首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
J L Betz 《Gene》1986,42(3):283-292
Using both general recombination and molecular cloning techniques, 13I-, I-d and Itb missense mutations in the lacI gene were transferred from F'lacIq episomes to ColE1 derivative plasmids. Two deletion derivatives of the lacI genes encoding the wild-type (wt) and the tight-binding (Itb) B3 and B5 repressors were also constructed. The mutant repressors were examined for polypeptide size and stability, and for binding to the inducer isopropyl-beta-D-thiogalactoside (IPTG). Several of the I-d repressors were shown to be partially degraded in vivo, in confirmation of earlier results based on [14C]IPTG binding [Miwa and Sadler, J. Mol. Biol. 117 (1977) 843-868]. The sizes of polypeptides produced by lacI deletion derivatives were consistent with expectations based on the extent of deletion and the location of termination sites within the plasmid sequence. The first 400 bp of several mutant lacI genes were sequenced. Our wt lacI gene differs from another wt lacI sequence (Farabaugh, 1978), containing a single bp change that results in an Ala to Thr substitution at amino acid (aa) 109. We identified bp substitutions and the resultant aa changes for two Itb and two I-d genes; the positions correlated with prior genetic mapping data. Three of these new changes were in the N-terminal domain (headpiece) of repressor, with one change in the core domain at aa 99.  相似文献   

2.
To increase our understanding of protein-DNA interaction in general, and in particular that of lac repressor with lac operator, we have investigated the interaction of tight binding (Itb) repressors with wild type (WT) operator and Oc operators. Nine Oc and a WT operator were cloned and sequenced. Three different Oc and an O+ were then chosen for the footprint analysis of six Itb repressors and WT repressor. Distinct protection patterns for the various repressor-operator pairs were observed at low repressor concentrations whereas, at high repressor concentrations, a stretch of 24 bases of the lower strand of the four different operators was protected in most cases. This protection pattern at high repressor concentration was almost completely redundant for all repressor-operator pairs, in spite of the fact that the affinities of the various pairs differed by more than three orders of magnitude. Two exceptions to this general observation were the two tight binding repressors R67 and R78a. These had been mapped in a region that codes for amino acid residues involved in subunit interaction. The two repressors showed reduced protection of O+ and of some Oc operators at the 3' (right) end of the lower strand. Dimethylsulfoxide, which is known to increase the affinity of O+ for repressor, did not increase the number of bases protected by WT repressor on the lower strand of O+. The footprinting results presented here clearly demonstrate that lac repressor can maximally protect about 24 bases of the lower strand of the operator and that the number and kind of interactions occurring in this region determine the strength of the repressor-operator interaction.  相似文献   

3.
The isolation and characterization of altered repressors of the lac operon which have an increased affinity for an operator should give useful clues about the molecular basis for the very tight and specific interaction between repressor and operator. A selection system has been devised which allows the isolation of such repressor mutants. This system selects for mutant repressors which can overcome lac operator-constitutive (Oc) mutations. By using in vivo assays, 24 candidates were obtained which, compared with wild type, have an increased trans effect of their repressor on one or several Oc operators. Three of these candidates have been investigated in vitro; the affinity of their repressor for inducer was unchanged, whereas the affinity for wild-type operator was increased 15-, 86-, and 262-fold, respectively.  相似文献   

4.
Five tight-binding (Itb) mutants of the Escherichia coli lactose (lac) repressor have been characterized with regard to their non-specific affinity for DNA and their specific affinity for the wild-type operator and several sequence-altered (pseudo-) operators. Repressor-operator association rates were determined in the presence or absence of competitor DNA, dissociation rates of repressor from various DNA fragments were measured, and equilibrium competition for repressor binding was examined for several pseudo-operator DNAs. The mutant repressors exhibited increased non-specific affinity for DNA, and variable increases in affinity for sequence-altered operators. The known positions of amino acid substitutions for three of these Itb repressors support suggestions that residues 51 to 64 are important for operator recognition in addition to residues 1 to 50.  相似文献   

