首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The activation of CDK2-cyclin E in late G1 phase has been shown to play a critical role in retinoblastoma protein (pRb) inactivation and G1-S phase progression of the cell cycle. The phosphatidylinositol 3-OH-kinase inhibitor LY294002 has been shown to block cyclin D1 accumulation, CDK4 activity and, thus, G1 progression in alpha-thrombin-stimulated IIC9 cells (Chinese hamster embryonic fibroblasts). Our previous results show that expression of cyclin E rescues S phase progression in alpha-thrombin-stimulated IIC9 cells treated with LY294002, arguing that cyclin E renders CDK4 activity dispensable for G1 progression. In this work we investigate the ability of alpha-thrombin-induced CDK2-cyclin E activity to inactivate pRb in the absence of prior CDK4-cyclin D1 activity. We report that in the absence of CDK4-cyclin D1 activity, CDK2-cyclin E phosphorylates pRb in vivo on at least one residue and abolishes pRb binding to E2F response elements. We also find that expression of cyclin E rescues E2F activation and cyclin A expression in cyclin D kinase-inhibited, alpha-thrombin-stimulated cells. Furthermore, the rescue of E2F activity, cyclin A expression, and DNA synthesis by expression of E can be blocked by the expression of either CDK2(D145N) or RbDeltaCDK, a constitutively active mutant of pRb. However, restoring four known cyclin E-CDK2 phosphorylation sites to RbDeltaCDK renders it susceptible to inactivation in late G1, as assayed by E2F activation, cyclin A expression, and S phase progression. These data indicate that CDK2-cyclin E, without prior CDK4-cyclin D activity, can phosphorylate and inactivate pRb, activate E2F, and induce DNA synthesis.  相似文献   

2.
Activation of cyclin-dependent kinase 2 (CDK2)-cyclin E in the late G(1) phase of the cell cycle is important for transit into S phase. In Chinese hamster embryonic fibroblasts (IIC9) phosphatidylinositol 3-kinase and ERK regulate alpha-thrombin-induced G(1) transit by their effects on cyclin D1 protein accumulation (Phillips-Mason, P. J., Raben, D. M., and Baldassare, J. J. (2000) J. Biol. Chem. 275, 18046-18053). Here, we show that ERK also affects CDK2-cyclin E activation by regulating the subcellular localization of CDK2. Ectopic expression of cyclin E rescues the inhibition of alpha-thrombin-induced activation of CDK2-cyclin E and transit into S phase brought about by treatment of IIC9 cells with LY29004, a selective inhibitor of mitogen stimulation of phosphatidylinositol 3-kinase activity. However, cyclin E expression is ineffectual in rescuing these effects when ERK activation is blocked by treatment with PD98059, a selective inhibitor of MEK activation of ERK. Investigation into the mechanistic reasons for this difference found the following. 1) Although treatment with LY29004 inhibits alpha-thrombin-stimulated nuclear localization, ectopic expression of cyclin E rescues CDK2 translocation. 2) In contrast to treatment with LY29004, ectopic expression of cyclin E fails to restore alpha-thrombin-stimulated nuclear CDK2 translocation in IIC9 cells treated with PD98059. 3) CDK2-cyclin E complexes are not affected by treatment with either inhibitor. These data indicate that, in addition to its effects on cyclin D1 expression, ERK activity is an important controller of the translocation of CDK2 into the nucleus where it is activated.  相似文献   

3.
4.
The APC gene is mutated in familial adenomatous polyposis (FAP) as well as in sporadic colorectal tumours. The product of the APC gene is a 300 kDa cytoplasmic protein associated with the adherence junction protein catenin. Here we show that overexpression of APC blocks serum-induced cell cycle progression from G0/G1 to the S phase. Mutant APCs identified in FAP and/or colorectal tumours were less inhibitory and partially obstructed the activity of the normal APC. The cell-cycle blocking activity of APC was alleviated by the overexpression of cyclin E/CDK2 or cyclin D1/CDK4. Consistent with this result, kinase activity of CDK2 was significantly down-regulated in cells overexpressing APC although its synthesis remained unchanged, while CDK4 activity was barely affected. These results suggest that APC may play a role in the regulation of the cell cycle by negatively modulating the activity of cyclin-CDK complexes.  相似文献   

