首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

A newly-described syndrome called Aneurysm-Osteoarthritis Syndrome (AOS) was recently reported. AOS presents with early onset osteoarthritis (OA) in multiple joints, together with aneurysms in major arteries, and is caused by rare mutations in SMAD3. Because of the similarity of AOS to idiopathic generalized OA (GOA), we hypothesized that SMAD3 is also associated with GOA and tested the hypothesis in a population-based cohort.

Methods

Study participants were derived from the Chingford study. Kellgren-Lawrence (KL) grades and the individual features of osteophytes and joint space narrowing (JSN) were scored from radiographs of hands, knees, hips, and lumbar spines. The total KL score, osteophyte score, and JSN score were calculated and used as indicators of the total burden of radiographic OA. Forty-one common SNPs within SMAD3 were genotyped using the Illumina HumanHap610Q array. Linear regression modelling was used to test the association between the total KL score, osteophyte score, and JSN score and each of the 41 SNPs, with adjustment for patient age and BMI. Permutation testing was used to control the false positive rate.

Results

A total of 609 individuals were included in the analysis. All were Caucasian females with a mean age of 60.9±5.8. We found that rs3825977, with a minor allele (T) frequency of 20%, in the last intron of SMAD3, was significantly associated with total KL score (β = 0.14, Ppermutation = 0.002). This association was stronger for the total JSN score (β = 0.19, Ppermutation = 0.002) than for total osteophyte score (β = 0.11, Ppermutation = 0.02). The T allele is associated with a 1.47-fold increased odds for people with 5 or more joints to be affected by radiographic OA (Ppermutation = 0.046).

Conclusion

We found that SMAD3 is significantly associated with the total burden of radiographic OA. Further studies are required to reveal the mechanism of the association.  相似文献   

2.

Background

Schistosomes are chronic intravascular helminth parasites of humans causing a heavy burden of disease worldwide. Diagnosis of schistosomiasis currently requires the detection of schistosome eggs in the feces and urine of infected individuals. This method unreliably measures disease burden due to poor sensitivity and wide variances in egg shedding. In vivo imaging of schistosome parasites could potentially better assess disease burden, improve management of schistosomiasis, facilitate vaccine development, and enhance study of the parasite''s biology. Schistosoma mansoni (S. mansoni) have a high metabolic demand for glucose. In this work we investigated whether the parasite burden in mice could be assessed by positron emission tomography (PET) imaging with 2-deoxy-2[18F]fluoro-D-glucose (FDG).

Methodology/Principal Findings

Live adult S. mansoni worms FDG uptake in vitro increased with the number of worms. Athymic nude mice infected with S. mansoni 5–6 weeks earlier were used in the imaging studies. Fluorescence molecular tomography (FMT) imaging with Prosense 680 was first performed. Accumulation of the imaging probe in the lower abdomen correlated with the number of worms in mice with low infection burden. The total FDG uptake in the common portal vein and/or regions of elevated FDG uptake in the liver linearly correlated to the number of worms recovered from infected animals (R2 = 0.58, P<0.001, n = 40). FDG uptake showed a stronger correlation with the worm burden in mice with more than 50 worms (R2 = 0.85, P<0.001, n = 17). Cryomicrotome imaging confirmed that most of the worms in a mouse with a high infection burden were in the portal vein, but not in a mouse with a low infection burden. FDG uptake in recovered worms measured by well counting closely correlated with worm number (R2 = 0.85, P<0.001, n = 21). Infected mice showed a 32% average decrease in total FDG uptake after three days of praziquantel treatment (P = 0.12). The total FDG uptake in untreated mice increased on average by 36% over the same period (P = 0.052).

Conclusion

FDG PET may be useful to non-invasively quantify the worm burden in schistosomiasis-infected animals. Future investigations aiming at minimizing non-specific FDG uptake and to improve the recovery of signal from worms located in the lower abdomen will include the development of more specific radiotracers.  相似文献   

3.

Introduction

Osteoarthritis (OA) is associated with the metabolic syndrome, however the underlying mechanisms remain unclear. We investigated whether low density lipoprotein (LDL) accumulation leads to increased LDL uptake by synovial macrophages and affects synovial activation, cartilage destruction and enthesophyte/osteophyte formation during experimental OA in mice.

Methods

LDL receptor deficient (LDLr−/−) mice and wild type (WT) controls received a cholesterol-rich or control diet for 120 days. Experimental OA was induced by intra-articular injection of collagenase twelve weeks after start of the diet. OA knee joints and synovial wash-outs were analyzed for OA-related changes. Murine bone marrow derived macrophages were stimulated with oxidized LDL (oxLDL), whereupon growth factor presence and gene expression were analyzed.

