首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Genomics》2019,111(4):980-985
Resistin, an adipokine, is involved in obesity and Type 2 Diabetes (T2D). The current study evaluates the association between RETN polymorphisms (−638 G/A, −420C/G & −358 G/A) and the risk towards T2D. Controls and T2D patients were enrolled from Gujarat, India. Polymorphisms of RETN were genotyped by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism. For the genotype-phenotype correlation analysis Fasting Blood Glucose (FBG), Body Mass Index (BMI) and plasma lipid profile were used. Plasma levels of resistin were assayed by ELISA. Our study suggests an association of RETN −420C/G polymorphism with T2D risk. The CC genotype of RETN −420C/G polymorphism was found to be associated with FBG, BMI, and total cholesterol. Plasma resistin levels were found to be significantly increased in diabetic patients as compared to controls. Our findings suggest −420C/G polymorphism of RETN as an important factor which could pose a powerful risk towards T2D susceptibility.  相似文献   

2.
Galectin-3 is a lectin involved in fibrosis, inflammation and proliferation. Increased circulating levels of galectin-3 have been associated with various diseases, including cancer, immunological disorders, and cardiovascular disease. To enhance our knowledge on galectin-3 biology we performed the first genome-wide association study (GWAS) using the Illumina HumanCytoSNP-12 array imputed with the HapMap 2 CEU panel on plasma galectin-3 levels in 3,776 subjects and follow-up genotyping in an additional 3,516 subjects. We identified 2 genome wide significant loci associated with plasma galectin-3 levels. One locus harbours the LGALS3 gene (rs2274273; P = 2.35×10−188) and the other locus the ABO gene (rs644234; P = 3.65×10−47). The variance explained by the LGALS3 locus was 25.6% and by the ABO locus 3.8% and jointly they explained 29.2%. Rs2274273 lies in high linkage disequilibrium with two non-synonymous SNPs (rs4644; r2 = 1.0, and rs4652; r2 = 0.91) and wet lab follow-up genotyping revealed that both are strongly associated with galectin-3 levels (rs4644; P = 4.97×10−465 and rs4652 P = 1.50×10−421) and were also associated with LGALS3 gene-expression. The origins of our associations should be further validated by means of functional experiments.  相似文献   

3.

Background

Since mediators of inflammation are associated with insulin resistance, and the risk of developing diabetes mellitus and gestational diabetes, we hypothesized that genetic variation in members of the inflammatory gene pathway impact glucose levels and related phenotypes in pregnancy. We evaluated this hypothesis by testing for association between genetic variants in 31 inflammatory pathway genes in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) cohort, a large multiethnic multicenter study designed to address the impact of glycemia less than overt diabetes on pregnancy outcome.

Results

Fasting, 1-hour, and 2-hour glucose, fasting and 1-hour C-peptide, and HbA1c levels were measured in blood samples obtained from HAPO participants during an oral glucose tolerance test at 24-32 weeks gestation. We tested for association between 458 SNPs mapping to 31 genes in the inflammatory pathway and metabolic phenotypes in 3836 European ancestry and 1713 Thai pregnant women. The strongest evidence for association was observed with TNF alpha and HbA1c (rs1052248; 0.04% increase per allele C; p-value = 4.4×10−5), RETN and fasting plasma glucose (rs1423096; 0.7 mg/dl decrease per allele A; p-value = 1.1×10−4), IL8 and 1 hr plasma glucose (rs2886920; 2.6 mg/dl decrease per allele T; p-value = 1.3×10−4), ADIPOR2 and fasting C-peptide (rs2041139; 0.55 ug/L decrease per allele A; p-value = 1.4×10−4), LEPR and 1-hour C-peptide (rs1171278; 0.62 ug/L decrease per allele T; p-value = 2.4×10−4), and IL6 and 1-hour plasma glucose (rs6954897; −2.29 mg/dl decrease per allele G, p-value = 4.3×10−4).