5.
Cyclin E2, the cycle continues   总被引:3,自引:0,他引:3  
The eukaryotic cell cycle is regulated by a family of serine/threonine protein kinases known as cyclin-dependent kinases (CDKs). The activation of a CDK is dependent on its association with a cyclin regulatory subunit. The formation of distinct cyclin-CDK complexes controls the progression through the first gap phase (G(1)) and initiation of DNA synthesis (S phase). These complexes are in turn regulated by protein phosphorylation and cyclin-dependent kinase inhibitors (CKIs). Cyclin E2 has emerged as the second member of the E-type cyclin family. Cyclin E2-associated kinase activity is regulated in a cell cycle dependent manner with peak activity at the G(1) to S transition. Ectopic expression of cyclin E2 in human cells accelerates G(1), suggesting that cyclin E2 is rate limiting for G(1) progression. Although the pattern and level of cyclin E2 expression in some primary tumor and normal tissue RNAs are distinct from cyclin E1, both E-type cyclins appear to have inherent functional redundancies. This functional redundancy has facilitated the rapid characterization of cyclin E2 and uncovered unique features associated with each E-type cyclin.  相似文献   

6.
Previous studies in our laboratory have shown that constitutive cyclin E expression can alleviate the requirement for cyclin Δ-CDK activity in the inactivation of the retinoblastoma protein (pRb). RbΔCDK, a mutant construct of pRb with 15 of the 16 CDK phosphorylation sites mutated to alanine represses activation of E2F by mitogen, despite cyclin E over-expression. However, restoration of the four cyclin E-CDK2 phosphorylation sites to RbΔCDK renders this construct sensitive to inactivation by CDK phosphorylation. In the present study, we engage a “reverse mutational analysis” by restoring cyclin E-CDK2 phosphorylation sites to RbΔCDK individually and in combinations in an attempt to discover phosphorylation sites on Rb that are critical for inactivation. Surprisingly, we report that, in both rodent and human cells, restoration of threonine-373 to RbΔCDK, alone or in combination with other phospho-resotrations, results in a loss of the constitutively repressive effect of this construct on E2F activation. Further, induction of endogenous cyclin A protein is blocked by RbΔCDK, but not by mutants of RbΔCDK containing a restored threonine-373. Finally, while S phase entry is blocked by expression of RbΔCDK, restoration of threonine-373 largely attenuates this effect. These findings reveal that phosphorylation of threonine-373 by CDK2-cyclin E represent a potentially crucial event in the inactivation of the pRb protein.  相似文献   

7.
The origin recognition complex (ORC) is involved in formation of prereplicative complexes (pre-RCs) on replication origins in the G1 phase. At the G1/S transition, elevated cyclin E-CDK2 activity triggers 1DNA replication to enter S phase. The CDK cycle works as an engine that drives progression of cell cycle events by successive activation of different types of cyclin-CDK. However, how the CDK cycle is coordinated with replication initiation remains elusive. Here we report that acute depletion of ORC2 by RNA interference (RNAi) arrests cells with low cyclin E-CDK2 activity. This result suggests that loss of a replication initiation protein prevents progression of the CDK cycle in G1. p27 and p21 proteins accumulate following ORC2 RNAi and are required for the CDK2 inhibition. Restoration of CDK activity by co-depletion of p27 and p21 allows many ORC2-depleted cells to enter S phase and go on to mitosis. However, in some cells the release of the CDK2 block caused catastrophic events like apoptosis. Therefore, the CDK2 inhibition observed following ORC2 RNAi seems to protect cells from premature S phase entry and crisis in DNA replication. These results demonstrate an unexpected role of ORC2 in CDK2 activation, a linkage that could be important for maintaining genomic stability.  相似文献   

8.
BRCA1 is a cell cycle-regulated nuclear protein that is phosphorylated mainly on serine and to a lesser extent on threonine residues. Changes in phosphorylation occur in response to cell cycle progression and DNA damage. Specifically, BRCA1 undergoes hyperphosphorylation during late G1 and S phases of the cell cycle. Here we report that BRCA1 is phosphorylated in vivo at serine 1497 (S1497), which is part of a cyclin-dependent kinase (CDK) consensus site. S1497 can be phosphorylated in vitro by CDK2-cyclin A or E. BRCA1 coimmunoprecipitates with an endogenous serine-threonine protein kinase activity that phosphorylates S1497 in vitro. This cellular kinase activity is sensitive to transfection of a dominant negative form of CDK2 as well as the application of the CDK inhibitors p21 and butyrolactone I but not p16. Furthermore, BRCA1 coimmunoprecipitates with CDK2 and cyclin A. These results suggest that the endogenous kinase activity is composed of CDK2-cyclin complexes, at least in part, concordant with the G1/S-specific increase in BRCA1 phosphorylation.  相似文献   

