首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Angiotensin II (Ang II) plays a pivotal role in promoting podocyte dysfunction and albuminuria, however, the underlying mechanisms have not been fully delineated. In this study, we found that Ang II induced Wnt1 expression and β-catenin nuclear translocation in cultured mouse podocytes. Blocking Wnt signaling with Dickkopf-1 (Dkk1) or β-catenin siRNA attenuated Ang II-induced podocyte injury. Ang II could also induce the phosphorylation of calmodulin-dependent protein kinase (CaMK) II and cAMP response element-binding protein (CREB) in cultured podocytes. Blockade of this pathway with CK59 or CREB siRNA could significantly inhibit Ang II-induced Wnt/β-catenin signaling and podocyte injury. In in vivo studies, administration of Ang II promoted Wnt/β-catenin signaling, aggregated podocyte damage, and albuminuria in mice. CK59 could remarkably ameliorate Ang II-induced podocyte injury and albuminuria. Furthermore, ectopic expression of exogenous Dkk1 also attenuated Ang II-induced podocytopathy in mice. Taken together, this study demonstrates that the CaMK II/CREB/Wnt/β-catenin signaling cascade plays an important role in regulating Ang II-induced podocytopathy. Targeting this signaling pathway may offer renal protection against the development of proteinuric kidney diseases.  相似文献   

2.
Small-molecule, ligand-activated G protein-coupled receptors are generally thought to be rapidly desensitized within a period of minutes through receptor phosphorylation and internalization after repeated or prolonged stimulation. This transient G protein-coupled receptor activation remains at odds with many observed long-lasting cellular and physiological responses. Here, using live cell imaging of cAMP with a FRET-based biosensor and myocyte contraction assay, we show that the catecholamine-activated β1 adrenergic receptor (β1AR) continuously stimulates second messenger cAMP synthesis in primary cardiac myocytes and neurons, which lasts for more than 8 h (a decay t½ of 3.9 h) in cardiac myocytes. However, the β1AR-induced cAMP signal is counterbalanced and masked by the receptor-bound phosphodiesterase (PDE) 4D8-dependent cAMP hydrolysis. Inhibition of PDE4 activity recovers the receptor-induced cAMP signal and promotes contractile response in mouse hearts during extended periods of agonist stimulation. β1AR associates with PDE4D8 through the receptor C-terminal PDZ motif-dependent binding to synaptic-associated protein 97 (SAP97). Knockdown of SAP97 or mutation of the β1AR PDZ motif disrupts the complex and promotes sustained agonist-induced cAMP activity, PKA phosphorylation, and cardiac myocyte contraction response. Together, these findings unveil a long lasting adrenergic signal in neurons and myocytes under prolonged stimulation and an underappreciated role of PDE that is essential in classic receptor signaling desensitization and in maintaining a long lasting cAMP equilibrium for ligand-induced physiological response.  相似文献   

3.
The pituitary gland dynamically changes its hormone output under various pathophysiological conditions. One of the pathways implicated in the regulatory mechanism of this gland is a dopaminergic system that operates the phosphoinositide (PI) cycle to transmit downstream signal through second messengers. We have previously shown that diacylglycerol kinase β (DGKβ) is coexpressed with dopamine D1 and D2 receptors in medium spiny neurons of the striatum, suggesting a plausible implication of DGKβ in dopaminergic transmission. However, it remains elusive whether DGKβ is involved in the dopaminergic system in the pituitary gland. The aim of this study is to investigate the expression and localization of DGK in the pituitary gland, together with the molecular components involved in the PI signaling cascade, including dopamine receptors, phospholipase C (PLC), and a major downstream molecule, protein kinase C (PKC). Here we show that DGKβ and the dopamine D2 receptor are coexpressed in the intermediate lobe and localize to the plasma membrane side by side. In addition, we reveal that PLCβ4 and PKCα are the subtypes expressed in the intermediate lobe among those families. These findings will substantiate and further extend our understanding of the molecular-anatomical pathway of PI signaling and the functional roles of DGK in the pituitary intermediate lobe. (J Histochem Cytochem 58:119–129, 2010)  相似文献   