Results

A cholesterol-rich diet increased apolipoprotein B (ApoB) accumulation in synovial macrophages. Although increased LDL levels did not enhance thickening of the synovial lining, S100A8 expression within macrophages was increased in WT mice after receiving a cholesterol-rich diet, reflecting an elevated activation status. Both a cholesterol-rich diet and LDLr deficiency had no effect on cartilage damage; in contrast, ectopic bone formation was increased within joint ligaments (fold increase 6.7 and 6.1, respectively). Moreover, increased osteophyte size was found at the margins of the tibial plateau (4.4 fold increase after a cholesterol-rich diet and 5.3 fold increase in LDLr−/− mice). Synovial wash-outs of LDLr−/− mice and supernatants of macrophages stimulated with oxLDL led to increased transforming growth factor-beta (TGF-β) signaling compared to controls.

Conclusions

LDL accumulation within synovial lining cells leads to increased activation of synovium and osteophyte formation in experimental OA. OxLDL uptake by macrophages activates growth factors of the TGF-superfamily.  相似文献   

4.

Background

There is an emerging interest in using magnetic resonance imaging (MRI) T2* measurement for the evaluation of degenerative cartilage in osteoarthritis (OA). However, relatively few studies have addressed OA-related changes in adjacent knee structures. This study used MRI T2* measurement to investigate sequential changes in knee cartilage, meniscus, and subchondral bone marrow in a rat OA model induced by anterior cruciate ligament transection (ACLX).

Materials and Methods

Eighteen male Sprague Dawley rats were randomly separated into three groups (n = 6 each group). Group 1 was the normal control group. Groups 2 and 3 received ACLX and sham-ACLX, respectively, of the right knee. T2* values were measured in the knee cartilage, the meniscus, and femoral subchondral bone marrow of all rats at 0, 4, 13, and 18 weeks after surgery.

Results

Cartilage T2* values were significantly higher at 4, 13, and 18 weeks postoperatively in rats of the ACLX group than in rats of the control and sham groups (p<0.001). In the ACLX group (compared to the sham and control groups), T2* values increased significantly first in the posterior horn of the medial meniscus at 4 weeks (p = 0.001), then in the anterior horn of the medial meniscus at 13 weeks (p<0.001), and began to increase significantly in the femoral subchondral bone marrow at 13 weeks (p = 0.043).

Conclusion

Quantitative MR T2* measurements of OA-related tissues are feasible. Sequential change in T2* over time in cartilage, meniscus, and subchondral bone marrow were documented. This information could be potentially useful for in vivo monitoring of disease progression.  相似文献   

5.

Objective

This study aimed to assess changes in osteophytic, chondral, and subchondral structures in a surgically-induced osteoarthritis (OA) rabbit model in order to correlate MRI findings with the macroscopic progress of OA and to define the timepoint for disease status in this OA model.

Methods

The OA model was constructed by surgery in thirty rabbits with ten normal rabbits serving as controls (baseline). High-resolution three-dimensional MRI using a 1.5-T coil was performed at baseline, two, four, and eight weeks post-surgery. MRIs of cartilage lesions, subchondral bone lesions, and osteophyte formations were independently assessed by two blinded radiologists. Ten rabbits were sacrificed at baseline, two, four, and eight weeks post-surgery, and macroscopic evaluation was independently performed by two blinded orthopedic surgeons.

Results

The signal intensities and morphologies of chondral and subchondral structures by MRI accurately reflected the degree of OA. Cartilage defects progressed from a grade of 0.05–0.15 to 1.15–1.30 to 1.90–1.97 to 3.00–3.35 at each successive time point, respectively (p<0.05). Subchondral bone lesions progressed from a grade of 0.00 to 0.78–0.90 to 1.27–1.58 to 1.95–2.23 at each successive time point, respectively (p = 0.000). Osteophytes progressed from a size (mm) of 0.00 to 0.87–1.06 to 1.24–1.87 to 2.21–3.21 at each successive time point, respectively (p = 0.000).

Conclusions

Serial observations revealed that MRI can accurately detect the progression of cartilage lesions and subchondral bone edema over an eight-week period but may not be accurate in detecting osteophyte sizes. Week four post-surgery was considered the timepoint between OA-negative and OA-positive status in this OA model. The combination of this OA model with MRI evaluation should provide a promising tool for the pre-clinical evaluation of new disease-modifying osteoarthritis drugs.  相似文献   

6.

Introduction

Biomarkers to identify osteoarthritis (OA) patients at risk for disease progression are needed. As part of a proteomic analysis of knee synovial fluid from normal and OA patients, differentially expressed proteins were identified that could represent potential biomarkers for OA. This study aimed to use mass spectrometry assays to identify representative peptides from several proteins in synovial fluid and peripheral blood, and assess their levels as biomarkers of OA progression.

