首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell lineage and segmentation in the leech   总被引:5,自引:0,他引:5  
Segments in the leech arise by the proliferation of longitudinally arrayed bandlets of blast cells derived from ten identifiable embryonic stem cells, two M, two N, four O/P and two Q teloblasts. In each bandlet, older blast cells lie ahead of those born later. By using microinjected cell lineage tracers it was shown previously that the teloblasts give rise to characteristic cell patterns made up of segmentally iterated complements of progeny designated as M, N, O, P and Q kinship groups. When a teloblast is injected after it has begun generating blast cells, a boundary is observed later in development between anterior, unlabelled progeny of blast cells produced before injection and posterior, labelled progeny of blast cells produced after injection. We have examined such boundaries in detail to establish the precise relationship between blast cell clones and segments, with the following conclusions: (i) in the M, O and P cell lines, one blast cell generates one segmental complement of progeny, but serially homologous blast clones intermix so that no segment boundaries can be defined based on primary blast cell clones; (ii) in the N and Q cell lines, two blast cells are required to generate a complete segmental complement of progeny; (iii) in the process of forming the germinal plate, cells derived from the N and Q teloblasts move past those derived from the M and O/P teloblasts, so that consegmental blast cell clones do not come into register until well after the establishment of segmentally iterated units within each bandlet.  相似文献   

2.
3.
4.
The teloblasts of the embryo of the leech Theromyzon rude contain two distinct cytoplasmic domains. One, the vitelloplasm, consists mainly of yolk platelets; it makes up more than half of the total teloblast volume. The other, the teloplasm, resides at the teloplasmic pole, surrounds the cell nucleus, and consists mainly of mitochondria, endoplasmic reticulum, and other membrane-enclosed subcellular structures. The teloblasts pass on their teloplasm, but not their vitelloplasm, to the stem cells that each teloblast produces by a series of unequal divisions at its teloplasmic pole. The stem cells produced by each teloblast form a bandelet, and these bandelets associate to form the germinal bands. The nuclei of the stem cells, and of their daughter blast cells in the germinal bands that eventually generate the tissues and organs of the postembryonic leech, are smaller than the teloblast nuclei, but they contain much larger nucleoli. Different teloblasts begin and end production of their stem cells at different developmental stages. At the end of its stem cell production each teloblast still retains about half of its original teloplasm, which thereupon becomes fragmented and dispersed throughout the teloblast. During the course of stem cell production the teloblasts undergo rotational and translational movements on the surface of the embryo.  相似文献   

5.
Synthetic mRNAs can be injected to achieve transient gene expression even for 'non-model' organisms in which genetic approaches are not feasible. Here, we have used this technique to express proteins that can serve as lineage tracers or reporters of cellular events in embryos of the glossiphoniid leech Helobdella robusta (phylum Annelida). As representatives of the proposed super-phylum Lophotrochozoa, glossiphoniid leeches are of interest for developmental and evolutionary comparisons. Their embryos are suitable for microinjection, but no genetic approaches are currently available. We have injected segmentation stem cells (teloblasts) with mRNAs encoding nuclear localized green fluorescent protein (nGFP) and its spectral variants, and have used tandem injections of nGFP mRNA followed by antisense morpholino oligomer (AS MO), to label single blast cell clones. These techniques permit high resolution cell lineage tracing in living embryos. We have applied them to the primary neurogenic (N) lineage, in which alternate segmental founder cells (nf and ns blast cells) contribute distinct sets of progeny to the segmental ganglia. The nf and ns blast cell clones exhibit strikingly different cell division patterns: the increase in cell number within the nf clone is roughly linear, while that in the ns clone is almost exponential. To analyze spindle dynamics in the asymmetric divisions of individual blast cells, we have injected teloblasts with mRNA encoding a tau::GFP fusion protein. Our results show that the asymmetric divisions of n blast cells result from a posterior shift of both the spindle within the cell and the midbody within the mitotic spindle, with differential regulation of these processes between nf and ns.  相似文献   

