首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
During embryogenesis, Schwann cells interact with axons and other Schwann cells, as they migrate, ensheath axons, and participate in organizing peripheral nervous tissues. The experiments reported here indicate that the calcium-dependent molecule, N-cadherin, mediates adhesion of Schwann cells to neurites and to other Schwann cells. Cell cultures from chick dorsal root ganglia and sciatic nerves were maintained in media containing either 2mM Ca++ or 0.2 mM Ca++, a concentration that inactivates calcium-dependent cadherins. When the leading lamellae of Schwann cells encountered migrating growth cones in medium with 2 mM Ca++, they usually remained extended, and the growth cones often advanced onto the Schwann cell upper surface. In the low Ca++ medium, the frequency of withdrawal of the Schwann cell lamella after contact with a growth cone was much greater, and withdrawal was the most common reaction to growth cone contact in medium with 2 mM Ca++ and anti-N-cadherin. Similarly, when motile leading margins of two Schwann cells touched in normal Ca++ medium, they often formed stable areas of contact. N-cadherin and vinculin were co-concentrated at these contact sites between Schwann cells. However, in low Ca++ medium or in the presence of anti-N-cadherin, interacting Schwann cells usually pulled away from each other in a behavior reminiscent of contact inhibition between fibroblasts. In cultures of dissociated cells in normal media, Schwann cells frequently were aligned along neurites, and ultrastructural examination showed extensive close apposition between plasma membranes of neurites and Schwann cells. When dorsal root ganglia explants were cultured with normal Ca++, Schwann cells migrated away from the explants in close association with extending neurites. All these interactions were disrupted in media with 0.2 mM Ca++. Alignment of Schwann cells along neurites was infrequent, as were extended close apposition between axonal and Schwann cell plasma membranes. Finally, migration of Schwann cells from ganglionic explants was reduced by disruption of adhesive contact with neurites. The addition of antibodies against N-cadherin to medium with normal Ca++ levels had similar effects as lowering the Ca++ concentration, but antibodies against the neuronal adhesive molecule, L1, had no effects on interactions between Schwann cells and neurites.  相似文献   

2.
The role of calcium-dependent adhesion molecules in the migration of nerve growth cones onto the top of Schwann cells was probed by examination of sensory growth cone-Schwann cell interactions in medium containing either 1.0 mM Ca2+ or 0.1 mM Ca2+. In the presence of 1.0 mM Ca2+ growth cones rapidly migrated onto Schwann cells, spread, and remained for extended periods. However, in 0.1 mM Ca2+ growth cones still made frequent contacts with Schwann cells, but migration onto the upper cell surface was much reduced. This contrast in growth cone-Schwann cell interactions could be switched rapidly by changing the Ca2+ concentration of the culture medium. Growth cones of retinal neurons showed similar calcium-dependence in their migration onto Schwann cells. Antibodies to the calcium-dependent adhesion molecule, N-cadherin, also blocked growth cone migration onto Schwann cells, but antibodies to another neuronal adhesion molecule, L1, had no effect on growth cone-Schwann cell interactions. Immunocytochemical staining for N-cadherin and L1 indicated that growth cones and Schwann cells have N-cadherin on their surfaces, while L1 is present only on axons and growth cones. These results provide two kinds of evidence that N-cadherin is important in the initial interactions of growth cones and Schwann cells.  相似文献   