Conclusions

Based on the genes surveyed in this study the inflammatory pathway is unlikely to have a strong impact on maternal metabolic phenotypes in pregnancy although variation in individual members of the pathway (e.g. RETN, IL8, ADIPOR2, LEPR, IL6, and TNF alpha,) may contribute to metabolic phenotypes in pregnant women.  相似文献   

4.
Genome-wide association studies (GWAS) have identified several genetic susceptibility loci for breast cancer (BC). One of them, conducted among Chinese women, found an association of rs2046210 at 6q25.1 with the risk of BC recently. Since then, numerous association studies have been carried out to investigate the relationship between this polymorphism and BC risk in various populations. However, these have yielded contradictory results. We therefore performed a meta-analysis to clarify this inconsistency. Overall, a total of 235003 subjects based on 13 studies were included in our study. Significantly increased BC risk was detected in the pooled analysis [allele contrast: OR = 1.13, 95%CI = 1.10–1.17, P(Z) <10−5, P(Q) <10−4; dominant model: OR = 1.21, 95%CI = 1.14–1.27, P(Z) <10−5, P(Q) <10−4; recessive model: OR = 1.18, 95%CI = 1.12–1.24, P(Z) <10−5, P(Q) = 0.04]. In addition, our data revealed that rs2046210 conferred greater risk in estrogen receptor (ER)-negative tumors [OR = 1.27, 95%CI = 1.15–1.40, P(Z) <10−5, P(Q) <10−4] than in ER-positive ones [OR = 1.18, 95%CI = 1.09–1.28, P(Z) <10−4, P(Q) = 0.0003]. When stratified by ethnicity, significant associations were found in Caucasian and Asian populations, but not detected among Africans. There was evidence of heterogeneity (P<0.05), however, the heterogeneity largely disappeared after stratification by ethnicity. The present meta-analysis demonstrated that the rs2046210 polymorphism may be associated with increased BC susceptibility, but this association varies in different ethnicities.  相似文献   

5.

Background

Autoimmune thyroid disease (AITD) comprises diseases including Hashimoto''s thyroiditis and Graves'' disease, both characterized by reactivity to autoantigens causing, respectively, inflammatory destruction and autoimmune stimulation of the thyroid-stimulating hormone receptor. AITD is the most common thyroid disease and the leading form of autoimmune disease in women. Cytokines are key regulators of the immune and inflammatory responses; therefore, genetic variants at cytokine-encoding genes are potential risk factors for AITD.

Methods

Polymorphisms in the IL6-174 G/C (rs1800795), TNFA-308 G/A (rs1800629), IL1B-511 C/T (rs16944), and IFNGR1-56 T/C (rs2234711) genes were assessed in a case-control study comprising 420 Hashimoto''s thyroiditis patients, 111 Graves'' disease patients and 735 unrelated controls from Portugal. Genetic variants were discriminated by real-time PCR using TaqMan SNP genotyping assays.

Results

A significant association was found between the allele A in TNFA-308 G/A and Hashimoto''s thyroiditis, both in the dominant (OR = 1.82, CI = 1.37–2.43, p-value = 4.4×10−5) and log-additive (OR = 1.64, CI = 1.28–2.10, p-value = 8.2×10−5) models. The allele C in IL6-174 G/C is also associated with Hashimoto''s thyroiditis, however, only retained significance after multiple testing correction in the log-additive model (OR = 1.28, CI = 1.06–1.54, p-value = 8.9×10−3). The group with Graves'' disease also registered a higher frequency of the allele A in TNFA-308 G/A compared with controls both in the dominant (OR = 1.85, CI = 1.19–2.87, p-value = 7.0×10−3) and log-additive (OR = 1.69, CI = 1.17–2.44, p-value = 6.6×10−3) models. The risk for Hashimoto''s thyroiditis and Graves'' disease increases with the number of risk alleles (OR for two risk alleles is, respectively, 2.27 and 2.59).