6.
The segmented ectoderm and mesoderm of the leech arise via a stereotyped cell lineage from embryonic stem cells called teloblasts. Each teloblast gives rise to a column of primary blast cell daughters, and the blast cells generate descendant clones that serve as the segmental repeats of their particular teloblast lineage. We have examined the mechanism by which the leech primary blast cell clones acquire segment polarity - i.e. a fixed sequence of positional values ordered along the anteroposterior axis of the segmental repeat. In the O and P teloblast lineages, the earliest divisions of the primary blast cell segregate anterior and posterior cell fates along the anteroposterior axis. Using a laser microbeam, we ablated single cells from both o and p blast cell clones at stages when the clone was two to four cells in length. The developmental fate of the remaining cells was characterized with rhodamine-dextran lineage tracer. Twelve different progeny cells were ablated, and in every case the ablation eliminated the normal descendants of the ablated cell while having little or no detectable effect on the developmental fate of the remaining cells. This included experiments in which we specifically ablated those blast cell progeny that are known to express the engrailed gene, or their lineal precursors. These findings confirm and extend a previous study by showing that the establishment of segment polarity in the leech ectoderm is largely independent of cell interactions conveyed along the anteroposterior axis. Both intercellular signaling and engrailed expression play an important role in the segment polarity specification of the Drosophila embryo, and our findings suggest that there may be little or no conservation of this developmental mechanism between those two organisms.  相似文献   

7.
Segmentally iterated tissues of the mature leech comprise five distinct sets of definitive progeny that arise from chains of blast cells (m, n, o, p, and q bandlets) produced by five bilateral pairs of stem cells (M, N, O/P, O/P, and Q teloblasts). In each n and q bandlet, two blast cells are needed to generate one set of hemisegmental progeny, and two alternating classes of blast cells (nf and ns, qf and qs) can be distinguished after their first divisions. Furthermore, two distinct subsets of definitive N and Q progeny exist within each hemisegment. Here we first show that there is fixed correspondence between the class of blast cell and the subset of final progeny: ns cells contribute mainly anterior ganglionic neurons and epidermal cells; nf cells contribute mainly posterior ganglionic neurons, peripheral neurons and neuropil glia; qs cells contribute both ventral and dorsal progeny; and qf cells contribute only dorsal progeny. Second, ablation studies indicate that the two classes of n blast cells do not behave as an equivalence group in the germinal band. Finally, we show that the cycles giving rise to nf and ns blast cells differ. These data suggest that cellular interactions within the germinal band may not be critical in establishing the distinct nf and ns cell fates and that, conversely, differences between the two classes of n blast cells may be established at birth.  相似文献   

8.
In the embryos of the oligochaete annelid Tubifex, segments VII and VIII specifically express mesodermal alkaline phophatase (ALP) activity in the ventrolateral region. In this study, we examined whether this segment-specific expression of ALP activity depends on external cues. Cell lineage analyses show that the ALP-expressing cells originate from M teloblasts. Furthermore, a set of teloblast-ablation experiments demonstrated that the seventh and eighth primary m blast cells (m7 and m8) produced from M teloblasts give rise to ALP-expressing cells in segments VII and VIII, respectively, and that primary m blast cells other than m7 and m8 lack the ability to generate ALP-expressing progeny cells. The results of another set of blastomere-ablation experiments suggest that ALP-expressing cells emerge independently of interactions with surrounding tissues. Teloblast-transplantation experiments demonstrated that m8 can generate ALP-expressing cells in an ectopical position, suggesting that it is unlikely that ALP activity emerges in response to the positional cues residing in the embryo. These results suggest that m7 and m8 are exclusively specified as precursors of ALP-expressing cells at the time of their birth from M teloblasts. We propose that segmental identities in primary m blast cells of the Tubifex embryo are determined according to the genealogical position in the M lineage and that the M teloblast possesses a developmental program through which the sequence of blast cell identities is determined.  相似文献   