5.
It has been shown that 28 transdominant mutant lac repressors which have lost operator DNA-binding ability in vivo and in vitro, but still bind inducer and are able to form tetramers (i-d repressors), could be divided into two groups by their capacity or incapacity to bind non-specifically to the phosphate groups of the DNA backbone. All but one of 15 analysed i-d repressors with amino acid substitutions to the C-terminal of residue 52 showed uneffected non-specific DNA binding. All 13 tested i-d repressors with amino acid substitutions to the N-terminal of residue 53 did not bind to double-stranded DNA, and 11 of these repressors derived from missense mutations in the lacI gene were endogenously degraded. The degradation in vivo only affects the amino-terminal 50-60 residues producing a mutant-specific pattern of stable repressor fragments. These fragments are tetrameric and capable of binding inducer in vivo and in vitro. The proteolytic attack presumably takes place during synthesis of the i-d repressors, since the resulting fragments are stable, both in vivo (as shown by a pulse-chase experiment) and in vitro. The proteolysis in vivo depends on the growth conditions of the bacteria and is higher in cells grown in minimal media than in rich media. Wild-type repressor is only susceptible to limited proteolysis in cells grown in minimal media but not in cells grown in rich media. The results suggest that the majority of the sequence alterations before residue 53 in missense mutant i-d lac repressor proteins affect the three-dimensional structure of the amino-terminal DNA-binding domain of the repressor protein, making it susceptible to proteolytic attack by one or several intracellular proteases.  相似文献   

6.
Targeting the Escherichia coli lac repressor to the mammalian cell nucleus   总被引:2,自引:0,他引:2  
M C Hu  N Davidson 《Gene》1991,99(2):141-150
We have previously shown that about 90% of total Escherichia coli lac repressor synthesized in mammalian cells is located in the cytoplasm [Hu and Davidson, Cell 48 (1987) 555-566]. To target a functional lac repressor to the nucleus, we mutated 10 nucleotides at the 3' end of the coding sequence, thus adding the nuclear localization signal of the simian virus 40 large-T antigen to the C terminus of the repressor. The mutant lacI gene and the wild-type (wt) gene, both in standard animal cell expression vectors, driven by the promoter of the Rous sarcoma virus long terminal repeat, were stably transfected into three rodent cell lines. In confirmation of our previous results, only about 10% of the wt repressor, but all of the mutant protein, was localized in the nucleus. DNase I footprint analyses showed that the mutant repressor retained the same operator DNA-binding specificity as wt repressor. Furthermore, both repressor-operator complexes could be dissociated by addition of isopropyl-beta-D-thiogalactopyranoside in vitro. However, the ratio of number of repressor molecules per nucleus that, by in vitro assay, could bind to the operator sequence to the number of monomer repressor polypeptides per nucleus, as determined by Western blotting, was about 1:4 for the wt repressor and about 1:30 for the mutant repressor. This suggests that: (a) the mutant repressor assembles into tetramers inefficiently; and/or (b) it has reduced binding affinity to the operator sequence; and/or (c) it has higher binding affinity to nonspecific DNA.  相似文献   

7.
Escherichia coli lac repressor is a tetrameric protein composed of 360 amino acid subunits. Considerable attention has focused on its N-terminal region which is isolated by cleavage with proteases yielding N-terminal fragments of 51 to 59 amino acid residues. Because these short peptide fragments bind operator DNA, they have been extensively examined in nuclear magnetic resonance structural studies. Longer N-terminal peptide fragments that bind DNA cannot be obtained enzymatically. To extend structural studies and simultaneously verify proper folding in vivo, the DNA sequence encoding longer N-terminal fragments were cloned into a vector system with the coliphage T7 RNA polymerase/promoter. In addition to the wild-type lacI gene sequence, single amino acid substitutions were generated at positions 3 (Pro3----Tyr) and 61 (Ser61----Leu) as well as the double substitution in a 64 amino acid N-terminal fragment. These mutations were chosen because they increase the DNA binding affinity of the intact lac repressor by a factor of 10(2) to 10(4). The expression of these lac repressor fragments in the cell was verified by radioimmunoassays. Both wild-type and mutant lac repressor N termini bound operator DNA as judged by reduced beta-galactosidase synthesis and methylation protection in vivo. These observations also resolve a contradiction in the literature as to the location of the operator-specific, inducer-dependent DNA binding domain.  相似文献   