Methods

Multiplexed high throughput selected reaction monitoring (SRM) assays were developed to measure tryptic peptides representative of 23 proteins in matched serum and synovial fluid samples from late OA subjects at the time of joint replacement. Subsequently plasma samples from the baseline visit of 173 subjects in an observational OA cohort were tested by SRM for peptides from nine of these proteins: afamin, clusterin, cartilage oligomeric matrix protein, hepatocyte growth factor, kallistatin, insulin-like growth factor binding protein, acid labile subunit, lubricin, lumican, and pigment epithelium-derived factor. Linear regression was used to determine the association between the peptide biomarker level at baseline and change in joint space width (ΔJSW) from baseline to 30 months, adjusting for age and sex.

Results

In the matched cohort, 17 proteins could be identified in synovial fluid and 16 proteins were detected in serum. For the progression cohort, the average age was 62 and average ΔJSW over 30 months was 0.68 mm. A high correlation between different peptides from individual proteins was observed, indicating our assays correctly measured their target proteins. Peptides representative of clusterin, lumican and lubricin showed statistically significant associations with joint space narrowing after adjustment for age and sex. Partial R2 values showed clusterin FMETVAEK and lubricin LVEVNPK peptide biomarkers explains about 2 to 3% of the variability of ΔJSW, similar to that explained by age. A biomarker score combining normalized data for both lubricin and clusterin peptides increased the model R2 to 0.079.

Conclusions

Our results suggest that when combined, levels of peptides representative of clusterin and lubricin in plasma are as predictive of OA progression as age. Replication of these findings in other prospective OA cohorts is planned.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-014-0456-6) contains supplementary material, which is available to authorized users.  相似文献   

7.

Purpose

To investigate the biomarkers change in serum and the correlation with quantitative MRI markers by histopathologic evaluation of the cartilage in surgically-induced osteoarthritis(OA) rabbit model.

Materials and Methods

Thirty-six mature New Zealand rabbits were used. Eighteen rabbits were divided into six groups randomly and equally and subjected to surgery using the improved Hulth method. The other eighteen rabbits were also allocated into six groups randomly and equally which served as the control. At multiple time points after surgery, the BMP-2, CTX-II and COMP levels in the serum were analyzed by ELISA, and quantitative MRI was performed. Histopathology was examined with HE, and Mankin scores were assessed. The changes in the biochemical biomarkers and imaging markers in the OA groups were compared with those in the control groups using paired-samples T tests. The correlation of quantitative MRI markers with biomarkers and Mankin scores were analyzed. The analysis of Mankin scores was conducted with non-parametric wilcoxon signed rank tests.

Results

The BMP-2 levels were increased at various times after surgery, and significant differences were observed between the OA and control groups(all the P values <0.001). CTX-II levels were significantly elevated at several intervals after surgery, including W2, W8, W12, W16 and W20(P=0.019, 0.004, 0.007, <0.001 and 0.016 respectively), but not at W4(P=0.764). Significant differences in the COMP levels from W2 to W20 were observed between the OA and the control groups(P<0.001, <0.001, <0.001, <0.001,=0.002 and =0.004 respectively). The T2 values increased at W8 post-surgery and were significantly different between the OA and control groups(P=0.001, <0.001, <0.001 and <0.001 respectively). T2* values increased from W2 to W20 and were significantly different between the control and OA groups(P=0.002, =0.001, <0.001, <0.001, =0.001 and <0.001 respectively). T2 values had significant correlation with BMP-2 and CTX-II(P<0.001 and =0.014), except COMP(P=0.305)., while the correlation of T2* values with BMP-2, CTX-II and COMP was significant(P=0.043, 0.005 and 0.025 respectively). In addition, a positive correlation of T2 values and Mankin scores was observed(P<0.001).

Conclusion

With the relevance of the multiple time point analysis of the serum biomarkers and imaging markers compared with histological findings, BMP-2, CTX-II and COMP combined with T2 and T2* can be used to reflect and monitor OA progression potentially.  相似文献   

8.

Background

There is an ongoing debate as to whether early diabetic nephropathy in Type 2 diabetes mellitus may be attributed to the glomerulus or to the proximal tubule. Urinary excretion of nephrin and vascular endothelial growth factor may increase even in the normoalbuminuria stage. In the course of diabetic nephropathy, the proximal tubule may be involved in the uptake of urinary nephrin and vascular endothelial growth factor.

Materials and Methods

Two groups of consecutive Type 2 diabetes mellitus outpatients (38 normo-, 32 microalbuminuric) and 21 healthy subjects were enrolled in a cross-sectional study and evaluated concerning the relation of proximal tubule dysfunction with the podocyte biomarkers excretion, assessed by ELISA methods. The impact of advanced glycation end-products on this relation was also queried.