9.
In embryonic development of the leech Helobdella triserialis, each of the four paired positionally identifiable, ectodermal teloblasts (N, O, P, and Q) generates a bandlet of blast cell progeny that merges with ipsilateral bandlets into a germinal band. Left and right germinal bands coalesce into the germinal plate which gives rise to the segmental tissues of the leech and wherein the progeny of each teloblast generate a characteristic pattern of epidermal and neuronal cells. Experiments reported here show that the positionally identified O teloblast sometimes generates the P pattern and vice versa. The reversal of these teloblasts' generative identities was shown to correspond to the formation of chiasmata by their blast cell bandlets, so that the positions of their bandlets in the germinal band are reversed as well. Thus it is the position of the bandlet in the germinal band, rather than the position of the parent teloblast, which correlates with the fate of o and p blast cells. Moreover, two types of ablation experiments have shown that, in the absence of generative P teloblast progeny, those cells which would normally generate the O pattern take on a new fate and give rise to the P pattern in the nervous system, both at the gross pattern level in the segmental ganglia, and at the level of identified neurons in the peripheral nervous system. If related, these phenomena suggest that the O and P teloblasts, which derive from the symmetric cleavage of the OP proteloblasts, have a common developmental pluripotency. And in that case, the fates of their progeny are determined hierarchically on the basis of relative position in the nascent germinal band, with P-type fate being preferred.  相似文献   

10.
Embryonic segmentation in clitellate annelids (oligochaetes and leeches) is a cell lineage-driven process. Embryos of these worms generate a posterior growth zone consisting of 5 bilateral pairs of identified segmentation stem cells (teloblasts), each of which produces a column of segmental founder cells (blast cells). Each blast cell generates a lineage-specific clone via a stereotyped sequence of cell divisions, which are typically unequal both in terms of the relative size of the sister cells and in the progeny to which they give rise. In two of the five teloblast lineages, including the ventralmost, primary neurogenic (N) lineage, the blast cells adopt two different fates, designated nf and ns, in exact alternation within the blast cell column; this is termed a grandparental stem cell lineage. To lay groundwork for investigating unequal divisions in the leech Helobdella, we have surveyed the Helobdella robusta genome for genes encoding orthologs of the Rho family GTPases, including the rho, rac and cdc42 sub-families, which are known to be involved in multiple processes involving cell polarization in other systems. We find that, in contrast to most other known systems the Helobdella genome contains two cdc42 orthologs, one of which is expressed at higher levels in the ns blast cells than in nf blast cells. We also demonstrate that the asymmetric divisions of the primary nf and ns blast cells are regulated by the polarized distribution of the activated form of the Cdc42 protein, rather than by the overall level of expression. Our results provide the first molecular insights into the mechanisms of the grandparental stem cell lineages, a novel, yet evolutionarily ancient stem cell division pattern. Our results also provide an example in which asymmetries in the distribution of Cdc42 activity, rather than in the overall levels of Cdc42 protein, are important regulating unequal divisions in animal cells.  相似文献   

11.
In embryos of clitellate annelids (i.e. oligochaetes and leeches), four ectodermal teloblasts (ectoteloblasts N, O, P and Q) are generated on either side through a stereotyped sequence of cell divisions of a proteloblast, NOPQ. The four ectoteloblasts assume distinct fates and produce bandlets of smaller progeny cells, which join together to form an ectodermal germ band. The pattern of the germ band, with respect to the ventrodorsal order of the bandlets, has been highly preserved in clitellate annelids. We show that specification of ectoteloblast lineages in the oligochaete annelid Tubifex involves cell interaction networks distinct from those in leeches. Cell ablation experiments have shown that fates of teloblasts N, P and Q in Tubifex embryos are determined rigidly as early as their birth. In contrast, the O teloblast and its progeny are initially pluripotent and their fate becomes restricted to the O fate through an inductive signal emanating from the P lineage. In the absence of this signal, the O lineage assumes the P fate. These results differ significantly from those obtained in embryos of the leech Helobdella, suggesting the diversity of patterning mechanisms that give rise to germ bands with similar morphological pattern.  相似文献   