8.
N. Benson  C. Adams    P. Youderian 《Genetics》1992,130(1):17-26
The binding specificities of four mutant lambda cI repressor proteins with increased affinities for operator DNA were examined. Two mutant repressors (Glu34----Lys and Glu83----Lys) have the same specificity of binding as wild-type repressor, whereas two (Gly48----Ser and Gly48----Asn) have new binding specificities. The Gly48----Asn mutant repressor recognizes lambda operators with changes at base pair 3 with a different order of affinity than wild-type repressor, suggesting that the side chain of Asn48 makes additional specific DNA contacts at or near this base pair. When paired with a change that disrupts the specific interaction of the amino-terminal arm of lambda repressor with DNA (Lys4----Gln), one change that increases the affinity of repressor (Gly48----Ser) suppresses the binding defect of the Lys4----Gln repressor, resulting in a double mutant repressor with a new binding specificity different than that of both its parents and of wild type. These results lend strong support to the model of direct recognition of the lambda operator by lambda repressor proposed from the crystal structure of the repressor/operator complex.  相似文献   

9.
10.
The structural changes of the tet operator DNA upon binding of the TET repressor protein are examined by circular dichroism. For this purpose a 70 bp DNA fragment was prepared which contains both tet operators. About 67% of the base pairs of this DNA are involved in specific interaction with the TET repressor. A rather large change in the CD of the DNA is induced by binding of the TET repressor. The shape of the CD difference spectrum is similar to the respective difference found for the lac operator DNA upon complex formation with the lac repressor. However, the effect induced by the TET repressor on tet operator DNA seems to comprise both the specific and non-specific effect of the lac repressor on the structure of DNA [Culard, F. and Maurizot, J.C. (1981) Nucl. Acids Res. 9, 5157-5184]. Specificity of binding is confirmed by the lack of any effect of the TET repressor on the CD of a 95 bp lac operator containing DNA fragment, by the reduced mobility of TET repressor.tet operator complexes on polyacrylamide gels under CD conditions, and by a titration experiment of tet operator DNA with TET repressor employing the CD change. The latter experiment reveals a stoichiometry of four TET repressors per tet operon control region.  相似文献   

11.
N. Benson  P. Sugiono    P. Youderian 《Genetics》1988,118(1):21-29
The critical operator determinants for λ repressor recognition have been defined by analyzing the binding of wild-type repressor to a set of mutant operators in vivo. Base pair substitutions at six positions within the λ operator half-site impair binding severely, and define these base pairs as critical for operator function. One mutant operator binds repressor better than the consensus operator, and is a superoperator. The model proposed by M. Lewis in 1983 for the binding of λ repressor to its operator accurately predicts the observed operator requirements for binding in vivo, with several minor exceptions. The order of affinities of the six natural λ operators has also been determined.  相似文献   

12.
We have constructed a system which allows systematic testing of repressor--operator interactions. The system consists of two plasmids. One of them carries a lac operon in which lac operator has been replaced by a unique restriction site into which synthetic operators can be cloned. The other plasmid carries the gene coding for the repressor, in our case a semisynthetic lacI gene of which parts can be exchanged in a cassette-like manner. A galE host allows us to select for mutants which express repressors with altered specificities. Here we report the change of specificity in the lac system by changing residues 1 and 2 of the recognition helix of lac repressor. The specificity changes are brought about cooperatively by the change of both residues. Exchanges of just one residue broaden the specificity. Our results hint that the recognition helix of lac repressor may possibly have the opposite orientation to those in Lambda cro protein or 434 CI repressor.  相似文献   