Results

Urinary alpha1-microglobulin and kidney injury molecule-1 correlated with urinary albumin:creatinine ratio (R2 = 0.269; p<0.001; R2 = 0.125; p<0.001), nephrinuria (R2 = 0.529; p<0.001; R2 = 0.203; p<0.001), urinary vascular endothelial growth factor (R2 = 0.709; p<0.001; R2 = 0.360; p<0.001), urinary advanced glycation end-products (R2 = 0.578; p<0.001; R2 = 0.405; p<0.001), serum cystatin C (R2 = 0.130; p<0.001; R2 = 0.128; p<0.001), and glomerular filtration rate (R2 = 0.167; p<0.001; R2 = 0.166; p<0.001); nephrinuria and urinary vascular endothelial growth factor correlated with urinary albumin:creatinine ratio (R2 = 0.498; p<0.001; R2 = 0.227; p<0.001), urinary advanced glycation end-products (R2 = 0.251; p<0.001; R2 = 0.308; p<0.001), serum cystatin C (R2 = 0.157; p<0.001; R2 = 0.226; p<0.001), and glomerular filtration rate (R2 = 0.087; p = 0.007; R2 = 0.218; p<0.001).

Conclusions

In Type 2 diabetes mellitus there is an association of proximal tubule dysfunction with podocyte damage biomarkers, even in the normoalbuminuria stage. This observation suggests a potential role of the proximal tubule in urinary nephrin and urinary vascular endothelial growth factor processing in early diabetic nephropathy, a fact which could be related to advanced glycation end-products intervention. Podocyte damage and proximal tubule dysfunction biomarkers could be validated as a practical approach to the diagnosis of early diabetic nephropathy by further studies on larger cohorts.  相似文献   

9.

Introduction

Recent studies regarding the infrapatellar fat pad (IPFP) mainly focus on the roles of the cells derived from the IPFP. There have been few clinical or epidemiological studies reporting on the association between the IPFP and knee osteoarthritis (OA). Our objective is to generate hypotheses regarding the associations between IPFP maximum area and knee OA measures in older adults.

Methods

A total of 977 subjects between 50 and 80 years of age (mean, 62.4 years) participated in the study. Radiographic knee osteophyte and joint space narrowing (JSN) were assessed using the Osteoarthritis Research Society International atlas. T1- or T2-weighted fat suppressed magnetic resonance imaging (MRI) was utilized to assess IPFP maximum area, cartilage volume, cartilage defects, and bone marrow lesions (BMLs). Knee pain was assessed by self-administered Western Ontario McMaster Osteoarthritis Index (WOMAC) questionnaire.

Results

After adjustment for potential confounders, IPFP maximum area was significantly associated with joint space narrowing (odds ratio (OR): 0.75, 95% confidence interval (CI): 0.62 to 0.91 (medial), 0.77, 95% CI: 0.62 to 0.96 (lateral)) and medial osteophytes (OR: 0.52, 95% CI: 0.35 to 0.76), knee tibial and patellar cartilage volume (β: 56.9 to 164.9 mm3/cm2, all P <0.001), tibial cartilage defects (OR: 0.58, 95% CI: 0.41 to 0.81 (medial), 0.53, 95% CI: 0.40-0.71 (lateral)), any BMLs (OR: 0.77, 95% CI: 0.63 to 0.94), and knee pain on a flat surface (OR: 0.79, 95% CI: 0.63 to 0.98). IPFP maximum area was negatively, but not significantly, associated with femoral cartilage defects, lateral tibiofemoral BMLs, and total knee pain or other knee pain subscales.

Conclusion

IPFP maximum area is beneficially associated with radiographic OA, MRI structural pathology and knee pain on a flat surface suggesting a protective role for IPFP possibly through shock absorption. Consequently, we must pay special attention to IPFP in the clinical settings, avoiding resection of normal IPFP in knee surgery.  相似文献   

10.

Background

Early identification of ambulatory persons at high short-term risk of death could benefit targeted prevention. To identify biomarkers for all-cause mortality and enhance risk prediction, we conducted high-throughput profiling of blood specimens in two large population-based cohorts.