3.
I have compared central nervous system (CNS) neurite outgrowth on glial and nonglial cells. Monolayers of glial cells (astrocytes and Schwann cells) or nonglial cells (e.g., fibroblasts) were prepared and were shown to be greater than 95% pure as judged by cell type-specific markers. These monolayers were then tested for their ability to support neurite outgrowth from various CNS explants. While CNS neurites grew vigorously on the glial cells, most showed little growth on nonglial cell monolayers. Neurites grew singly or in fine fascicles on the glial cells at rates greater than 0.5 mm/d. The neurite outgrowth on astrocytes was investigated in detail. Scanning and transmission electron microscopy showed that the neurites were closely apposed to the astrocyte surface and that the growth cones were well spread with long filopodia. There was no evidence of significant numbers of explant- derived cells migrating onto the monolayers. Two types of experiments indicated that factors associated with the astrocyte surface were primarily responsible for the vigorous neurite outgrowth seen on these cells: (a) Conditioned media from either astrocytes or fibroblasts had no effect on the pattern of outgrowth on fibroblasts and astrocytes, and conditioned media factors from either cell type did not promote neurite outgrowth when bound to polylysine-coated dishes. (b) When growing CNS neurites encountered a boundary between astrocytes and fibroblasts, they stayed on the astrocytes and did not encroach onto the fibroblasts. These experiments strongly suggest that molecules specific to the surfaces of astrocytes make these cells particularly attractive substrates for CNS neurite outgrowth, and they raise the possibility that similar molecules on embryonic glial cells may play a role in guiding axonal growth during normal CNS development.  相似文献   

4.
Schwann cells have a unique role in regulating the growth of axons during regeneration and presumably during development. Here we show that Schwann cells are the best substrate yet identified for promoting process growth in vitro by peripheral motor neurons. To determine the molecular interactions responsible for Schwann cell regulation of axon growth, we have examined the effects of specific antibodies on process growth in vitro, and have identified three glycoproteins that play major roles. These are the Ca2+-independent cell adhesion molecule (CAM), L1/Ng-CAM; the Ca2+-dependent CAM, N-cadherin; and members of the integrin extracellular matrix receptor superfamily. Two other CAMs present on neurons and/or Schwann cells-N-CAM and myelin-associated glycoprotein-do not appear to be important in regulating process growth. Our results imply that neuronal growth cones use integrin-class extracellular matrix receptors and at least two CAMs--N-cadherin and L1/Ng-CAM-for growth on Schwann cells in vitro and establish each of these glycoproteins as a strong candidate for regulating axon growth and guidance in vivo.  相似文献   

5.
In order to investigate the pathogenesis of medullary nephrocalcinosis, rabbit inner medullary collecting duct cells were grown in media containing different Ca++, PTH and pH levels. It was found that high Ca++ (7.8mM) only reduced growth slightly and that crystalline deposits were found under the cells. This suggests that high Ca++ is not severely toxic to the cells but can lead to deposition of calcium beneath the basement membrane. PTH did not effect cell growth even in the presence of high Ca++ implying that it has an indirect effect on tubular cells in medullary nephrocalcinosis associated with hyperparathyroidism. In renal tubular acidosis these cells are subjected to a persistently high urinary pH and low interstitial pH. Raising the pH reduced the cell growth in normal Ca++ medium whereas lowering the pH increased cell growth in vitro. Our results show that nephrocalcinosis is not due to the direct effect of raised pericellular Ca++ or PTH alone and that persistently alkaline tubular fluid may play a role.  相似文献   

6.
Slow pulsatile movements of Schwann cells in vitro were studied quantitatively by using time-lapse cinemicrography. Schwann cells from peripheral nerves of 3-day-old rats were cultured in serum-free medium. Most Schwann cells showed intermittent episodes of pulsatile movement; each episode consisted of one or several contractile pulses. About half of the episodes consisted of a single pulse, and episodes with more than four pulses were rare. The average episode of activity lasted 2.6 min, while the average duration of a single pulse was 1.5 min. The mean quiescent interval between episodes of activity was 3.7 min. Some cells showed no pulsatile activity. Active cells averaged 6.6 episodes/h. The fraction of time which a Schwann cell spent in pulsatile activity varied widely, with an average of 28%. Behavior of Schwann cells in HEPES-buffered Hanks saline was generally similar to that in the complete medium. Raising K+ to 40 mM or Ca++ to 10 mM did not markedly affect the time course of the pulsatile motility, although the contractions were more vigorous in the high Ca++. Pulsatile movement was reversibly inhibited by cytochalasin B and appeared to be potentiated by drugs that disrupt microtubules.  相似文献   