4.
白念珠菌引起的真菌感染严重威胁着人类健康。Ras/cAMP/PKA途径在白念珠菌菌丝发育、生物被膜形成、有性生殖以及耐药性中起着重要的调控作用,该通路由GTPases(Ras1和Ras2)、腺苷环化酶(Cyr1)、cAMP水解酶(Pde1和Pde2)以及PKA激酶(包括催化亚基Tpk1和Tpk2,调节亚基Bcy1)构成。环境因子通过Ras/cAMP/PKA途径调控下游转录因子,进而调节白念珠菌多种生物学行为。文中综述了近年来白念珠菌Ras/cAMP/PKA信号通路感应胞外环境因子和调控细胞行为等方面的研究进展。  相似文献   

5.
白念珠菌是一种重要的条件致病真菌,Ras/cAMP/PKA信号通路在白念珠菌的多种生理过程中发挥作用,如形态转换、黏附、生物被膜形成等,对于维持白念珠菌的毒力以及侵袭能力是十分重要的。对这一信号通路的深入研究有助于更好地了解白念珠菌对人体致病的机制,给抗真菌新药的研发提供新的思路。该文重点阐述通路相关蛋白功能、上下游调控关系及机制。  相似文献   

6.
Bacterial pathogens and their toxins target host receptors, leading to aberrant behavior or host death by changing signaling events through subversion of host intracellular cAMP level. This is an efficient and widespread mechanism of microbial pathogenesis. Previous studies describe toxins that increase cAMP in host cells, resulting in death through G protein-coupled receptor (GPCR) signaling pathways by influencing adenylyl cyclase or G protein activity. G protein-coupled receptor kinase 2 (GRK2) has a central role in regulation of GPCR desensitization. However, little information is available about the pathogenic mechanisms of toxins associated with GRK2. Here, we reported a new bacterial toxin-Bacillus bombysepticus (Bb) α-toxin that was lethal to host. We showed that Bb α-toxin interacted with BmGRK2. The data demonstrated that Bb α-toxin directly bound to BmGRK2 to promote death by affecting GPCR signaling pathways. This mechanism involved stimulation of Gαs, increase level of cAMP and activation of protein kinase A (PKA). Activated cAMP/PKA signal transduction altered downstream effectors that affected homeostasis and fundamental biological processes, disturbing the structural and functional integrity of cells, resulting in death. Preventing cAMP/PKA signaling transduction by inhibitions (NF449 or H-89) substantially reduced the pathogenicity of Bb α-toxin. The discovery of a toxin-induced host death specifically linked to GRK2 mediated signaling pathway suggested a new model for bacterial toxin action. Characterization of host genes whose expression and function are regulated by Bb α-toxin and GRK2 will offer a deeper understanding of the pathogenesis of infectious diseases caused by pathogens that elevate cAMP.  相似文献   

7.
大多数物种的卵母细胞在减数分裂前都要经历长时间停滞,其中cAMP对卵母细胞减数分裂停滞具有重要作用,本研究关注c AMP对卵母细胞减数分裂的影响及其机制。本研究通过将卵母细胞与cAMP预孵育,再用胰岛素刺激研究胰岛素诱导的卵母细胞成熟的影响,接着本研究通过显微注射和Zeiss 100TV显微镜分析cAMP对PKA在卵母细胞中定位的影响,并且本研究用Western blotting的方法研究cAMP/PKA对mos蛋白的表达和MAPK蛋白磷酸化的影响。结果显示,本研究通过亲和层析得到了高纯度的PKA蛋白,且cAMP/PKA能够抑制卵母细胞的成熟,而PKA的热稳定抑制剂PKI能够解除PKA对卵母细胞减数分裂的抑制,cAMP/PKA也能够影响mos的积累以及MAPK的磷酸化。cAMP能够影响PKA在卵母细胞中的定位,cAMP/PKA能够通过影响mos积累抑制卵母细胞的减数分裂,这可能与cAMP能够抑制MAPK磷酸化有关。  相似文献   