12.
As in other clitellate annelids, embryonic development in the oligochaete Tubifex is characterized by the generation of five bilateral pairs of teloblasts (designated M, N, O, P and Q), which serve as embryonic stem cells to produce germ bands on either side of the embryo. A large part of the tissues comprising body segments has been assigned to the progenies of the teloblasts; however, the developmental fate of each teloblast has been inferred only from its initial position in the embryo. In the present study, the fate of the progenies of each teloblast was followed by means of intracellular injection of a tracer enzyme, horseradish peroxidase. Cell fate maps for teloblasts in the Tubifex embryo were constructed. M teloblasts gave rise to nearly all of the mesodermal tissues, which included circular and longitudinal muscles, coelomic walls, nephridia (in segments VII and VIII) and primordial germ cells (in segments X and XI). Although few in number, M teloblasts also contributed cells to the ventral ganglion. Similarly, each of the ectoteloblasts, N, O, P and Q, made a topographically characteristic contribution to the ectodermal tissues such as the nervous system (i.e. ganglionic cells and peripheral neurones) and epidermis, all of which exhibited a segmentally repeated distribution pattern. The P and Q teloblasts uniquely gave rise to additional ectodermal tissues, namely ventral and dorsal setal sacs, respectively. Furthermore, O teloblasts made a contribution to the nephridiopores in segments VII and VIII as well. These results confirm the previously held view that ectoteloblasts and mesoteloblasts are the main source of ectodermal and mesodermal segmental tissues, respectively, but also suggest that all of the teloblasts produce more types of tissue than has previously been thought.  相似文献   

13.
Cell division patterns and cell-cell interactions in the germinal bands of the glossiphoniid leech Helobdella triserialis were studied with the aid of a cell lineage tracer dye. Each germinal band of the Helobdella embryo consists of five columns, or bandlets, of primary blast cells, designated as the mesodermal m bandlet and ectodermal n, o, p, and q bandlets. Primary blast cells of each ectodermal bandlet appear to undergo stereotyped, lineage-specific cell divisions. The metameric segmentation pattern of the leech thus appears to arise through a series of segmentally iterated, stereotyped cell divisions of serially homologous primary blast cell clones. Cell-cell interactions were studied by means of cell ablations. With one exception, blast cells underwent their stereotyped divisions without regard to the presence or absence of their normal neighbors. In the one exceptional case, o blast cells underwent divisions normally characteristic of p blast cells when their normal neighboring p bandlet was deleted. However, both o and p blast cells underwent their normal stereotyped divisions when their neighboring m, n, and q bandlets were deleted. It is proposed that the differential choice of pathway by the o and p blast cells depends upon their relative position with respect to each other and to a polarity cue external to the germinal band.  相似文献   

14.
Ectodermal teloblastogenesis in the oligochaete annelid Tubifex is a spatiotemporally regulated process that gives rise to four bilateral pairs of ectoteloblasts (N, O, P, and Q) that assume distinct fates. Ectoteloblasts on either side of the embryo arise from an invariable sequence of asymmetric cell divisions of a proteloblast, NOPQ, which occur with a defined orientation with respect to the embryonic axes: the N teloblast is generated first and located ventralmost, and the Q teloblast, which is generated next, is located dorsalmost; finally, the O and P teloblasts are generated by almost equal division of their precursor cell, OP. Polarity of teloblastogenesis on one side of the embryo is a mirror image of the other; this mirror symmetry of ectoteloblasts about the embryo's midline gives rise to the bilaterally symmetric organization of the ectoderm. In this study, we examined whether cellular interactions are involved in specification of polarity of asymmetric cell divisions in NOPQ cells. A set of cell transplantation experiments demonstrated that NOPQ cells are initially uncommitted in terms of division pattern and cell fates: If a left NOPQ cell is transplanted to the right side of a host embryo, it exhibits a polarity comparable to that of right NOPQ cells. The results of another set of cell transplantation experiments suggest that contact between NOPQ cells serves as an external cue for their polarization, irrespective of their position in the embryo, and that in the absence of host NOPQ cells, transplanted NOPQ cells can be polarized according to positional information residing in the host embryo. The competence of NOPQ cells to respond to external cues tapers down before their division into N and OPQ. A set of cell ablation experiments demonstrated that neighboring cells such as posteriorly located M teloblasts and anterolaterally located micromeres play a role in controlling spatial aspects of NOPQ's behavior that gives rise to their division along the dorsoventral axis. These results suggest that NOPQ cells, which do not initially have a rigidly fixed polarity, become polarized through external cues. Possible sources of signals for this polarizing induction are discussed in the light of the present results.  相似文献   