9.
10.
11.
Inhibition of S/G2 phase CDK4 reduces mitotic fidelity   总被引:2,自引:0,他引:2  
Cyclin-dependent kinase 4 (CDK4)/cyclin D has a key role in regulating progression through late G(1) into S phase of the cell cycle. CDK4-cyclin D complexes then persist through the latter phases of the cell cycle, although little is known about their potential roles. We have developed small molecule inhibitors that are highly selective for CDK4 and have used these to define a role for CDK4-cyclin D in G(2) phase. The addition of the CDK4 inhibitor or small interfering RNA knockdown of cyclin D3, the cyclin D partner, delayed progression through G(2) phase and mitosis. The G(2) phase delay was independent of ATM/ATR and p38 MAPK but associated with elevated Wee1. The mitotic delay was because of failure of chromosomes to migrate to the metaphase plate. However, cells eventually exited mitosis, with a resultant increase in cells with multiple or micronuclei. Inhibiting CDK4 delayed the expression of the chromosomal passenger proteins survivin and borealin, although this was unlikely to account for the mitotic phenotype. These data provide evidence for a novel function for CDK4-cyclin D3 activity in S and G(2) phase that is critical for G(2)/M progression and the fidelity of mitosis.  相似文献   

12.
Effects of phosphorylation by CAK on cyclin binding by CDC2 and CDK2.   总被引:12,自引:5,他引:7       下载免费PDF全文
The cyclin-dependent protein kinases (CDKs) are activated by association with cyclins and by phosphorylation at a conserved threonine residue by the CDK-activating kinase (CAK). We have studied the binding of various human CDK and cyclin subunits in vitro, using purified proteins derived from baculovirus-infected insect cells. We find that most CDK-cyclin complexes known to exist in human cells (CDC2-cyclin B, CDK2-cyclin A, and CDK2-cyclin E) form with high affinity in the absence of phosphorylation or other cellular components. One complex (CDC2-cyclin A) forms with high affinity only after CAK-mediated phosphorylation of CDC2 at the activating threonine residue. CDC2 does not bind with high affinity to cyclin E in vitro, even after phosphorylation of the CDC2 subunit. Thus, phosphorylation is of varying importance in the formation of high-affinity CDK-cyclin complexes.  相似文献   

13.
INTRODUCTION/OBJECTIVES: Cell cycle progression is driven by the coordinated regulation of cyclin-dependent kinases (CDKs). In response to mitogenic stimuli, CDK4 and CDK2 form complexes with cyclins D and E, respectively, and translocate to the nucleus in the late G(1) phase. It is an on-going discussion whether mammalian cells need both CDK4 and CDK2 kinase activities for induction of S phase. METHODS AND RESULTS: In this study, we have explored the role of CDK4 activity during G(1) progression of primary rat hepatocytes. We found that CDK4 activity was restricted by either inhibiting growth factor induced cyclin D1-induction with the PI3K inhibitor LY294002, or by transient transfection with a dominant negative CDK4 mutant. In both cases, we observed reduced CDK2 nuclear translocation and reduced CDK2-Thr160 phosphorylation. Furthermore, reduced pRb hyperphosphorylation and reduced cellular proliferation were observed. Ectopic expression of cyclin D1 alone was not sufficient to induce CDK4 nuclear translocation, CDK2 activity or cell proliferation. CONCLUSIONS: Thus, epidermal growth factor-induced CDK4 activity was necessary for CDK2 activation and for hepatocyte proliferation. These results also suggest that, in addition to regulating cyclin D1 expression, PI3K is involved in regulation of nuclear shuttling of cyclin-CDK complexes in G(1) phase.  相似文献   