8.
9.
The Ras/B-Raf/C-Raf/MEK/ERK signaling cascade is critical for the control of many fundamental cellular processes, including proliferation, survival, and differentiation. This study demonstrated that small interfering RNA-dependent knockdown of diacylglycerol kinase η (DGKη) impaired the Ras/B-Raf/C-Raf/MEK/ERK pathway activated by epidermal growth factor (EGF) in HeLa cells. Conversely, the overexpression of DGKη1 could activate the Ras/B-Raf/C-Raf/MEK/ERK pathway in a DGK activity-independent manner, suggesting that DGKη serves as a scaffold/adaptor protein. By determining the activity of all the components of the pathway in DGKη-silenced HeLa cells, this study revealed that DGKη activated C-Raf but not B-Raf. Moreover, this study demonstrated that DGKη enhanced EGF-induced heterodimerization of C-Raf with B-Raf, which transmits the signal to C-Raf. DGKη physically interacted with B-Raf and C-Raf, regulating EGF-induced recruitment of B-Raf and C-Raf from the cytosol to membranes. The DGKη-dependent activation of C-Raf occurred downstream or independently of the already known C-Raf modifications, such as dephosphorylation at Ser-259, phosphorylation at Ser-338, and interaction with 14-3-3 protein. Taken together, the results obtained strongly support that DGKη acts as a novel critical regulatory component of the Ras/B-Raf/C-Raf/MEK/ERK signaling cascade via a previously unidentified mechanism.The Ras/Raf/MEK3/ERK signaling pathway is critical for the transduction of the extracellular signals to the nucleus, regulating diverse physiological processes such as cell proliferation, differentiation, and survival (1, 2). The binding of extracellular ligands, such as growth factors and cytokines, to cell surface receptors activates Ras. The Raf serine/threonine kinase transmits signals from activated Ras to the downstream protein kinases, MEK1 and MEK2, subsequently leading to activation of ERK1 and ERK2.In mammals, the Raf kinase consists of three isoforms, A-Raf, B-Raf, and C-Raf (Raf-1). It is clinically known that both B-Raf and C-Raf mutations are associated with human cancers (35). Knock-out mouse studies demonstrated that each individual Raf isoform has distinct functions, although the three Raf isoforms have high homology in the amino acid sequence (6). The mechanisms underlying C-Raf activation are complicated and thus are not completely understood (3). In response to extracellular signals, C-Raf is initially recruited from cytosol to the plasma membrane and undergo conformational changes by binding directly to the active Ras (7). In addition, other modifications and factors are required for the sufficient activation of C-Raf. For example, dephosphorylation of Ser-259 and phosphorylation of Ser-338, Tyr-341, Thr-491, and Ser-494 are critical for the activation of C-Raf (811). Feedback phosphorylation of C-Raf by ERK was also reported to be important for the modulation of C-Raf activity (12, 13). C-Raf activity is regulated by the interaction with 14-3-3 protein (14). Moreover, the heterodimerization of C-Raf with B-Raf, which transmits the signal to C-Raf, has been reported to play an essential role in the activation of the MEK-ERK signaling pathway (1517). Although B-Raf and C-Raf are the central regulatory components in the Ras/B-Raf/C-Raf/MEK/ERK signaling cascade involved in a variety of pathophysiological events, the activation mechanisms of C-Raf by B-Raf are still unclear.Diacylglycerol kinase (DGK) catalyzes the phosphorylation of diacylglycerol to generate phosphatidic acid. DGK has been recently recognized as an emerging key regulator in a wide range of cell signaling systems (1820). To date, 10 mammalian DGK isozymes have been identified. They characteristically contain two or three protein kinase C-like C1 domains and a catalytic region and are subdivided into five subtypes according to their structural features (1820). Their structural variety and distinct expression patterns in tissues allow us to presume that each DGK isozyme has its own biological functions. Indeed, recent studies have revealed that individual DGK isozymes play distinct roles in cell functions through interactions with unique partner proteins such as protein kinase C (21, 22), Ras guanyl nucleotide-releasing protein (23, 24), phosphatidylinositol-4-phosphate 5-kinase (25), chimerins (26, 27), AP-2 (28), and PSD-95 (29).DGKη belongs to the type II DGKs containing a pleckstrin homology domain at the N terminus and the separated catalytic region (19, 30). Two alternative splicing products of DGKη have been identified as DGKη1 and -η2 (31). DGKη2 possesses a sterile α-motif (SAM) domain at the C terminus, whereas DGKη1 does not. This study demonstrated that the expression levels of DGKη1 and -η2 were regulated differently by glucocorticoid, and that they were translocated from the cytoplasm to endosomes in response to stress stimuli as osmotic shock and oxidative stress (31). However, the physiological roles of DGKη remain unknown.This study showed that siRNA-dependent knockdown of DGKη inhibits cell proliferation of the HeLa cells. In addition, DGKη is required for the Ras/B-Raf/C-Raf/MEK/ERK signaling cascade activated by epidermal growth factor (EGF). Intriguingly, DGKη regulates recruitment of B-Raf and C-Raf from cytosol to membranes and their heterodimerization. Moreover, this study demonstrated that DGKη activates C-Raf but not B-Raf in an EGF-dependent manner. The data show DGKη as a novel key regulator of the Ras/B-Raf/C-Raf/MEK/ERK signaling pathway.  相似文献   