15.
The embryonic development of the leech Theromyzon rude was studied under the dissecting microscope. Embryos were examined both live and after acid treatment that solubilizes the yolk, or vitelloplasm, and renders the embryos transparent. Most of the remaining cytoplasm, or teloplasm, of the uncleaved egg is passed on to five pairs of germinal cells, or teloblasts. Teloblasts arise sequentially from a set of precursor cells, or proteloblasts, that divide according to a modified spiral cleavage pattern. Each teloblast buds off a succession of smaller stem cells, which form a single row, or germinal bandlet, and to which the teloblast passes on its teloplasm. The five bilateral pairs of germinal bandlets thus produced give rise to most of the embryonic structures. A new notational system for the designation of proteloblasts, teloblasts, and their stem cells has been introduced. Development of the embryo, from the uncleaved egg to the completion of the gut, has been divided into 10 stages. At 14°C, completion of these 10 stages takes approximately 850 hr from the time the egg is laid.  相似文献   

16.
Morphogenetic cell interactions during development were studied by combining cell ablation and cell lineage tracing techniques in embryos of the leech Helobdella triserialis. Ablation of an identified ectodermal teloblast, or teloblast precursor blastomere, on one side of an early embryo was often found to result in the later abnormal migration of the progeny cells of the corresponding contralateral, nonablated teloblast to the ablated side of the embryo; such abnormal migration was termed “midline violation.” Two different kinds of midline violation were observed. Crossover: after ablation of an N teloblast individual stem cell progeny of the contralateral N teloblast sometimes cross the ventral midline of the germinal plate of the embryo. Switching: after ablation of an OPQ teloblast precursor bandlets of stem cells produced by the contralateral O, P, or Q teloblasts sometimes switch to the germinal band of the ablated side at the site of origin of the germinal bands. The occurrence of crossover and switching shows that the eventual site occupied by a progeny cell of a particular teloblast is not automatically determined by its lineage, but also depends on interactions with other cells. Midline violation in the leech embryo CNS does not constitute true regulation, however, since the restoration of neurons to the ablated side is accompanied by a neuron deficit on the nonablated side. The occurrence of the two distinct kinds of midline violation, crossover and switching, may be explained by the relative position of the stem cell bandlets within the germinal bands, and by the geometrical features of the formation of the germinal plate from the germinal bands.  相似文献   

17.
Shimizu  Takashi  Kitamura  Kaoru  Arai  Asuna  Nakamoto  Ayaki 《Hydrobiologia》2001,463(1-3):123-131
The embryonic origin of metameric segmentation was examined in the oligochaete Tubifex using lineage tracers. Segments in Tubifex embryos arise from five bilateral pairs of longitudinal coherent columns (bandlets) of primary blast cells which are generated by five bilateral pairs of embryonic stem cells called teloblasts (M, N, O, P and Q). As development proceeds, an initially linear array of blast cells in each ectodermal bandlet gradually changes its shape in a lineage-specific manner. These morphogenetic changes result in the formation of distinct cell clumps, which are separated from the bandlet to serve as segmental elements (SEs). SEs in the N and Q lineages are each comprised of clones of two consecutive primary blast cells. In contrast, in the O and P lineages, individual blast cell clones are distributed across SE boundaries; each SE is a mixture of a part of the preceding anterior clone and a part of the next posterior clone. Morphogenetic events, including segmentation, in an ectodermal bandlet proceed normally in the absence of neighboring ectodermal bandlets. Without the underlying mesoderm, separated SEs fail to space themselves at regular intervals along the anteroposterior axis. It is suggested that ectodermal segmentation in Tubifex consists of two stages; autonomous morphogenesis of each bandlet leading to generation of SEs, and the ensuing mesoderm-dependent alignment of separated SEs. In contrast, metameric segmentation in the mesoderm (M lineage) is a one-step process in that it arises from an initially simple organization (i.e. a linear series) of primary m-blast cells, which individually serve as a founder cell of each segment. The boundary between mesodermal segments is determined autonomously. The results of a set of cell ablation and transplantation experiments, using alkaline phosphatase activity as a biochemical marker for segments VII and VIII suggest that segmental identities in primary m-blast cells are determined according to the genealogical position in the M lineage and that the M teloblast possesses a developmental program through which the sequence of blast cell identities is determined.  相似文献   