Methods and Findings

106 candidate biomarkers were quantified by nuclear magnetic resonance spectroscopy of non-fasting plasma samples from a random subset of the Estonian Biobank (n = 9,842; age range 18–103 y; 508 deaths during a median of 5.4 y of follow-up). Biomarkers for all-cause mortality were examined using stepwise proportional hazards models. Significant biomarkers were validated and incremental predictive utility assessed in a population-based cohort from Finland (n = 7,503; 176 deaths during 5 y of follow-up). Four circulating biomarkers predicted the risk of all-cause mortality among participants from the Estonian Biobank after adjusting for conventional risk factors: alpha-1-acid glycoprotein (hazard ratio [HR] 1.67 per 1–standard deviation increment, 95% CI 1.53–1.82, p = 5×10−31), albumin (HR 0.70, 95% CI 0.65–0.76, p = 2×10−18), very-low-density lipoprotein particle size (HR 0.69, 95% CI 0.62–0.77, p = 3×10−12), and citrate (HR 1.33, 95% CI 1.21–1.45, p = 5×10−10). All four biomarkers were predictive of cardiovascular mortality, as well as death from cancer and other nonvascular diseases. One in five participants in the Estonian Biobank cohort with a biomarker summary score within the highest percentile died during the first year of follow-up, indicating prominent systemic reflections of frailty. The biomarker associations all replicated in the Finnish validation cohort. Including the four biomarkers in a risk prediction score improved risk assessment for 5-y mortality (increase in C-statistics 0.031, p = 0.01; continuous reclassification improvement 26.3%, p = 0.001).

Conclusions

Biomarker associations with cardiovascular, nonvascular, and cancer mortality suggest novel systemic connectivities across seemingly disparate morbidities. The biomarker profiling improved prediction of the short-term risk of death from all causes above established risk factors. Further investigations are needed to clarify the biological mechanisms and the utility of these biomarkers for guiding screening and prevention. Please see later in the article for the Editors'' Summary  相似文献   

11.

Background

Many low- and middle-income countries are not on track to reach the public health targets set out in the Millennium Development Goals (MDGs). We evaluated whether differential progress towards health MDGs was associated with economic development, public health funding (both overall and as percentage of available domestic funds), or health system infrastructure. We also examined the impact of joint epidemics of HIV/AIDS and noncommunicable diseases (NCDs), which may limit the ability of households to address child mortality and increase risks of infectious diseases.

Methods and Findings

We calculated each country''s distance from its MDG goals for HIV/AIDS, tuberculosis, and infant and child mortality targets for the year 2005 using the United Nations MDG database for 227 countries from 1990 to the present. We studied the association of economic development (gross domestic product [GDP] per capita in purchasing-power-parity), the relative priority placed on health (health spending as a percentage of GDP), real health spending (health system expenditures in purchasing-power-parity), HIV/AIDS burden (prevalence rates among ages 15–49 y), and NCD burden (age-standardised chronic disease mortality rates), with measures of distance from attainment of health MDGs. To avoid spurious correlations that may exist simply because countries with high disease burdens would be expected to have low MDG progress, and to adjust for potential confounding arising from differences in countries'' initial disease burdens, we analysed the variations in rates of change in MDG progress versus expected rates for each country. While economic development, health priority, health spending, and health infrastructure did not explain more than one-fifth of the differences in progress to health MDGs among countries, burdens of HIV and NCDs explained more than half of between-country inequalities in child mortality progress (R 2-infant mortality  = 0.57, R 2-under 5 mortality  = 0.54). HIV/AIDS and NCD burdens were also the strongest correlates of unequal progress towards tuberculosis goals (R 2 = 0.57), with NCDs having an effect independent of HIV/AIDS, consistent with micro-level studies of the influence of tobacco and diabetes on tuberculosis risks. Even after correcting for health system variables, initial child mortality, and tuberculosis diseases, we found that lower burdens of HIV/AIDS and NCDs were associated with much greater progress towards attainment of child mortality and tuberculosis MDGs than were gains in GDP. An estimated 1% lower HIV prevalence or 10% lower mortality rate from NCDs would have a similar impact on progress towards the tuberculosis MDG as an 80% or greater rise in GDP, corresponding to at least a decade of economic growth in low-income countries.

Conclusions

Unequal progress in health MDGs in low-income countries appears significantly related to burdens of HIV and NCDs in a population, after correcting for potentially confounding socioeconomic, disease burden, political, and health system variables. The common separation between NCDs, child mortality, and infectious syndromes among development programs may obscure interrelationships of illness affecting those living in poor households—whether economic (e.g., as money spent on tobacco is lost from child health expenditures) or biological (e.g., as diabetes or HIV enhance the risk of tuberculosis). Please see later in the article for the Editors'' Summary  相似文献   

12.

Introduction

We aimed to explore the associations between knee osteoarthritis (OA)-related tissue abnormalities assessed by conventional radiography (CR) and by high-resolution 3.0 Tesla magnetic resonance imaging (MRI), as well as biomechanical factors and findings from physical examination in patients with knee OA.

Methods

This was an explorative cross-sectional study of 105 patients with knee OA. Index knees were imaged using CR and MRI. Multiple features from CR and MRI (cartilage, osteophytes, bone marrow lesions, effusion and synovitis) were related to biomechanical factors (quadriceps and hamstrings muscle strength, proprioceptive accuracy and varus-valgus laxity) and physical examination findings (bony tenderness, crepitus, bony enlargement and palpable warmth), using multivariable regression analyses.