7.
Peripheral neurons and Schwann cells secrete plasminogen activator   总被引:10,自引:3,他引:7       下载免费PDF全文
The secretion of the protease plasminogen activator (PA) by cells of developing peripheral nerve was demonstrated. Fetal and early postnatal dorsal root ganglia were established in culture as explants or as individual neurons and Schwann cells. A fibrin overlay assay was used to visualize the locations of PA secretion. Fibrinolytic zones formed around the somata of explants and were skewed in the direction of maximal fiber outgrowth. Individual growth cones at the tips of long fasiculated fiber bundles also released PA. Approximately 50% of individual neurons showed PA secretion; especially pronounced release occurred at some growth cones. Culture of nerve growth factor- independent adult neurons showed that PA expression was independent of effects of this growth hormone. A subpopulation of Schwann cells was also active in PA secretion, which could be detected at the soma, at the bipolar processes, or along the entire cell length. Possible functions of neural PA in development and regeneration are discussed.  相似文献   

8.
Depolarizing response of rat parathyroid cells to divalent cations   总被引:2,自引:0,他引:2       下载免费PDF全文
Membrane potentials were recorded from rat parathyroid glands continuously perfused in vitro. At 1.5 mM external Ca++, the resting potential averages -73 +/- 5 mV (mean +/- SD, n = 66). On exposure to 2.5 mM Ca++, the cells depolarize reversibly to a potential of -34 +/- 8 mV (mean +/- SD). Depolarization to this value is complete in approximately 2-4 min, and repolarization on return to 1.5 mM Ca++ takes about the same time. The depolarizing action of high Ca++ is mimicked by all divalent cations tested, with the following order of effectiveness: Ca++ greater than Sr++ greater than Mg++ greater than Ba++ for alkali-earth metals, and Ca++ greater than Cd++ greater than Mn++ greater than Co++ greater than Zn++ for transition metals. Input resistance in 1.5 mM Ca++ was 24.35 +/- 14 M omega (mean +/- SD) and increased by an average factor of 2.43 +/- 0.8 after switching to 2.5 mM Ca++. The low value of input resistance suggests that cells are coupled by low-resistance junctions. The resting potential in low Ca++ is quite insensitive to removal of external Na+ or Cl-, but very sensitive to changes in external K+. Cells depolarize by 61 mV for a 10- fold increase in external K+. In high Ca++, membrane potential is less sensitive to an increase in external K+ and is unchanged by increasing K+ from 5 to 25 mM. Depolarization evoked by high Ca++ may be slowed, but is unchanged in amplitude by removal of external Na+ or Cl-. Organic (D600) and inorganic (Co++, Cd++, and Mn++) blockers of the Ca++ channels do not interfere with the electrical response to Ca++ changes. Our results show remarkable parallels to previous observations on the control of parathormone (PTH) release by Ca++. They suggest an association between membrane voltage and secretion that is very unusual: parathyroid cells secrete when fully polarized, and secrete less when depolarized. The extraordinary sensitivity of parathyroid cells to divalent cations leads us to hypothesize the existence in their membranes of a divalent cation receptor that controls membrane permeability (possibly to K+) and PTH secretion.  相似文献   