18.
In embryos of the oligochaete annelid Tubifex, most ectodermal tissues are derived from four bilateral pairs of embryonic stem cells called teloblasts (ectoteloblasts N, O, P and Q). Ectoteloblasts are generated on both left and right sides of the embryo through an invariable sequence of cell divisions of a proteloblast, NOPQ, and they are positioned in a mirror symmetric pattern relative to the embryonic midline. This mirror symmetry of ectoteloblast arrangement gives rise to the generation of bilateral symmetry in the ectoderm. Here we review results of our recent experiments on Tubifex tubifex that were designed to gain an insight into the mechanisms underlying the generation of the bilaterally symmetric organization of ectoteloblasts. Cell transplantation experiments have shown that nascent NOPQ cells can be polarized according to positional information residing in the embryo. If a left NOPQ cell is transplanted to the right side of a host embryo, it exhibits polarity comparable to that of right NOPQ cells. It has also been shown that contact between NOPQ cells serves as an external cue for their polarization. Another series of cell transplantation experiments have suggested that the competence of NOPQ cells to respond to external cues becomes undetectable shortly before the production of the first teloblast (N) from the NOPQ cell. Another series of experiments utilizing cell ablation techniques have shown that teloblasts N, P and Q are specified to express the N, P and Q fates, respectively, as early as their birth. In contrast, the O teloblast and its progeny are initially pluripotent and their fate becomes restricted through inductive signals emanating from its sister P lineage. On the basis of these findings, we have proposed a model for polarization of ectodermal teloblastogenesis in the Tubifex embryo.  相似文献   

19.
 Different species of leech vary greatly in body size but all have 32 body segments. It is unclear how the development of this precise number of segments is regulated, although it is known that the teloblasts of the early leech embryo initially produce more than the required numbers of segment founder cells (blast cells). We used fluorescent dextrans to show that the M teloblast of the Helobdella robusta embryo produces a variable number of additional (supernumerary) cells. These cells fail to enter the germinal band (which contains cells of all lineages and gives rise to the adult leech), but detach from its posterior end and disappear. Our observations suggest that some suffer an increase in membrane permeability while others fuse with the M teloblasts, but that they do not undergo apoptosis. The supernumerary cells of different lineages detach from the germinal band at different times, suggesting that detachment is not triggered by a global signal acting simultaneously on all lineages. We tested the hypothesis that the elimination of the supernumerary m blast cells results from a requirement of m blast cells for close interactions with cells of the other lineages for their survival, a condition that would not be achieved by the last-born m blast cells that fail to enter the germinal band. We cultured isolated M teloblasts and found that they do produce blast cells that themselves divide, indicating that cells of the M lineage can survive in the absence of any interactions with cells of the other lineages. Received: 17 August 1998 / Accepted: 20 November 1998  相似文献   

20.
Embryonic origins of cells in the leech Helobdella triserialis   总被引:2,自引:0,他引:2  
To ascertain the embryonic origins of the cells in various tissues of the leech Helobdella triserialis, horseradish peroxidase (HRP) was injected as a cell lineage tracer into all identified blastomeres of the early embryo in turn, except for a few of the micromeres, and the resulting distribution of HRP-labeled cells was then examined in the late embryo. In this way it was found that in every body segment a topographically characteristic set of neurons in the ganglion and body wall and a characteristic territory of the epidermis is derived from each of the four paired ectodermal teloblasts N, O/P, O/P, and Q, whereas the muscles, nephridia, and connective tissue, as well as a few presumptive neurons in each segmental ganglion, are derived from the paired mesodermal teloblast, M. Each topographically characteristic, segmentally iterated set of neurons descended from a given teloblast is designated as a kinship group. However, the prostomial (nonsegmental) epidermis and the neurons of the supraesophageal ganglion were found to be derived from the a, b, c, and d micromere quartet to which the A, B, C, and D blastomeres give rise at the dorsal pole of the embryo. The superficial epithelium of the provisional integument, which covers the surface of the embryo midway through development and is sloughed off at the time of body closure, was found to be derived from the a, b, c, and d micromere quartet, as well as from other micromeres produced in the course of teloblast formation. The contractile fibers of the provisional integument were found to be derived from the paired M teloblast. These results demonstrate that development of the leech embryo proceeds according to a highly stereotyped pattern, in the sense that a particular identifiable blastomere of the early embryo regularly gives rise to a particular set of cells of the adult (or provisional embryonic) tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号