14.
Cyclin E, a positive regulator of the cell cycle, controls the transition of cells from G(1) to S phase. Deregulation of the G(1)-S checkpoint contributes to uncontrolled cell division, a hallmark of cancer. We have reported previously that cyclin E is overexpressed in breast cancer and such overexpression is usually accompanied by the appearance of low molecular weight isoforms of cyclin E protein, which are not present in normal cells. Furthermore, we have shown that the expression of cyclin E low molecular weight isoforms can be used as a reliable prognostic marker for breast cancer to predict patient outcome. In this study we examined the role of cyclin E in directly activating cyclin-dependent kinase (CDK) 2. For this purpose, a series of N-terminal deleted forms of cyclin E corresponding to the low molecular weight forms detected only in cancer cells were translated in vitro and mixed with cell extracts. These tumor-specific N-terminal deleted forms of cyclin E are able to activate CDK2. Addition of cyclin E into both normal and tumor cell extracts was shown to increase the levels of CDK2 activity, along with an increase in the amount of phosphorylated CDK2. The increase in CDK2 activity was because of cyclin E binding to endogenous CDK2 in complex with endogenous cyclin E, cyclin A, or unbound CDK2. The increase in CDK2 phosphorylation was through a pathway involving cyclin-activating kinase, but addition of cyclin E to an extract containing unphosphorylated CDK2 can still lead to increase in CDK2 activity. Our data suggest that the ability of high levels of full-length and low molecular weight forms of cyclin E to activate CDK2 may be one mechanism that leads to the constitutive activation of cyclin E.CDK2 complexes leading to G(1)/S deregulation and tumor progression.  相似文献   

15.
Transforming growth factor-beta (TGF-beta) induces a potent G(1)/S-phase cell cycle arrest of epithelial cells by inhibiting the activities of cyclin D- and cyclin E-associated kinase complexes. Downregulation of the kinase activities is mediated by induction of cyclin dependent kinase (CDK) inhibitor p15(Ink4b) which blocks CDK4 and CDK6 kinases and leads to binding of p27(Kip1) to CDK2-cyclin E complex. Levels of several of these factors are controlled by the ubiquitin-proteasome pathway. We demonstrate here that proteasomal inhibitors release the cells from TGF-beta imposed G(1)-phase arrest and instigate the entry of the cells into S-phase. Proteasomal inhibitors are shown to specifically increase the activity of the cyclin D-kinase complex by increasing the levels of p27(Kip1) and cyclin D and by maintaining CDK4/6 protein levels leading to phosphorylation of the retinoblastoma protein without increasing cyclin E-associated kinase activity. The results indicate caution in the potential therapeutic use of the proteasome inhibitors due to unscheduled initiation of DNA replication in the presence of a physiological growth inhibitor.  相似文献   

16.
The activity of cyclin-dependent kinase 2 is required for G(1)-S-phase progression of the eukaryotic cell cycle. In this study, we examine the activation of CDK2-cyclin E by constructing a CDK2 that is constitutively targeted to the nucleus. Activation of CDK2 requires the removal of two inhibitory phosphates (Thr-14 and Tyr-15) and the addition of one activating phosphate (Thr-160) by a nuclear localized CDK-activating kinase, which is thought to be constitutively active. Surprisingly, nuclear localized CDK2-NLS and CDK2-NLS(A14,F15), which lacks the inhibitory phosphorylation sites, require serum to become active, despite complexing with expressed cyclin E. We show that inhibition of mitogen-mediated ERK activation by treatment with U0126, a selective MEK inhibitor, or expression of dominant-negative ERK markedly reduces the phosphorylation of Thr-160 and enzymatic activity of both CDK2-NLS constructs. Consistent with a role for ERK in Thr-160 phosphorylation, expression of constitutively active Raf-1 induces Thr-160 phosphorylation of CDK2-NLS in serum-arrested cells, an effect that is blocked by treatment with U0126. Taken together, these data show a new role for ERK in G1 cell cycle progression: In addition to its role in stimulating cyclin D1 expression and nuclear translocation of CDK2, ERK regulates Thr-160 phosphorylation of CDK2-cyclin E.  相似文献   

17.
Cyclin D-dependent kinases act as mitogen-responsive, rate-limiting controllers of G1 phase progression in mammalian cells. Two novel members of the mouse INK4 gene family, p19 and p18, that specifically inhibit the kinase activities of CDK4 and CDK6, but do not affect those of cyclin E-CDK2, cyclin A-CDK2, or cyclin B-CDC2, were isolated. Like the previously described human INK4 polypeptides, p16INK4a/MTS1 and p15INK4b/MTS2, mouse p19 and p18 are primarily composed of tandemly repeated ankyrin motifs, each ca. 32 amino acids in length, p19 and p18 bind directly to CDK4 and CDK6, whether untethered or in complexes with D cyclins, and can inhibit the activity of cyclin D-bound cyclin-dependent kinases (CDKs). Although neither protein interacts with D cyclins or displaces them from preassembled cyclin D-CDK complexes in vitro, both form complexes with CDKs at the expense of cyclins in vivo, suggesting that they may also interfere with cyclin-CDK assembly. In proliferating macrophages, p19 mRNA and protein are periodically expressed with a nadir in G1 phase and maximal synthesis during S phase, consistent with the possibility that INK4 proteins limit the activities of CDKs once cells exit G1 phase. However, introduction of a vector encoding p19 into mouse NIH 3T3 cells leads to constitutive p19 synthesis, inhibits cyclin D1-CDK4 activity in vivo, and induces G1 phase arrest.  相似文献   