Results

Quadriceps weakness was associated with cartilage integrity, effusion, synovitis (all detected by MRI) and CR-detected joint space narrowing. Knee joint laxity was associated with MRI-detected cartilage integrity, CR-detected joint space narrowing and osteophyte formation. Multiple tissue abnormalities including cartilage integrity, osteophytes and effusion, but only those detected by MRI, were found to be associated with physical examination findings such as crepitus.

Conclusion

We observed clinically relevant findings, including a significant association between quadriceps weakness and both effusion and synovitis, detected by MRI. Inflammation was detected in over one-third of the participants, emphasizing the inflammatory component of OA and a possible important role for anti-inflammatory therapies in knee OA. In general, OA-related tissue abnormalities of the knee, even those detected by MRI, were found to be discordant with biomechanical and physical examination features.  相似文献   

13.

Background

Results from randomized controlled trials (RCT) concerning cardiac and renal effect of remote ischemic preconditioning(RIPC) in patients with stable coronary artery disease(CAD) are inconsistent. The aim of this study was to explore whether RIPC reduce cardiac and renal events after elective percutaneous coronary intervention (PCI).

Methods and Results

RCTs with data on cardiac or renal effect of RIPC in PCI were searched from Pubmed, EMBase, and Cochrane library (up to July 2014). Meta-regression and subgroup analysis were performed to identify the potential sources of significant heterogeneity(I 2≥40%). Eleven RCTs enrolling a total of 1713 study subjects with stable CAD were selected. Compared with controls, RIPC significantly reduced perioperative incidence of myocardial infarction (MI) [odds ratio(OR)  = 0.68; 95% CI, 0.51 to 0.91; P = 0.01; I2 = 41.0%] and contrast-induced acute kidney injury(AKI) (OR = 0.61; 95% CI, 0.38 to 0.98; P = 0.04; I2 = 39.0%). Meta-regression and subgroup analyses confirmed that the major source of heterogeneity for the incidence of MI was male proportion (coefficient  = −0.049; P = 0.047; adjusted R2 = 0.988; P = 0.02 for subgroup difference).

Conclusions

The present meta-analysis of RCTs suggests that RIPC may offer cardiorenal protection by reducing the incidence of MI and AKI in patients undergoing elective PCI. Moreover, this effect on MI is more pronounced in male subjects. Future high-quality, large-scale clinical trials should focus on the long-term clinical effect of RIPC.  相似文献   

14.

Introduction

Obesity''s association with hand osteoarthritis cannot be fully explained by mechanical loading. We examined the relationship between adipokines and radiographic hand osteoarthritis severity and pain.

Methods

In a pilot study of 44 hand osteoarthritis patients (39 women and 5 men), serum adipokine concentrations and hand x-ray Kallman-scores were analyzed using linear regression models. Secondary analyses examined correlates of hand pain.

Results

The cohort had a mean age of 63.5 years for women and 72.6 for men; mean (standard deviation) Kallman-scores were 43.3(17.4) for women and 46.2(10.8) for men. Mean body-mass-index was 30 kg/m2 for women and men. Mean leptin concentration was 32.2 ng/ml (women) and 18.5 ng/ml (men); mean adiponectin-total was 7.9 ng/ml (women) and 5.3 ng/ml (men); mean resistin was 7.3 ng/ml (women) and 9.4 ng/ml (men). No association was found between Kallman-scores and adipokine concentrations (R2 = 0.00–0.04 unadjusted analysis, all p-values>0.22). Secondary analyses showed mean visual-analog-scale pain of 4.8(2.4) for women and 6.6(0.9) for men. Leptin, BMI, and history of coronary artery disease were found to be associated with visual-analog-scale scores for chronic hand pain (R2 = 0.36 unadjusted analysis, p-values≤0.04).

Conclusion

In this pilot study, we found that adipokine serum concentrations were not associated with hand osteoarthritis radiographic severity; the most important correlates of joint damage were age and disease duration. Leptin serum concentration, BMI, and coronary artery disease were associated with the intensity of chronic hand OA pain.  相似文献   

15.

Objective

To determine if serum amyloid A (A-SAA) could be detected in human osteoarthritic (OA) joints and further clarify if high A-SAA level in joints result from a local production or from a diffusion process from abnormally elevated plasma concentration. Regulatory mechanism of A-SAA expression and its pro-inflammatory properties were also investigated.

Methods

A-SAA levels in serum and synovial fluid of OA (n = 29) and rheumatoid arthritis (RA) (n = 27) patients were measured and compared to matched-healthy volunteers (HV) (n = 35). In vitro cell cultures were performed on primary joint cells provided from osteoarthritis patients. Regulatory mechanisms were studied using Western-blotting, ELISA and lentiviral transfections.

