 at both the mRNA and protein levels. Concomitant cFlip and Mcl-1 downregulation was required and sufficient for TRAIL sensitization by CDK9 inhibition. When evaluating cancer selectivity of TRAIL combined with SNS-032, the most selective and clinically used inhibitor of CDK9, we found that a panel of mostly TRAIL-resistant non-small cell lung cancer cell lines was readily killed, even at low concentrations of TRAIL. Primary human hepatocytes did not succumb to the same treatment regime, defining a therapeutic window. Importantly, TRAIL in combination with SNS-032 eradicated established, orthotopic lung cancer xenografts in vivo. Based on the high potency of CDK9 inhibition as a cancer cell-selective TRAIL-sensitizing strategy, we envisage the development of new, highly effective cancer therapies.  相似文献   

17.
Moritz C  Labbe C 《Cryobiology》2008,56(3):181-188
When gametes and embryos are not available, cryobanking of somatic tissues is one possibility to keep a genetic record of fish valuables in a context of biodiversity conservation and animal breeding management. Cryopreservation of whole fin pieces would be more advantageous than the commonly used cryopreservation of cells after fin culture, as it would allow extensive sampling without immediate need for laboratory facilities. The objective of this work was to assess the cryopreservation ability of fin pieces from goldfish (Carassius auratus) and to test whether a laboratory procedure could be adapted to field conditions. Caudal fin explants were cryopreserved in culture medium with 125 mM sucrose and 10% Me2SO. After 14 days of culture, the frozen–thawed explants showed the same cell growth rate and grew the same somatic cell number as the fresh ones. Cells proliferated inside and around the explants as shown by BrdU labeling. Neither the size of the fin pieces nor the freezer type, −70 °C upright or −20 °C chest, influenced the outcome of cryopreservation. Fin pieces were stored 4 days at 4 °C in dry conditions prior to cryopreservation without alteration of the fin explant culture success. This study demonstrated that field collecting of goldfish fin pieces is possible as whole fin pieces can be stored in standard fridge or be shipped at subzero temperature before they are frozen into a plain −20 °C chest freezer. After incorporation in cryobanks in liquid nitrogen, thawed fin pieces reliably produce somatic cells in cell culture conditions.  相似文献   

18.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is regarded as a promising candidate for anticancer therapy due to its selective toxicity to cancer cells. Nevertheless, because of TRAIL resistance in some cancer cells, combined treatment with sensitizing agents is required to enhance the anticancer potential of TRAIL. In this study, we investigated the underlying mechanism of apigenin-induced sensitization of HepG2 cells to TRAIL-induced cell death. Synergistic induction of apoptosis by combination was confirmed by examining the typical morphology changes of apoptosis, PARP-cleavage, and activation of effector caspases. Z-VAD-fmk, a pan-caspase inhibitor, inhibited the enhanced cell death by combined treatment of apigenin and TRAIL, demonstrating that a caspase-dependent pathway is involved in apigenin/TRAIL-mediated apoptosis. In addition, we found that apigenin/ TRAIL co-treatment up-regulates DR5 cell surface expression. The synergistic induction of cell death by the apigenin/ TRAIL combination was significantly attenuated by DR5 blocking chimera antibody. Next, using pharmacological inhibitors, we found that ERK activation is involved in the induction of DR5 expression. Inhibition of ERK1/2 by U0126 significantly decreased the apigenin/TRAIL-induced DR5 expression and apoptosis. Taken together, our results indicate that apigenin can enhance the apoptotic effect of TRAIL via ERK-induced up-regulation of DR5.  相似文献   

19.
The mechanism of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance in cancer cells is not fully understood. Here, we show that the Akt survival pathway plays an important role in TRAIL resistance in human cancer cells. Specifically, we found that TRAIL treatment activates the Akt survival pathway and that inhibition of this pathway by the PI3K inhibitor LY294002 or knockdown of Akt sensitizes resistant cancer cells to TRAIL. Since Akt is negatively regulated by the tumor suppressor PTEN, we examined the TRAIL sensitivity in PTEN knockdown mouse prostate epithelial cells and found that PTEN−/− cells are more resistant than PTEN+/+ cells while the sensitivity of PTEN+/− cells fell in between. Further, we showed that overexpression of a mutant PTEN confers TRAIL resistance in PTEN+/+ cells, supporting a role of PTEN in TRAIL sensitivity. In TRAIL resistant breast T47D cells, overexpression of the mutant PTEN further increased their resistance to TRAIL. Taken together, our data indicate that inactivation of functional PTEN and the consequent activation of the Akt pathway prevents TRAIL-induced apoptosis, leading to TRAIL resistance. Therefore, our results suggest that TRAIL resistance can be overcome by targeting PTEN or the Akt survival pathway in cancer cells.  相似文献   

20.
BACKGROUND: Cryotherapy ablation is a minimally invasive procedure being investigated as an alternative to conventional surgery. There are few reports in breast cancer. AIM: Evaluate the histopathology of tumoral and normal breast tissue after cryotherapy. METHODS: Eleven patients with clinically <2.0cm and ultrasound visible tumors were studied. Invasive carcinoma was documented by preoperative mammography, magnetic resonance imaging and biopsies. Cryotherapy needles were inserted in the tumor under magnetic resonance guidance and deep freezed with a CRYO-HIT TM System-3. Lumpectomy was performed within 4-5 weeks following cryoablation and submitted for pathological examination including immunostaining of keratins. RESULTS: The tumoral response after cryoablation was variable. In 4 cases there was no viable invasive carcinoma left and focal DCIS only in 2. In 6 cases, residual invasive carcinoma of various size was present with DCIS inside or outside the cryozone. One case could not be evaluated because the cryozone was adjacent to the tumor due to technical problems. Histologically, the normal breast parenchyma of the cryozone showed dense fibrosis, fat necrosis, xanthogranulomatous reaction, endovascular fibrosis and haemorrhages in all cases. The positive immunostaining of keratins revealed remnants of cytoskeleton of carcinomatous cells in the necrotic areas without any viable tumoral cells on routine stains. Skin ulceration and/or necrosis were observed in five patients. CONCLUSIONS: Cryotherapy allows tumor destruction of variable extent in breast carcinomas <2.0cm in diameter. Immunostaining of keratins is useful to identify cytoskeleton remnants of tumor cells in devitalized areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号