9.
Efficient and rapid conduction of action potentials by saltatory conduction requires the clustering of voltage-gated sodium channels at nodes of Ranvier. This clustering results from interactions between neurons and myelinating glia, although it has not been established whether this glial signal is contact-dependent or soluble. To investigate the nature of this signal, we examined sodium channel clustering in co-cultures of embryonic rat dorsal root ganglion neurons and Schwann cells. Cultures maintained under conditions promoting or preventing myelination were immunostained with antibodies against the α subunit of the sodium channel and against ankyrinG, a cytoskeletal protein associated with these channels. Consistent with previous in vivo studies (Vabnick et al., 1996), sodium channels and ankyrin G cluster at the onset of myelination. These clusters form adjacent to the ends of the myelinating Schwann cells and appear to fuse to form mature nodes. In contrast, sodium channels and ankyrin G do not cluster in neurons grown alone or in co-cultures where myelination is precluded by growing cells in defined media. Conditioned media from myelinating co-cultures also failed to induce sodium channel or ankyrin G clusters in cultures of neurons alone. Finally, no clusters develop in the amyelinated portions of suspended fascicles of dorsal root ganglia explants despite being in close proximity to myelinated segments in other areas of the dish. These results indicate that clustering of sodium channels requires contact with myelinating Schwann cells.  相似文献   

10.
Secondary cultures of Schwann cells were transfected with a plasmid containing the SV-40 T antigen gene expressed under the control of the mouse metallothionein-I promoter. We used the calcium phosphate method for transfection and obtained a transfection efficiency of 0.01%. The colonies were cloned by limited dilution, and these cloned cell lines were carried in medium containing zinc chloride (100 microM). One cloned cell line, which has now been carried for 180 doublings, appears to have a transformed phenotype with a doubling time of 20 h. These cells express SV-40 T antigen while maintaining established Schwann cell properties (positive staining for 217c, Ran-2, A5E3, glial fibrillary acidic protein, presence of 2',3'-cyclic nucleotide phosphohydrolase [CNPase] activity, and the ability to synthesize sulfogalactosylceramide and mRNA for the myelin protein, P0). Removal of zinc chloride from the medium resulted in reduced expression of T antigen and a change in the appearance of the cells to a more bipolar shape, although they still did not exhibit contact inhibition and maintained a doubling time of 20 h. These cells now became Ran-2-negative and showed increases in CNPase activity and in their ability to synthesize sulfogalactosylceramide. The amount of P0 mRNA remained unchanged. Transfected Schwann cells, however, stopped dividing when they contacted either basal lamina or neurites and became bipolar in appearance. The Schwann cells in contact with the neurites then extended processes to wrap around bundles of neurites. Transfection with the SV-40 T antigen gene therefore provides a method for obtaining Schwann cell lines that continue to express properties associated with untransfected cells in culture and may be used to study axon-Schwann cell interaction.  相似文献   

11.
Modification of the ionic calcium concentration in the culture medium markedly alters the pattern of proliferation and differentiation in cultured mouse epidermal cells. When medium calcium is lowered to 0.05--0.1 mM, keratinocytes proliferate rapidly with a high growth fraction and do not stratify, but continue to synthesize keratin. The cells grow as a monolayer for several months and can be subcultured and cloned in low Ca++ medium. Ultrastructural examination of cells cultured under low Ca++ conditions reveals widened intercellular spaces, abundant microvilli and perinuclear organization of tonofilaments and cellular organelles. Desmosomes are absent. Epidermal cells growing as a monolayer in low Ca++ can be induced to terminally differentiate by adding calcium to the level normally found in the culture medium (1.2 mM). Cell-to-cell contact occurs rapidly and desmosomes form within 2 hr. The cells stratify by 1--2 days and terminally differentiate with cell sloughing by 3--4 days. After Ca++ addition, DNA synthesis decreases with a lag of 5--10 hr and is totally inhibited within 34 hr. In contrast, RNA and protein synthesis continue at 40--50% of the low Ca++ level at day 3, a time when many cells are detaching from the culture dish. Keratin synthesis is unaffected by the Ca++ switch.  相似文献   