Conclusions

This study reports significant associations of genetic variants in TNFA and IL6 with the risk for AITD, highlighting the relevance of polymorphisms in inflammation-related genes in the etiopathogenesis of AITD.  相似文献   

6.
Aminoacyl-tRNA synthetases (ARSs) are in charge of cellular protein synthesis and have additional domains that function in a versatile manner beyond translation. Eight core ARSs (EPRS, MRS, QRS, RRS, IRS, LRS, KRS, DRS) combined with three nonenzymatic components form a complex known as multisynthetase complex (MSC).We hypothesize that the single-nucleotide polymorphisms (SNPs) of the eight core ARS coding genes might influence the susceptibility of sporadic congenital heart disease (CHD). Thus, we conducted a case-control study of 984 CHD cases and 2953 non-CHD controls in the Chinese Han population to evaluate the associations of 16 potentially functional SNPs within the eight ARS coding genes with the risk of CHD. We observed significant associations with the risk of CHD for rs1061248 [G/A; odds ratio (OR) = 0.90, 95% confidence interval (CI) = 0.81–0.99; P = 3.81×10−2], rs2230301 [A/C; OR = 0.73, 95%CI = 0.60–0.90, P = 3.81×10−2], rs1061160 [G/A; OR = 1.18, 95%CI = 1.06–1.31; P = 3.53×10−3] and rs5030754 [G/A; OR = 1.39, 95%CI = 1.11–1.75; P = 4.47×10−3] of EPRS gene. After multiple comparisons, rs1061248 conferred no predisposition to CHD. Additionally, a combined analysis showed a significant dosage-response effect of CHD risk among individuals carrying the different number of risk alleles (P trend = 5.00×10−4). Compared with individuals with “0–2” risk allele, those carrying “3”, “4” or “5 or more” risk alleles had a 0.97-, 1.25- or 1.38-fold increased risk of CHD, respectively. These findings indicate that genetic variants of the EPRS gene may influence the individual susceptibility to CHD in the Chinese Han population.  相似文献   

7.

Background

Previous studies identified melatonin receptor 1B (MTNR1B), islet-specific glucose 6 phosphatase catalytic subunit-related protein (G6PC2), glucokinase (GCK) and glucokinase regulatory protein (GCKR) as candidate genes for type 2 diabetes (T2D) acting through elevated fasting plasma glucose (FPG). We examined the associations of the reported common variants of these genes with T2D and glucose homeostasis in three independent Chinese cohorts.

Methodology/Principal Findings

Five single nucleotide polymorphisms (SNPs), MTNR1B rs10830963, G6PC2 rs16856187 and rs478333, GCK rs1799884 and GCKR rs780094, were genotyped in 1644 controls (583 adults and 1061 adolescents) and 1342 T2D patients. The G-allele of MTNR1B rs10830963 and the C-alleles of both G6PC2 rs16856187 and rs478333 were associated with higher FPG (0.0034<P<6.6×10−5) in healthy controls. In addition to our previous report for association with FPG, the A-allele of GCK rs1799884 was also associated with reduced homeostasis model assessment of beta-cell function (HOMA-B) (P = 0.0015). Together with GCKR rs780094, the risk alleles of these SNPs exhibited dosage effect in their associations with increased FPG (P = 2.9×10−9) and reduced HOMA-B (P = 1.1×10−3). Meta-analyses strongly supported additive effects of MTNR1B rs10830963 and G6PC2 rs16856187 on FPG.

Conclusions/Significance

Common variants of MTNR1B, G6PC2 and GCK are associated with elevated FPG and impaired insulin secretion, both individually and jointly, suggesting that these risk alleles may precipitate or perpetuate hyperglycemia in predisposed individuals.  相似文献   