13.
Several lac repressor mutants have been isolated which repress beta-galactosidase synthesis in Escherichia coli up to 200-fold. They do so by binding specifically to particular symmetrical lac Oc operator variants. The mutations in the lac repressor are localized in two separate parts of the recognition helix comprising (i) residues 1 and 2 which interact with base pairs 4 and 5 of lac operator and (ii) residue 6 which recognizes operator base pair 6. Mutations of residues 1 and 2 may be combined with a mutation of residue 6. The resulting mutant protein binds specifically to an operator variant with three symmetric exchanges in base pairs 4, 5 and 6.  相似文献   

14.
H M Sasmor  J L Betz 《Biochemistry》1990,29(38):9023-9028
Gel shift assays were used to examine the binding of the lactose (lac) repressor to polyoperator DNA molecules. Specific binding was differentiated from nonspecific DNA association by (i) equilibrating repressor-operator complexes below the nonspecific association constant and (ii) demonstrating the effects of the inducer isopropyl beta-D-thiogalactoside (IPTG) on the formation of repressor-operator complexes. With the linear polyoperator molecules, all eight operator sites could be simultaneously bound by distinct repressors. However, with circular molecules, the eight operator sites were saturable by repressor only in the nicked circular state and not in the covalently closed circular form. Under the experimental conditions used, there was no evidence of bifunctional repressor binding or loop formation. The results suggest that the conformational perturbation of DNA that occurs upon specific repressor binding was retained in topologically closed molecules and could modify other operator sites so as to make them unavailable for specific binding.  相似文献   

15.
A new method for purification of specific DNA sequences using a solid phase technique has been developed based on a fusion between the Escherichia coli lac repressor gene (lacI) and the staphylococcal protein A gene (spa). The fusion protein, expressed in Escherichia coli, is active both in vivo and in vitro with respect to its three functional activities (DNA binding, IPTG induction, and IgG binding). The recombinant protein can be immobilized in a one-step procedure with high yield and purity using the specific interaction between protein A and the Fc-part of immunoglobulin G. The immobilized repressor can thereafter be used for affinity purification of specific DNA fragments containing the lac operator (lacO) sequence.  相似文献   

16.
The carboxyl-terminal sequence of the lac repressor protein contains heptad repeats of leucines at positions 342, 349, and 356 that are required for tetramer assembly, as substitution of these leucine residues yields solely dimeric species (Chakerian, A. E., Tesmer, V. M., Manly, S. P., Brackett, J. K., Lynch, M. J., Hoh, J. T., and Matthews, K. S. (1991) J. Biol. Chem. 266, 1371-1374; Alberti, S., Oehler, S., von Wilcken-Bergmann, B., Kr?mer, H., and Müller-Hill, B. (1991) New Biol. 3, 57-62). To further investigate this region, which may form a leucine zipper motif, a family of lac repressor carboxyl-terminal deletion mutants eliminating the last 4, 5, 11, 18, and 32 amino acids (aa) has been constructed. The -4 aa mutant, in which all of the leucines in the presumed leucine zipper are intact, is tetrameric and displays operator and inducer binding properties similar to wild-type repressor. The -5 aa, -11 aa, -18 aa, and -32 aa deletion mutants, depleted of 1, 2, or all 3 of the leucines in the heptad repeats, are all dimeric, as demonstrated by gel filtration chromatography. Circular dichroism spectra and protease digestion studies indicate similar secondary/tertiary structures for the mutant and wild-type proteins. Differences in reaction with a monoclonal antibody specific for a subunit interface are observed for the dimeric versus tetrameric proteins, indicative of exposure of the target epitope as a consequence of deletion. Inducer binding properties of the deletion mutants are similar to wild-type tetrameric repressor at neutral pH. Only small differences in affinity and cooperativity from wild-type are evident at elevated pH; thus, the cooperative unit within the tetramer appears to be the dimer. "Apparent" operator binding affinity for the dimeric proteins is diminished, although minimal change in operator dissociation rate constants was observed. The diminution in apparent operator affinity may therefore derive from either 1) dissociation of the dimeric mutants to monomer generating a linked equilibrium or 2) alterations in intrinsic operator affinity of the dimers; the former explanation is favored. This detailed characterization of the purified mutant proteins confirms that the carboxyl-terminal region is involved in the dimer-dimer interface and demonstrates that cooperativity for inducer binding is contained within the dimer unit of the tetramer structure.  相似文献   