18.
Cyclin dependent kinases (CDKs) are key regulators of the cell cycle progression and therefore constitute excellent targets for the design of anticancer agents. Most of the inhibitors identified to date inhibit kinase activity by interfering with the ATP-binding site of CDKs. We recently proposed that the protein/protein interface and conformational changes required in the molecular mechanism of CDK2-cyclin A activation were potential targets for the design of specific inhibitors of cell cycle progression. To this aim, we have designed and characterized a small peptide, termed C4, derived from amino acids 285-306 in the alpha5 helix of cyclin A. We demonstrate that this peptide does not interfere with complex formation but forms stable complexes with CDK2-cyclin A. The C4 peptide significantly inhibits kinase activity of complexes harboring CDK2 in a competitive fashion with respect to substrates but does not behave as an ATP antagonist. Moreover, when coupled with the protein transduction domain of Tat, the C4 peptide blocks the proliferation of tumor cell lines, thereby constituting a potent lead for the development of specific CDK-cyclin inhibitors.  相似文献   

19.
在细胞发育过程中,细胞周期起着至关重要的作用。细胞周期进程主要受细胞周期蛋白依赖性激酶(cyclin dependent kinase, CDK)、周期蛋白和内源性CDK抑制剂(cyclin-dependent kinase inhibitors,CKI)调控。其中,CDK是主要的细胞周期调节因子,可与周期蛋白结合形成周期蛋白-CDK复合物,从而使数百种底物磷酸化,调控分裂间期和有丝分裂进程。各类细胞周期蛋白的活性异常,可引起不受控制的癌细胞增殖,导致癌症的发生与发展。因此,了解CDK的活性变化情况、周期蛋白-CDK的组装以及CKI的作用,将有助于了解细胞周期进程中潜在的调控过程,为癌症与疾病的治疗和CKI治疗药物的研发提供基础。本文关注了CDK激活和灭活的关键事件,并总结了周期蛋白-CDK在特定时期及位置的调控过程,以及相关CKI治疗药物在癌症及疾病中的研究进展,最后简单阐述了细胞周期进程研究面临的问题和存在的挑战,以期为后续细胞周期进程的深入研究提供参考和思路。  相似文献   

20.
Arooz T  Yam CH  Siu WY  Lau A  Li KK  Poon RY 《Biochemistry》2000,39(31):9494-9501
Cyclins and cyclin-dependent kinases (CDKs) are key regulators of the human cell cycle. Here we have directly measured the concentrations of the G(1) and G(2) cyclins and their CDK partners in highly synchronized human cervical carcinoma cells (HeLa). To determine the exact concentrations of cyclins and CDKs in the cell extracts, we developed a relatively simple method that combined the use of (35)S-labeled standards produced in rabbit reticulocyte lysates and immunoblotting with specific antibodies. Using this approach, we formally demonstrated that CDC2 and CDK2 are in excess of their cyclin partners. We found that the concentrations of cyclin A2 and cyclin B1 (at their peak levels in the G(2) phase) were about 30-fold less than that of their partner CDC2. The peak levels of cyclin A2 and cyclin E1, at the G(2) phase and G(1) phase, respectively, were only about 8-fold less than that of their partner CDK2. These ratios are in good agreement with size fractionation analysis of the relative amount of monomeric and complexed forms of CDC2 and CDK2 in the cell. All the cyclin A2 and cyclin E1 are in complexes with CDC2 and CDK2, but there are some indications that a significant portion of cyclin B1 may not be in complex with CDC2. Furthermore, we also demonstrated that the concentration of the CDK inhibitor p21(CIP1/WAF1) induced after DNA damage is sufficient to overcome the cyclin-CDK2 complexes in MCF-7 cells. These direct quantitations formally confirmed the long-held presumption that CDKs are in excess of the cyclins in the cell. Moreover, similar approaches can be used to measure the concentration of any protein in cell-free extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号