12.
We have explored the effect of the protein kinase inhibitor H7 on tight junction formation in a MDCK cell model for the development of cell-cell contact, tight junctions and epithelial polarity: the "Ca++ switch" model. In this developmental model, which is thought to mimic processes during the early morphogenesis of epithelial tissues, the protein kinase inhibitor H7 markedly inhibits the development of transepithelial resistance of confluent MDCK cells during the "switch" from low (1-5 microM) to normal (1.8 mM) Ca++ media compared with control MDCK cells. Moreover, indirect immunofluorescence using specific antisera against two tight junctional proteins, ZO1 and cingulin, revealed that H7 inhibits the sorting of these proteins from an intracellular site to the lateral surfaces of MDCK cells when the Ca++ in the medium is raised. These data suggest protein kinase mediation in sorting events that lead to the assembly of tight junctions.  相似文献   

13.
The role of cell adhesion molecules in neurite outgrowth on Müller cells   总被引:3,自引:0,他引:3  
The roles of neural cell adhesion molecule (NCAM), L1, N-cadherin, and integrin in neurite outgrowth on various substrates were studied. Antibodies against these cell surface molecules were added to explants of chick retina and the neurites from retinal ganglion cells were examined for effects of the antibodies on neurite length and fasciculation. On laminin, an anti-integrin antibody completely inhibited neurite outgrowth. The same antibody did not inhibit neurite outgrowth on polylysine or Müller cells. Antibodies to NCAM, L1, and N-cadherin did not significantly inhibit neurite outgrowth on laminin but produced significant inhibition on Müller cells. The inhibition of neurite outgrowth on glia by anti-L1 antibodies supports the hypothesis that L1 is capable of acting in a heterophilic binding mechanism. On laminin, both anti-N-cadherin and anti-L1 caused defasciculation of neurites from retinal ganglion cells, while anti-NCAM did not. None of these antibodies produced defasciculation on Müller cells. The results indicate that these three cell adhesion molecules may be very important in interactions with glia as axons grow from the retina to the tectum and may be less important in axon-axon interactions along this pathway. No evidence was found supporting the role of integrins in axon growth on Müller cells.  相似文献   

14.
The neural recognition molecules L1 and N-CAM have been shown to be preferentially localized at sites of Schwann cell-to-neurite and Schwann cell-to-Schwann cell contact in vitro. In the present study, we investigated the mechanisms underlying the restricted expression of these molecules at the Schwann cell surface, focusing on the possible role of actin filaments. Co-cultures consisting of Schwann cells from newborn mice and explants of dorsal root ganglia from chicken embryos were maintained in the absence or presence of cytochalasin D, an agent disrupting actin filaments. Immunoelectron microscopy with mouse-specific antibodies was carried out to quantify the restricted localization of L1 and N-CAM at the Schwann cell surface in contact with neurites. After 2 days of co-culturing in the absence of cytochalasin D, approximately 65% of the cell–cell contacts showed a restricted immunoreactivity for L1 and N-CAM. The accumulation of L1 at contact sites was unchanged in cytochalasin D-treated co-cultures, while the agent strongly reduced the restricted localization of N-CAM to 20% of all cell–cell contacts. The disruption of N-CAM accumulation appeared to be rapid and occurred within 5 h of cytochalasin D treatment. These results indicate that the restricted localization of N-CAM, but not of L1, is sensitive to cytochalasin D treatment, suggesting a dependence on the integrity of the actin network. Thus, different mechanisms may regulate the subcellular distribution of cell adhesion molecules in Schwann cells.  相似文献   