10.
Eukaryotic cells commonly use protein kinases in signaling systems that relay information and control a wide range of processes. These enzymes have a fundamentally similar structure, but achieve functional diversity through variable regions that determine how the catalytic core is activated and recruited to phosphorylation targets. “Hippo” pathways are ancient protein kinase signaling systems that control cell proliferation and morphogenesis; the NDR/LATS family protein kinases, which associate with “Mob” coactivator proteins, are central but incompletely understood components of these pathways. Here we describe the crystal structure of budding yeast Cbk1–Mob2, to our knowledge the first of an NDR/LATS kinase–Mob complex. It shows a novel coactivator-organized activation region that may be unique to NDR/LATS kinases, in which a key regulatory motif apparently shifts from an inactive binding mode to an active one upon phosphorylation. We also provide a structural basis for a substrate docking mechanism previously unknown in AGC family kinases, and show that docking interaction provides robustness to Cbk1’s regulation of its two known in vivo substrates. Co-evolution of docking motifs and phosphorylation consensus sites strongly indicates that a protein is an in vivo regulatory target of this hippo pathway, and predicts a new group of high-confidence Cbk1 substrates that function at sites of cytokinesis and cell growth. Moreover, docking peptides arise in unstructured regions of proteins that are probably already kinase substrates, suggesting a broad sequential model for adaptive acquisition of kinase docking in rapidly evolving intrinsically disordered polypeptides.  相似文献   

11.
12.
Volatile anesthetics isoflurane possibly improves the ischemic brain injury. However, its molecular actions are still unclear. In ischemia, protein kinase C (PKC)γ and calcium/calmodulin dependent protein kinase II (CaMKII)-α are persistently translocated from cytosol to cell membranes, and diminish these translocation suggested to be neuroprotective. We thus tested a hypothesis that isoflurane inhibits PKCγ and CaMKII-α translocation after ischemic brain insults. C57Bl/6J male mice were made to inhale 1 or 2 MAC isoflurane, after which 3 or 5 min cerebral ischemia was induced by decapitation. The sampled cerebrum cortex was then homogenized and centrifuged into crude synaptosomal fractions (P2), cytosolic fractions (S3), and particulate fractions (P3). CaMKII-α and PKCγ levels of these fractions were analyzed by immunoblotting. PKCγ and CaMKII-α are translocated to synaptic membrane from cytosol by cerebral ischemia, although isoflurane significantly inhibited such translocation. These results may explain in part the cellular and molecular mechanisms of neuroprotective effects of isoflurane.  相似文献   