8.
Heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg) and residual (re) correlations between BMD measured at the upper limbs (UL-BMD), lower limbs (LL-BMD) and skull (SK-BMD), using total-body DXA scans of ∼4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC). Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78) between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43). Likewise, the residual correlation between BMD at appendicular sites (re = 0.55) was higher than the residual correlation between SK-BMD and BMD at appendicular sites (re = 0.20–0.24). To explore the basis for the observed differences in rg and re, genome-wide association meta-analyses were performed (n∼9,395), combining data from ALSPAC and the Generation R Study identifying 15 independent signals from 13 loci associated at genome-wide significant level across different skeletal regions. Results suggested that previously identified BMD-associated variants may exert site-specific effects (i.e. differ in the strength of their association and magnitude of effect across different skeletal sites). In particular, variants at CPED1 exerted a larger influence on SK-BMD and UL-BMD when compared to LL-BMD (P = 2.01×10−37), whilst variants at WNT16 influenced UL-BMD to a greater degree when compared to SK- and LL-BMD (P = 2.31×10−14). In addition, we report a novel association between RIN3 (previously associated with Paget''s disease) and LL-BMD (rs754388: β = 0.13, SE = 0.02, P = 1.4×10−10). Our results suggest that BMD at different skeletal sites is under a mixture of shared and specific genetic and environmental influences. Allowing for these differences by performing genome-wide association at different skeletal sites may help uncover new genetic influences on BMD.  相似文献   

9.
We used an approach that we term ancestry-shift refinement mapping to investigate an association, originally discovered in a GWAS of a Chinese population, between rs2046210[T] and breast cancer susceptibility. The locus is on 6q25.1 in proximity to the C6orf97 and estrogen receptor α (ESR1) genes. We identified a panel of SNPs that are correlated with rs2046210 in Chinese, but not necessarily so in other ancestral populations, and genotyped them in breast cancer case∶control samples of Asian, European, and African origin, a total of 10,176 cases and 13,286 controls. We found that rs2046210[T] does not confer substantial risk of breast cancer in Europeans and Africans (OR = 1.04, P = 0.099, and OR = 0.98, P = 0.77, respectively). Rather, in those ancestries, an association signal arises from a group of less common SNPs typified by rs9397435. The rs9397435[G] allele was found to confer risk of breast cancer in European (OR = 1.15, P = 1.2×10−3), African (OR = 1.35, P = 0.014), and Asian (OR = 1.23, P = 2.9×10−4) population samples. Combined over all ancestries, the OR was 1.19 (P = 3.9×10−7), was without significant heterogeneity between ancestries (Phet = 0.36) and the SNP fully accounted for the association signal in each ancestry. Haplotypes bearing rs9397435[G] are well tagged by rs2046210[T] only in Asians. The rs9397435[G] allele showed associations with both estrogen receptor positive and estrogen receptor negative breast cancer. Using early-draft data from the 1,000 Genomes project, we found that the risk allele of a novel SNP (rs77275268), which is closely correlated with rs9397435, disrupts a partially methylated CpG sequence within a known CTCF binding site. These studies demonstrate that shifting the analysis among ancestral populations can provide valuable resolution in association mapping.  相似文献   

10.
Extremes of electrocardiographic QT interval are associated with increased risk for sudden cardiac death (SCD); thus, identification and characterization of genetic variants that modulate QT interval may elucidate the underlying etiology of SCD. Previous studies have revealed an association between a common genetic variant in NOS1AP and QT interval in populations of European ancestry, but this finding has not been extended to other ethnic populations. We sought to characterize the effects of NOS1AP genetic variants on QT interval in the multi-ethnic population-based Dallas Heart Study (DHS, n = 3,072). The SNP most strongly associated with QT interval in previous samples of European ancestry, rs16847548, was the most strongly associated in White (P = 0.005) and Black (P = 3.6×10−5) participants, with the same direction of effect in Hispanics (P = 0.17), and further showed a significant SNP × sex-interaction (P = 0.03). A second SNP, rs16856785, uncorrelated with rs16847548, was also associated with QT interval in Blacks (P = 0.01), with qualitatively similar results in Whites and Hispanics. In a previously genotyped cohort of 14,107 White individuals drawn from the combined Atherosclerotic Risk in Communities (ARIC) and Cardiovascular Health Study (CHS) cohorts, we validated both the second locus at rs16856785 (P = 7.63×10−8), as well as the sex-interaction with rs16847548 (P = 8.68×10−6). These data extend the association of genetic variants in NOS1AP with QT interval to a Black population, with similar trends, though not statistically significant at P<0.05, in Hispanics. In addition, we identify a strong sex-interaction and the presence of a second independent site within NOS1AP associated with the QT interval. These results highlight the consistent and complex role of NOS1AP genetic variants in modulating QT interval.  相似文献   

11.