15.
S Dalterio  A Bartke  D Mayfield 《Life sciences》1985,37(15):1425-1433
The major psychoactive component of marihuana, delta 9-tetrahydrocannabinol (THC), influences testicular function. In the present experiments, the addition of THC to incubations of whole decapsulated mouse testes altered testosterone (T) production differentially, depending on the specific gonadotropin used, the dose of THC and/or the amount of divalent cation present in the media. In the presence of luteinizing hormone (LH; 10 ng/ml), and a dose of 25 micrograms THC/ml, T production was significantly decreased, compared to that by testes incubated with LH and vehicle at all Ca++ levels, except at 0.127 or 1.0 mM Ca++. The production of T by these paired testes exposed to either THC or vehicle (ethanol; ETOH), increased as Ca++ concentration approached physiological levels. In contrast, in the presence of follicle-stimulating hormone (FSH; 1 microgram/ml), THC-induced suppression of T production was significant in the absence of Ca++ from the media, and at 12.7 mM Ca++. However, it appeared that the levels of Ca++ did not differentially affect T production in the presence of FSH, whether or not THC was also added. In the presence of human chorionic gonadotropin (hCG; 12.5 mIU/ml), a lower dose of THC (25 ng/ml), stimulated T production at 0.25 to 1 mM Ca++, but had no effect as Ca++ reached 2.5 mM. Without additional Ca++ in the media, this dose of THC significantly reduced T secretion. In contrast, in the presence of hCG, a higher THC dose (25 micrograms/ml), suppressed T accumulation at 0.127, and from 1.0 to 12.7, but had no effect at 0.25 mM, or in the absence of Ca++. In the presence of hCG, the high 25 micrograms/ml dose of THC stimulated T production, in the absence of additional Mg++, and at 0.01 mM Mg++, but THC had no effect at 0.1 mM Mg++, but inhibited T production at 1.1 mM Mg++. In the presence of hCG, 25 micrograms THC/ml produced a consistent suppression of T production across glucose concentrations examined. These findings suggest that the mechanisms by which THC effects testicular steroidogenesis may involve Ca++- and/or Mg++-dependent processes. Differential requirements for these divalent cations by the gonadotropins may explain the interactive effects of THC with LH, hCG or FSH.  相似文献   

16.
Depending on culture in either "low Ca++" (0.25 mM) or "normal Ca++" (1.8 mM) medium, human colon adenocarcinoma-derived CaCo-2 cells exhibit differential sensitivity to the antiproliferative action of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and of two side-chain modified analogs, 1,25S,26-trihydroxy-delta 22-vitamin D3 (Ro 23-4319) and 1,25-dihydroxy-delta 16-23yne-vitamin D3 (Ro 23-7553). CaCo-2 cells cultured under low Ca++ conditions exhibit a high proliferative potential, and in these cells, all vitamin D compounds under investigation significantly inhibit [3H]thymidine incorporation into cellular DNA at greater than or equal to 10(-10) M. The rank order of biopotency is: Ro 23-7553 greater than or equal to Ro 23-4319 greater than 1,25(OH)2D3. At 1.8 mM Ca++, only Ro 23-7553 is able to inhibit proliferation of CaCo-2 cells. Parallel to their antiproliferative action, all three vitamin D compounds stimulate akaline phosphatase activity in CaCo-2 cells, indicating their ability to induce differentiated functions at the same time as they reduce neoplastic cell growth.  相似文献   

17.
All cells, whatever their origin, function in an essentially inorganic environment. In this environment, metal cations play an important role. Attempts were made in the present study to determine if different amounts of five metal ions (MG++, Fe++, Mn++, Zn++, Ca++) are needed for secondary metabolism of Clostridium perfringens than are needed for primary metabolism. Both the vegetative growth stage (primary metabolic stage) and spore stage (secondary metabolic stage) of Clostridium perfringens were studied. Endeavors were made to detect the effects of metal ions, if any, on growth and sporulation of the organisms. Mg++ was required for growth of vegetative cells and maintenance of normal cellular morphology, Fe++ was needed for sporulation as well as for vegetative growth, but the amount needed for spore formation was higher than that needed for growth. Ca++ was essential to refractility and heat-resistance of spores. Zn++ inhibited both growth and sporulation, if the Mg++ concentration was low. Mn++ was required for neither growth nor sporulation. For maximum heat-resistance of the spores, Ca++ plus unidentified organic substances were required.  相似文献   