13.
Protein kinase A (PKA) holoenzyme consists of two catalytic (C) subunits and a regulatory (R) subunit dimer (R2C2). The kinase is activated by the binding of cAMPs to the two cyclic nucleotide binding domains (CBDs), A and B, on each R-subunit. Despite extensive study, details of the allosteric mechanisms underlying the cooperativity of holoenzyme activation remain unclear. Several Markov state models of PKA-RIα were developed to test competing theories of activation for the R2C2 complex. We found that CBD-B plays an essential role in R-C interaction and promotes the release of the first C-subunit prior to the binding to CBD-A. This favors a conformational selection mechanism for release of the first C-subunit of PKA. However, the release of the second C-subunit requires all four cAMP sites to be occupied. These analyses elucidate R-C heterodimer interactions in the cooperative activation of PKA and cAMP binding and represent a new mechanistic model of R2C2 PKA-RIα activation.  相似文献   

14.
AMP-activated protein kinase (AMPK) is a heterotrimeric complex playing a crucial role in maintaining cellular energy homeostasis. Recently, homodimerization of mammalian AMPK and yeast ortholog SNF1 was shown by us and others. In SNF1, it involved specific hydrophobic residues in the kinase domain αG-helix. Mutation of the corresponding AMPK α-subunit residues (Val-219 and Phe-223) to glutamate reduced the tendency of the kinase to form higher order homo-oligomers, as was determined by the following three independent techniques in vitro: (i) small angle x-ray scattering, (ii) surface plasmon resonance spectroscopy, and (iii) two-dimensional blue native/SDS-PAGE. Recombinant protein as well as AMPK in cell lysates of primary cells revealed distinct complexes of various sizes. In particular, the assembly of very high molecular mass complexes was dependent on both the αG-helix-mediated hydrophobic interactions and kinase activation. In vitro and when overexpressed in double knock-out (α1−/−, α2−/−) mouse embryonic fibroblast cells, activation of mutant AMPK was impaired, indicating a critical role of the αG-helix residues for AMPK activation via its upstream kinases. Also inactivation by protein phosphatase 2Cα was affected in mutant AMPK. Importantly, activation of mutant AMPK by LKB1 was restored by exchanging the corresponding and conserved hydrophobic αG-helix residues of LKB1 (Ile-260 and Phe-264) to positively charged amino acids. These mutations functionally rescued LKB1-dependent activation of mutant AMPK in vitro and in cell culture. Our data suggest a physiological role for the hydrophobic αG-helix residues in homo-oligomerization of heterotrimers and cellular interactions, in particular with upstream kinases, indicating an additional level of AMPK regulation.The maintenance of energy homeostasis is a basic requirement of all living organisms. The AMP-activated protein kinase (AMPK)2 is crucially involved in this essential process by playing a central role in sensing and regulating energy metabolism on the cellular and whole body level (16). AMPK is also participating in several signaling pathways associated with cancer and metabolic diseases, like type 2 diabetes mellitus, obesity, and other metabolic disorders (79).Mammalian AMPK belongs to a highly conserved family of serine/threonine protein kinases with homologs found in all eukaryotic organisms examined (1, 3, 10). Its heterotrimeric structure includes a catalytic α-subunit and regulatory β- and γ-subunits. These subunits exist in different isoforms (α1, α2, β1, β2, γ1, γ2, and γ3) and splice variants (for γ2 and γ3) and can thus assemble to a broad variety of heterotrimeric isoform combinations. The α- and β-subunits possess multiple autophosphorylation sites, which have been implicated in regulation of subcellular localization and kinase activation (1115). The most critical step of AMPK activation, however, is phosphorylation of Thr-172 within the activation segment of the α-subunit kinase domain. At least two AMPK upstream kinases (AMPKKs) have been identified so far, namely the tumor suppressor kinase LKB1 in complex with MO25 and STRAD (16) and Ca2+/calmodulin-dependent protein kinase kinase-2 (CamKK2) (17). Furthermore, the transforming growth factor-β-activated kinase 1 was also shown to activate AMPK using a variety of in vitro approaches (18), but the physiological relevance of these findings remains unclear. Besides direct phosphorylation of Thr-172, AMPK activity is stimulated by the allosteric activator AMP, which can bind to two Bateman domains formed by two pairs of CBS domains within the γ-subunit (1922). Hereby bound AMP not only allosterically stimulates AMPK but also protects Thr-172 from dephosphorylation by protein phosphatase 2Cα (PP2Cα) and thus hinders inactivation of the kinase (19, 22, 23). Consequently, on the cellular level, AMPK is activated upon metabolic stress increasing the AMP/ATP ratio. Furthermore, AMPK activation can also be induced by several chemical compounds, like nucleoside 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (24) and the anti-diabetic drug Metformin (2528). In addition, the small molecule compound A-769662 was recently developed as a direct allosteric activator of AMPK (29, 30).Previous work in our groups proposed a model of AMPK regulation by AMP, which incorporates the major functional features and the latest structural information (31). The latter mainly included truncated core complexes of AMPK from different species (3235). Further valuable structural information is provided by the x-ray structures of the isolated catalytic domains, in particular of the human AMPK α2-subunit (Protein Data Bank code 2H6D) and its yeast ortholog SNF1 (36, 37). The kinase domain of SNF1 is capable of forming homodimers in the protein crystal, as well as in vitro in solution, in a unique way, which has not been observed previously in any other kinase (36). The dimer interface is predominantly formed by hydrophobic interactions of the loop-αG region, also known as subdomain X situated on the large kinase lobe (36, 38, 39), and it mainly involves Ile-257 and Phe-261. Because the T-loop activation segment was buried within the dimer interface, it was suggested that the dimeric state of the SNF1 catalytic domain represents the inactive form of the kinase. Intriguingly, it was shown in our groups by small angle x-ray scattering that AMPK self-organizes in a concentration-dependent manner to form homo-oligomers in solution (31). However, the interface responsible for oligomerization of the AMPK heterotrimer has remained elusive.Here we further investigate the distinct oligomeric states of the AMPK heterotrimer and suggest a possible regulatory function for this process. Most importantly, we provide conclusive evidence for participation of αG-helix residues in the recognition of AMPK by its upstream kinases LKB1 and CamKK2.  相似文献   