Background

FTO variants are robustly associated with obesity and related traits in many population and shown to have variable impact during life course. Although studies have shown association of FTO variants with adiposity in adult Indian, its association in Indian children is yet to be confirmed.

Methods

Here we examined association of FTO variants (rs9939609 and rs8050136) with obesity and related anthropometric and biochemical traits in 3,126 Indian children (aged 11–17 years) including 2,230 normal-weight and 896 over-weight/obese children. We also compared effects observed in the present study with that observed in previous studies on South Asian adults and children of other ethnic groups.

Results

The variant rs9939609 showed significant association with risk of obesity [OR = 1.21, P = 2.5×10−3] and its measures BMI, weight, waist circumference and hip circumference [β range = 0.11 to 0.14 Z-score units; P range = 1.3×10−4 to 1.6×10−7] in children. The observed effect sizes in Indian children were similar to those reported for European children. Variant rs9939609 explained 0.88% of BMI variance in Indian children. The effect sizes of rs9939609 on BMI and WC were ∼2 fold higher in children than adults. Interestingly rs9939609 was also associated with serum levels of thyroid stimulating hormone (TSH) [β = 0.10 Z-score, P = 5.8×10−3]. The other variant rs8050136 was in strong linkage disequilibrium with rs9939609 (r2 = 0.97) and provided similar association results.

Conclusion

The study provides first report of association of FTO variants with obesity and related anthropometric traits in Indian children with higher impact in children compared to adults. We also demonstrated association of FTO variant with serum levels of TSH, indicating putative influence of FTO in hypothalamic-pituitary-thyroid axis.  相似文献   

12.
Fas/Fas ligand (FasL) system is one of the key apoptotic signaling entities in the extrinsic apoptotic pathway. De-regulation of this pathway, i.e. by mutations may prevent the immune system from the removal of newly-formed tumor cells, and thus lead to tumor formation. The present study investigated the association between −1377 G/A (rs2234767) and −670 A/G (rs1800682) polymorphisms in Fas as well as single nucleotide polymorphisms INV2nt −124 A/G (rs5030772) and −844 C/T (rs763110) in FasL in a sample of Iranian patients with breast cancer. This case-control study was done on 134 breast cancer patients and 152 normal women. Genomic DNA was extracted from whole blood samples. The polymorphisms were determined by using tetra-ARMS-PCR method. There was no significant difference in the genotype distribution of FAS rs2234767 polymorphism between cases and controls. FAS rs1800682, FASL rs5030772, and FASL rs763110 genotypes showed significant associations with an increasing risk of breast cancer (odds ratio OR = 3.18, P = 0.019; OR = 5.08, P = 0.012; OR = 2.40, P = 0.024, respectively). In conclusion, FAS rs2234767 was not associated with breast cancer risk. Though, FAS rs1800682, FASL rs5030772, and FASL rs763110 polymorphisms were associated with the risk of breast cancer in the examined population.  相似文献   

13.
Chemerin is an adipokine proposed to link obesity and chronic inflammation of adipose tissue. Genetic factors determining chemerin release from adipose tissue are yet unknown. We conducted a meta-analysis of genome-wide association studies (GWAS) for serum chemerin in three independent cohorts from Europe: Sorbs and KORA from Germany and PPP-Botnia from Finland (total N = 2,791). In addition, we measured mRNA expression of genes within the associated loci in peripheral mononuclear cells by micro-arrays, and within adipose tissue by quantitative RT-PCR and performed mRNA expression quantitative trait and expression-chemerin association studies to functionally substantiate our loci. Heritability estimate of circulating chemerin levels was 16.2% in the Sorbs cohort. Thirty single nucleotide polymorphisms (SNPs) at chromosome 7 within the retinoic acid receptor responder 2 (RARRES2)/Leucine Rich Repeat Containing (LRRC61) locus reached genome-wide significance (p<5.0×10−8) in the meta-analysis (the strongest evidence for association at rs7806429 with p = 7.8×10−14, beta = −0.067, explained variance 2.0%). All other SNPs within the cluster were in linkage disequilibrium with rs7806429 (minimum r2 = 0.43 in the Sorbs cohort). The results of the subgroup analyses of males and females were consistent with the results found in the total cohort. No significant SNP-sex interaction was observed. rs7806429 was associated with mRNA expression of RARRES2 in visceral adipose tissue in women (p<0.05 after adjusting for age and body mass index). In conclusion, the present meta-GWAS combined with mRNA expression studies highlights the role of genetic variation in the RARRES2 locus in the regulation of circulating chemerin concentrations.  相似文献   