17.
I A Lorimer  C Y Ho  M Smith 《BioTechniques》1992,12(4):536-543
A simple and rapid screening procedure was developed to study the interaction of the S. cerevisiae alpha 2 repressor with its operator sequence. An E. coli expression vector was constructed in which the alpha 2 coding sequence was placed under control of the lac promoter. Bacterial colonies containing this vector could be lysed and assayed directly for binding of wild-type and mutant operator sequences when grown on nitrocellulose filters. alpha 2 assayed in this way showed the same sequence specificity as determined in vivo. Pools of mutant alpha 2 repressors in which the codons for Arg185 or Ser181 in the homeodomain region were randomized were created by cassette mutagenesis. These pools of mutants were screened with the wild-type operator sequence to determine allowed amino acid substitutions at each position. Results suggest that both Arg185 and Ser181 have a role in high affinity operator binding.  相似文献   

18.
We have altered the amino acid sequence of the lac repressor one residue at a time by utilizing a collection of nonsense suppressors that permit the insertion of 13 different amino acids in response to the amber (UAG) codon, as well as an additional amino acid in response to the UGA codon. We used this collection to suppress nonsense mutations at 141 positions in the lacI gene, which encodes the 360 amino acid long lac repressor, including 53 new nonsense mutations which we constructed by oligonucleotide-directed mutagenesis. This method has generated over 1600 single amino acid substitutions in the lac repressor. We have cataloged the effects of these replacements and have interpreted the results with the objective of gaining a better understanding of lac repressor structure, and protein structure in general. The DNA binding domain of the repressor, involving the amino-terminal 59 amino acids, is extremely sensitive to substitution, with 70% of the replacements resulting in the I- phenotype. However, the remaining 301 amino acid core of the repressor is strikingly tolerant of substitutions, with only 30% of the amino acids introduced causing the I- phenotype. This analysis reveals the location of sites in the protein involved in inducer binding, tighter binding to operator and thermal stability, and permits a virtual genetic image reconstruction of the lac repressor protein.  相似文献   

19.
DNA supercoiling promotes formation of a bent repression loop in lac DNA   总被引:60,自引:0,他引:60  
Titration experiments on supercoiled lac DNA show that one repressor tetramer can bind simultaneously to the primary lac operator and to the very weak lac pseudo-operator, located 93 base-pairs apart. The formation of this complex is accompanied by the appearance of an extreme hypersensitive site in a five base-pair sequence located approximately midway between the operators. This remote sequence is hypersensitive to attack by two different chemical probes, dimethyl sulfate and potassium permanganate, the latter of which is a new probe for distorted DNA. We interpret these results in terms of a complex in which lac repressor holds two remote operators together in a DNA loop. The formation of this bent DNA loop requires negative DNA supercoiling. In vivo, both lac operators bind repressor even though the presence of multiple operator copies has forced the two operators to compete for a limited amount of repressor. This suggests that the operator and pseudo-operator have similar affinities for repressor in vivo. Such similar affinities were observed in vitro only when DNA supercoiling forced formation of a repression loop.  相似文献   

20.
Three site specific deoxyuridine analogs of lac operator were tested for binding with wild type (SQ) and tight binding (QX86) lac repressors. Insertion of uracil for thymine at site 13 (our nomenclature) significantly reduced the dissociation half-life of QX86 repressor for lac operator DNA (21 vs 1.2 min). Two other sites (6 and 7) are affected to a much lesser extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号