15.
16.
17.
18.
19.
建立了测定人乳腺癌胞浆cAMP结合蛋白(cAMPb.p.)方法。综合研究了其温度、保温时间、配体浓度、稳定性等条件。cAMPb.p.的K_D值为2.90×10~(-8)mol/L.并测定了60例雌激素受体(ER)Fu性乳腺癌标本的cAMPb.p.含量。此组病人术后均接受系统的内分泌治疗,ER/cAMPbp,比值范围为7.7~362×10~(-3),ER/cAMPb.p.比值≥40×10~(-3)的五年生存率明显高于比值<40×10~(-3)组,(p<0.005).表明测定ER/cAMPb.p.比值对预测患者内分泌治疗疗效,优于单独测定ER.  相似文献   

20.
Abnormal activation of GSK-3β is associated with psychiatric and neurodegenerative disorders. However, no study has examined the effect of GSK-3β on cerebral ischemia/reperfusion injury. We used oxygen-glucose deprivation/reoxygenation (OGD/R) and middle cerebral artery occlusion (MCAO) as models of ischemia/reperfusion in rats in vitro and in vivo. Our study showed that knockdown of GSK-3β with a GSK-3β siRNA virus improved injury and increased viability of neurons subjected to OGD/R. Levels of total Nrf2, nuclear Nrf2, and Nrf2 downstream proteins sulfiredoxin (Srx1) and thioredoxin (Trx1) increased after transfection with the GSK-3β siRNA virus. GSK-3β siRNA increased SOD activity and decreased MDA levels. Overexpression of GSK-3β with a pcDNA-GSK-3β virus showed opposite results. We also demonstrated that intracerebroventricular injection of GSK-3β siRNA in rats ameliorated neurological deficits, reduced brain infarct volume and water content, and reduced damage to cerebral cortical neurons after MCAO. Changes in total Nrf2, nuclear Nrf2, Srx1, Trx1, SOD, and MDA were similar to those observed in vitro. Our results show for the first time that GSK-3β can influence cerebral ischemia/reperfusion injury. The effects may be due to regulating the Nrf2/ARE pathway and decreasing oxidative stress. These results suggest a potential new drug target for clinical treatment of stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号