Results

A-SAA was statistically increased in OA plasma patients compared to HV. Moreover, A-SAA level in OA plasma and synovial fluid increased with the Kellgren & Lauwrence grade. For all OA and RA patients, A-SAA plasma level was higher and highly correlated with its corresponding level in the synovial fluid, therefore supporting that A-SAA was mainly due to the passive diffusion process from blood into the joint cavity. However, A-SAA expression was also observed in vitro under corticosteroid treatment and/or under IL-1beta stimuli. A-SAA expression was down-regulated by PPAR-γ agonists (genistein and rosiglitazone) and up-regulated by TGF-β1 through Alk1 (Smad1/5) pathway. RhSAA induced proinflammatory cytokines (IL-6, IL-8, GRO-α and MCP-1) and metalloproteinases (MMP-1, MMP-3 and MMP-13) expression in FLS and chondrocytes, which expression was downregulated by TAK242, a specific TLR4 inhibitor.

Conclusion

Systemic or local A-SAA expression inside OA joint cavity may play a key role in inflammatory process seen in osteoarthritis, which could be counteracted by TLR4 inhibition.  相似文献   

16.

Background

Indoxyl sulfate and p-cresyl sulfate are unique microbial co-metabolites. Both co-metabolites have been involved in the pathogenesis of accelerated cardiovascular disease and renal disease progression. Available evidence suggests that indoxyl sulfate and p-cresyl sulfate may be considered candidate biomarkers of the human enterotype and may help to explain the link between diet and cardiovascular disease burden.

Objective and Design

Information on clinical determinants and heritability of indoxyl sulfate and p-cresyl sulfate serum is non-existing. To clarify this issue, the authors determined serum levels of indoxyl sulfate and p-cresyl sulfate in 773 individuals, recruited in the frame of the Flemish Study on Environment, Genes and Health Outcomes (FLEMENGHO study).

Results

Serum levels of indoxyl sulfate and p-cresyl sulfate amounted to 3.1 (2.4–4.3) and 13.0 (7.4–21.5) μM, respectively. Regression analysis identified renal function, age and sex as independent determinants of both co-metabolites. Both serum indoxyl sulfate (h2 = 0.17) and p-cresyl sulfate (h2 = 0.18) concentrations showed moderate but significant heritability after adjustment for covariables, with significant genetic and environmental correlations for both co-metabolites.

Limitations

Family studies cannot provide conclusive evidence for a genetic contribution, as confounding by shared environmental effects can never be excluded.

Conclusions

The heritability of indoxyl sulfate and p-cresyl sulfate is moderate. Besides genetic host factors and environmental factors, also renal function, sex and age influence the serum levels of these co-metabolites.  相似文献   

17.

Background

Currently, a limited range of biochemical tests for hypoxia are in clinical use. Early diagnostic and functional biomarkers that mirror cellular metabolism and recovery during resuscitation are lacking. We hypothesized that the quantification of metabolites after hypoxia and resuscitation would enable the detection of markers of hypoxia as well as markers enabling the monitoring and evaluation of resuscitation strategies.

Methods and Findings

Hypoxemia of different durations was induced in newborn piglets before randomization for resuscitation with 21% or 100% oxygen for 15 min or prolonged hyperoxia. Metabolites were measured in plasma taken before and after hypoxia as well as after resuscitation. Lactate, pH and base deficit did not correlate with the duration of hypoxia. In contrast to these, we detected the ratios of alanine to branched chained amino acids (Ala/BCAA; R2.adj = 0.58, q-value<0.001) and of glycine to BCAA (Gly/BCAA; R2.adj = 0.45, q-value<0.005), which were highly correlated with the duration of hypoxia. Combinations of metabolites and ratios increased the correlation to R2adjust = 0.92. Reoxygenation with 100% oxygen delayed cellular metabolic recovery. Reoxygenation with different concentrations of oxygen reduced lactate levels to a similar extent. In contrast, metabolites of the Krebs cycle (which is directly linked to mitochondrial function) including alpha keto-glutarate, succinate and fumarate were significantly reduced at different rates depending on the resuscitation, showing a delay in recovery in the 100% reoxygenation groups. Additional metabolites showing different responses to reoxygenation include oxysterols and acylcarnitines (n = 8–11, q<0.001).

Conclusions

This study provides a novel strategy and set of biomarkers. It provides biochemical in vivo data that resuscitation with 100% oxygen delays cellular recovery. In addition, the oxysterol increase raises concerns about the safety of 100% O2 resuscitation. Our biomarkers can be used in a broad clinical setting for evaluation or the prediction of damage in conditions associated with low tissue oxygenation in both infancy and adulthood. These findings have to be validated in human trials.  相似文献   

18.