14.
《PloS one》2013,8(4)
Multiple sclerosis (MS) is a serious, incurable neurological disease. In 2009, the ANZgene studies detected the suggestive association of located upstream of CD40 gene in chromosome 20q13 (p = 1.3×10−7). Identification of the causal variant(s) in the CD40 locus leads to a better understanding of the mechanism underlying the development of autoimmune pathologies. We determined the genotypes of rs6074022, rs1883832, rs1535045, and rs11086996 in patients with MS (n = 1684) and in the control group (n = 879). Two SNPs were significantly associated with MS: rs6074022 (additive model C allele OR = 1.27, 95% CI = [1.12–1.45], p = 3×10−4) and rs1883832 (additive model T allele OR = 1.20, 95% CI = [1.05–1.38], p = 7×10−3). In the meta-analysis of our results and the results of four previous studies, we obtain the association p-value of 2.34×10−12, which confirmed the association between MS and rs6074022 at a genome-wide significant level. Next, we demonstrated that the model including rs6074022 only sufficiently described the association. From our analysis, we can speculate that the association between rs1883832 and MS was induced by LD, whereas rs6074022 was a marker in stronger LD with the functional variant or was the functional variant itself. Our results indicated that the functional variants were located in the upstream region of the gene CD40 and were in higher LD with rs6074022 than LD with rs1883832.  相似文献   

15.
Thyroid stimulating hormone (TSH) hormone levels are normally tightly regulated within an individual; thus, relatively small variations may indicate thyroid disease. Genome-wide association studies (GWAS) have identified variants in PDE8B and FOXE1 that are associated with TSH levels. However, prior studies lacked racial/ethnic diversity, limiting the generalization of these findings to individuals of non-European ethnicities. The Electronic Medical Records and Genomics (eMERGE) Network is a collaboration across institutions with biobanks linked to electronic medical records (EMRs). The eMERGE Network uses EMR-derived phenotypes to perform GWAS in diverse populations for a variety of phenotypes. In this report, we identified serum TSH levels from 4,501 European American and 351 African American euthyroid individuals in the eMERGE Network with existing GWAS data. Tests of association were performed using linear regression and adjusted for age, sex, body mass index (BMI), and principal components, assuming an additive genetic model. Our results replicate the known association of PDE8B with serum TSH levels in European Americans (rs2046045 p = 1.85×10−17, β = 0.09). FOXE1 variants, associated with hypothyroidism, were not genome-wide significant (rs10759944: p = 1.08×10−6, β = −0.05). No SNPs reached genome-wide significance in African Americans. However, multiple known associations with TSH levels in European ancestry were nominally significant in African Americans, including PDE8B (rs2046045 p = 0.03, β = −0.09), VEGFA (rs11755845 p = 0.01, β = −0.13), and NFIA (rs334699 p = 1.50×10−3, β = −0.17). We found little evidence that SNPs previously associated with other thyroid-related disorders were associated with serum TSH levels in this study. These results support the previously reported association between PDE8B and serum TSH levels in European Americans and emphasize the need for additional genetic studies in more diverse populations.  相似文献   