18.
When detergent-extracted, demembranated cell models of Chlamydomonas were resuspended in reactivation solutions containing less than 10(-8) M Ca++, many models initially swam in helical paths similar to those of intact cells; others swam in circles against the surface of the slide or coverslip. With increasing time after reactivation, fewer models swam in helices and more swam in circles. This transition from helical to circular swimming was the result of a progressive inactivation of one of the axonemes; in the extreme case, one axoneme was completely inactive whereas the other beat with a normal waveform. At these low Ca++ concentrations, the inactivated axoneme was the trans-axoneme (the one farthest from the eyespot) in 70-100% of the models. At 10(-7) or 10(-6) M Ca++, cell models also proceeded from helical to circular swimming as a result of inactivation of one of the axonemes; however, under these conditions the cis-axoneme was usually the one that was inactivated. At 10(-8) M Ca++, most cells continued helical swimming, indicating that both axonemes were remaining relatively active. The progressive, Ca++-dependent inactivation of the trans- or cis-axoneme was reversed by switching the cell models to higher or lower Ca++ concentrations, respectively. A similar reversible, selective inactivation of the trans-flagellum occurred in intact cells swimming in medium containing 0.5 mM EGTA and no added Ca++. The results show that there are functional differences between the two axonemes of Chlamydomonas. The differential responses of the axonemes to submicromolar concentrations of Ca++ may form the basis for phototactic turning.  相似文献   

19.
The objective of this study was to vary the mineral composition of the culture medium of Prosopis farcta seedlings per addition of Na+ and Ca++ ions with the aim to identify the culture media which support the growth and/or the expression of the in vitro plant organogenesis. The Na+ and Ca++ ions were added in the culture medium in various concentrations by taking the Gamborg medium, in which macroelements were diluted 10 times, as the basic one. After two months of culture, parameters relating to the vegetative development of plant seedlings and to the various expressions of organogenesis were measured. Weak concentrations in sodium and calcium ions as well as a weak concentration in Ca++ (0.1 mM) with 50 mM in Na+ support the best vegetative development of the plantlets. The most important percentage of plant seedlings presenting a bud initiation was obtained on a medium containing 0.1 mM of Na+ and 50 mM of Ca++. Our study defined several media likely to support in vitro development of Prosopis farcta plantlets allowing the selection of salt tolerant plants or cellular lines. Some other media were chosen for improving micropropagation of the species without adding growth substances.  相似文献   

20.
Neuronal membranes from rat dorsal root ganglia provide a mitogenic signal to cultured Schwann cells and it has been suggested this is an important factor in regulating Schwann cell numbers during development. In this study, the influence of enteric neurons on the DNA synthesis of both Schwann cells and enteric glia has been investigated as well as the effect of axonal membrane fractions (axolemma) on enteric glia. The proliferation rate of rat Schwann cells and enteric glia was assessed in culture using [3H]thymidine uptake and autoradiography in combination with immunolabelling to identify cell types. When purified rat Schwann cells were co-cultured with guinea pig enteric neurons, their DNA synthesis rate was reduced compared with control cultures of pure Schwann cells or Schwann cells not close to neurites or neuronal cell bodies. Nevertheless, in accordance with previous findings that sensory neurons stimulate Schwann cell division, these Schwann cells increased their DNA synthesis rate when in contact with neurites from purified guinea pig or adult rat dorsal root ganglion neurons and on exposure to bovine axolemmal fractions. The enteric neurons also suppressed the DNA synthesis of enteric glia in co-cultures of purified enteric neurons and enteric glia, while bovine axolemma stimulated their DNA synthesis. These results indicate that a mitotic inhibitory signal is associated with enteric neurons and can exert its effect on both Schwann cells and enteric glia, and that enteric glia, like Schwann cells, are stimulated to divide by axolemmal fractions. It thus seems possible that during development glial cell numbers in the peripheral nervous system may be controlled by both positive and negative regulators of cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号