Background

The ferritin is an important participant of iron-storage but its regulation and related factors were not well defined. The present objective was to explore the potential association between serum ferritin levels and sex hormones.

Methods

1999 Chinese men in the Fangchenggang Area Male Health and Examination Survey (FAMHES) were recruited in this cross-sectional study. Levels of serum ferritin, total testosterone (free testosterone was calculated from the total one), estradiol and sex hormone-binding protein were detected in venous blood samples. The effects of age, BMI, smoking as well as alcohol consumption were analyzed on ferritin levels, respectively, and then the Pearson’s correlation analysis was used to evaluate the association between ferritin levels and sex hormones adjusting for the above factors.

Results

The age, BMI and alcohol consumption significantly affected serum ferritin levels, but there was no significant difference between smokers and nonsmokers. Ferritin levels were significantly and negatively associated with total testosterone (R = −0.205, P< 0.001), sex hormone-binding protein (R = −0.161, P<0.001) and free testosterone (R = −0.097, P<0.001). After age and alcohol consumption were adjusted, the above associations were still significant (R = −0.200, −0.181 and −0.083, respectively, all P<0.001). However, there was only borderline negative association between ferritin levels and estradiol (adjusted R = −0.039, P = 0.083).

Conclusion

The large scale of epidemic results showed the significantly negative associations between serum ferritin levels and sex hormones, which may provide more clues to explore the potential regulation and biological mechanism of ferritin.  相似文献   

19.

Introduction

Microvesicles (MVs), earlier referred to as microparticles, represent a major type of extracellular vesicles currently considered as novel biomarkers in various clinical settings such as autoimmune disorders. However, the analysis of MVs in body fluids has not been fully standardized yet, and there are numerous pitfalls that hinder the correct assessment of these structures.

Methods

In this study, we analyzed synovial fluid (SF) samples of patients with osteoarthritis (OA), rheumatoid arthritis (RA) and juvenile idiopathic arthritis (JIA). To assess factors that may confound MV detection in joint diseases, we used electron microscopy (EM), Nanoparticle Tracking Analysis (NTA) and mass spectrometry (MS). For flow cytometry, a method commonly used for phenotyping and enumeration of MVs, we combined recent advances in the field, and used a novel approach of differential detergent lysis for the exclusion of MV-mimicking non-vesicular signals.

Results

EM and NTA showed that substantial amounts of particles other than MVs were present in SF samples. Beyond known MV-associated proteins, MS analysis also revealed abundant plasma- and immune complex-related proteins in MV preparations. Applying improved flow cytometric analysis, we demonstrate for the first time that CD3+ and CD8+ T-cell derived SF MVs are highly elevated in patients with RA compared to OA patients (p = 0.027 and p = 0.009, respectively, after Bonferroni corrections). In JIA, we identified reduced numbers of B cell-derived MVs (p = 0.009, after Bonferroni correction).

Conclusions

Our results suggest that improved flow cytometric assessment of MVs facilitates the detection of previously unrecognized disease-associated vesicular signatures.  相似文献   

20.

Background and Aims

Obesity is a well-known risk factor for type 2 diabetes. Genome-wide association studies have identified a number of genetic loci associated with obesity. The aim of this study is to examine the contribution of obesity-related genomic loci to type 2 diabetes in a Chinese population.

Methods

We successfully genotyped 18 obesity-related single nucleotide polymorphisms among 5338 type 2 diabetic patients and 4663 controls. Both individual and joint effects of these single nucleotide polymorphisms on type 2 diabetes and quantitative glycemic traits (assessing β-cell function and insulin resistance) were analyzed using logistic and linear regression models, respectively.

Results

Two single nucleotide polymorphisms near MC4R and GNPDA2 genes were significantly associated with type 2 diabetes before adjusting for body mass index and waist circumference (OR (95% CI) = 1.14 (1.06, 1.22) for the A allele of rs12970134, P = 4.75×10−4; OR (95% CI) = 1.10 (1.03, 1.17) for the G allele of rs10938397, P = 4.54×10−3). When body mass index and waist circumference were further adjusted, the association of MC4R with type 2 diabetes remained significant (P = 1.81×10−2) and that of GNPDA2 was attenuated (P = 1.26×10−1), suggesting the effect of the locus including GNPDA2 on type 2 diabetes may be mediated through obesity. Single nucleotide polymorphism rs2260000 within BAT2 was significantly associated with type 2 diabetes after adjusting for body mass index and waist circumference (P = 1.04×10−2). In addition, four single nucleotide polymorphisms (near or within SEC16B, BDNF, MAF and PRL genes) showed significant associations with quantitative glycemic traits in controls even after adjusting for body mass index and waist circumference (all P values<0.05).

Conclusions

This study indicates that obesity-related genomic loci were associated with type 2 diabetes and glycemic traits in the Han Chinese population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号