16.
《PloS one》2014,9(10)
Genome-wide association studies (GWAS) have revealed 74 single nucleotide polymorphisms (SNPs) associated with high-density lipoprotein cholesterol (HDL) blood levels. This study is, to our knowledge, the first genome-wide interaction study (GWIS) to identify SNP×SNP interactions associated with HDL levels. We performed a GWIS in the Rotterdam Study (RS) cohort I (RS-I) using the GLIDE tool which leverages the massively parallel computing power of Graphics Processing Units (GPUs) to perform linear regression on all genome-wide pairs of SNPs. By performing a meta-analysis together with Rotterdam Study cohorts II and III (RS-II and RS-III), we were able to filter 181 interaction terms with a p-value<1 · 10−8 that replicated in the two independent cohorts. We were not able to replicate any of these interaction term in the AGES, ARIC, CHS, ERF, FHS and NFBC-66 cohorts (N total = 30,011) when adjusting for multiple testing. Our GWIS resulted in the consistent finding of a possible interaction between rs774801 in ARMC8 (ENSG00000114098) and rs12442098 in SPATA8 (ENSG00000185594) being associated with HDL levels. However, p-values do not reach the preset Bonferroni correction of the p-values. Our study suggest that even for highly genetically determined traits such as HDL the sample sizes needed to detect SNP×SNP interactions are large and the 2-step filtering approaches do not yield a solution. Here we present our analysis plan and our reservations concerning GWIS.  相似文献   

17.
《PloS one》2013,8(1)
Genetic factors explain a majority of risk variance for age-related macular degeneration (AMD). While genome-wide association studies (GWAS) for late AMD implicate genes in complement, inflammatory and lipid pathways, the genetic architecture of early AMD has been relatively under studied. We conducted a GWAS meta-analysis of early AMD, including 4,089 individuals with prevalent signs of early AMD (soft drusen and/or retinal pigment epithelial changes) and 20,453 individuals without these signs. For various published late AMD risk loci, we also compared effect sizes between early and late AMD using an additional 484 individuals with prevalent late AMD. GWAS meta-analysis confirmed previously reported association of variants at the complement factor H (CFH) (peak P = 1.5×10−31) and age-related maculopathy susceptibility 2 (ARMS2) (P = 4.3×10−24) loci, and suggested Apolipoprotein E (ApoE) polymorphisms (rs2075650; P = 1.1×10−6) associated with early AMD. Other possible loci that did not reach GWAS significance included variants in the zinc finger protein gene GLI3 (rs2049622; P = 8.9×10−6) and upstream of GLI2 (rs6721654; P = 6.5×10−6), encoding retinal Sonic hedgehog signalling regulators, and in the tyrosinase (TYR) gene (rs621313; P = 3.5×10−6), involved in melanin biosynthesis. For a range of published, late AMD risk loci, estimated effect sizes were significantly lower for early than late AMD. This study confirms the involvement of multiple established AMD risk variants in early AMD, but suggests weaker genetic effects on the risk of early AMD relative to late AMD. Several biological processes were suggested to be potentially specific for early AMD, including pathways regulating RPE cell melanin content and signalling pathways potentially involved in retinal regeneration, generating hypotheses for further investigation.  相似文献   

18.
Recent genome-wide meta-analyses identified 157 loci associated with cross-sectional lipid traits. Here we tested whether these loci associate (singly and in trait-specific genetic risk scores [GRS]) with longitudinal changes in total cholesterol (TC) and triglyceride (TG) levels in a population-based prospective cohort from Northern Sweden (the GLACIER Study). We sought replication in a southern Swedish cohort (the MDC Study; N = 2,943). GLACIER Study participants (N = 6,064) were genotyped with the MetaboChip array. Up to 3,495 participants had 10-yr follow-up data available in the GLACIER Study. The TC- and TG-specific GRSs were strongly associated with change in lipid levels (β = 0.02 mmol/l per effect allele per decade follow-up, P = 2.0×10−11 for TC; β = 0.02 mmol/l per effect allele per decade follow-up, P = 5.0×10−5 for TG). In individual SNP analysis, one TC locus, apolipoprotein E (APOE) rs4420638 (β = 0.12 mmol/l per effect allele per decade follow-up, P = 2.0×10−5), and two TG loci, tribbles pseudokinase 1 (TRIB1) rs2954029 (β = 0.09 mmol/l per effect allele per decade follow-up, P = 5.1×10−4) and apolipoprotein A-I (APOA1) rs6589564 (β = 0.31 mmol/l per effect allele per decade follow-up, P = 1.4×10−8), remained significantly associated with longitudinal changes for the respective traits after correction for multiple testing. An additional 12 loci were nominally associated with TC or TG changes. In replication analyses, the APOE rs4420638, TRIB1 rs2954029, and APOA1 rs6589564 associations were confirmed (P≤0.001). In summary, trait-specific GRSs are robustly associated with 10-yr changes in lipid levels and three individual SNPs were strongly associated with 10-yr changes in lipid levels.  相似文献   

19.

Background

Single nucleotide polymorphisms (SNPs) from GCK, GCKR, G6PC2 and MTNR1B were found to modulate the fasting glucose levels. The current study aimed to replicate this association in the Chinese population and further analyze their effects on biphasic insulin secretion.

Methods/Principal Findings

SNPs from GCK, GCKR, G6PC2 and MTNR1B were genotyped in the Shanghai Chinese, including 3,410 type 2 diabetes patients and 3,412 controls. The controls were extensively phenotyped for the traits related to glucose metabolism and insulin secretion. We replicated the association between GCK rs1799884, G6PC2 rs16856187 and MTNR1B rs10830963 and fasting glucose in our samples (p = 0.0003∼2.0×10−8). GCK rs1799884 and G6PC2 rs16856187 showed association to HOMA-β, insulinogenic index and both first- and second-phases insulin secretion (p = 0.0030∼0.0396). MTNR1B rs10830963 was associated to HOMA-β, insulinogenic index and first-phase insulin secretion (p = 0.0102∼0.0426), but not second-phase insulin secretion (p = 0.9933). Combined effect analyses showed individuals carrying more risk allele for high fasting glucose tended to have a higher glucose levels at both fasting and 2 h during OGTTs (p = 1.7×10−13 and 0.0009, respectively), as well as lower HOMA-β, insulinogenic index and both first- and second-phases insulin secretion (p = 0.0321∼1.1×10−7).

Conclusions/Significance

We showed that SNPs from GCK, G6PC2 and MTNR1B modulated the fasting glucose levels in the normoglycaemic population while SNPs from G6PC2 and GCKR was associated with type 2 diabetes. Moreover, we found GCK and G6PC2 genetic variants were associated to both first- and second-phases insulin secretion while MTNR1B genetic variant was associated with first-phase insulin secretion, but not second-phase insulin secretion.  相似文献   

20.
Immunoglobulin E (IgE) is one of the central players in asthma and allergic diseases. Although the serum IgE level, a useful endophenotype, is generally increased in patients with asthma, genetic factors influencing IgE regulation in asthma are still not fully understood. To identify the genetic variations associated with total serum and mite-specific IgEs in asthmatics, a genome-wide association study (GWAS) of 657,366 single nucleotide polymorphisms (SNPs) was performed in 877 Korean asthmatics. This study found that several new genes might be associated with total IgE in asthmatics, such as CRIM1 (rs848512, P = 1.18×10−6; rs711254, P = 6.73×10−6), ZNF71 (rs10404342, P = 7.60×10−6), TLN1 (rs4879926, P = 7.74×10−6), and SYNPO2 (rs1472066, P = 8.36×10−6; rs1038770, P = 8.66×10−6). Regarding the association of specific IgE to house dust mites, it was observed that intergenic SNPs nearby to OPRK1 and LOC730217 might be associated with Dermatophagoides pteronyssinus (D.p.) and Dermatophagoides farinae (D.f.) in asthmatics, respectively. In further pathway analysis, the phosphatidylinositol signaling system and adherens junction pathways were estimated to play a role in the regulation of total IgE levels in asthma. Although functional evaluations and replications of these results in other populations are needed, this GWAS of serum IgE in asthmatics could facilitate improved understanding of the role of the newly identified genetic variants in asthma and its related phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号