首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ESX-1 secretion system plays a critical role in the virulence of Mycobacterium tuberculosis and M. marinum. To date, three proteins are known to be secreted by ESX-1 and necessary for virulence, two of which are CFP-10 and ESAT-6. The ESX-1 secretion and the virulence mechanisms are not well understood. In this study, we have examined the M. marinum secretomes and identified four proteins specific to ESX-1. Two of those are CFP-10 and ESAT-6, and the other two are novel: MM1553 (homologous to Rv3483c) and Mh3881c (homologous to Rv3881c). We have shown that Mh3881c, CFP-10 and ESAT-6 are co-dependent for secretion. Mh3881c is being cleaved at close to the C-terminus during secretion, and the C-terminal portion is critical to the co-dependent secretion, the ESAT-6 cellular levels, and interaction with ESAT-6. The co-dependent secretion is required for M. marinum intracellular growth in macrophages, where the Mh3881c C-terminal portion plays a critical role. The role of the co-dependent secretion in intracellular growth correlates with its role in inhibiting phagosome maturation. Both the secretion and the virulence defects of the Mh3881c mutant are complemented by Mh3881c or its M. tuberculosis homologue Rv3881c, suggesting that in M. tuberculosis, Rv3881c has similar functions.  相似文献   

2.
Initiation and maintenance of infection by mycobacteria in susceptible hosts are not well understood. A screen of Mycobacterium marinum transposon mutant library led to isolation of eight mutants that failed to cause haemolysis, all of which had transposon insertions in genes homologous to a region between Rv3866 and Rv3881c in Mycobacterium tuberculosis, which encompasses RD1 (Rv3871-Rv3879c), a known virulence gene cluster. The M. marinum mutants showed decreased virulence in vivo and failed to secrete ESAT-6, like M. tuberculosis RD1 mutants. M. marinum mutants in genes homologous to Rv3866-Rv3868 also failed to accumulate intracellular ESAT-6, suggesting a possible role for those genes in synthesis or stability of the protein. These transposon mutants and an ESAT-6/CFP-10 deletion mutant all showed reduced cytolysis and cytotoxicity to macrophages and significantly decreased intracellular growth at late stages of the infection only when the cells were infected at low multiplicity of infection, suggesting a defect in spreading. Direct evidence for cell-to-cell spread by wild-type M. marinum was obtained by microscopic detection in macrophage and epithelial monolayers, but the mutants all were defective in this assay. Expression of M. tuberculosis homologues complemented the corresponding M. marinum mutants, emphasizing the functional similarities between M. tuberculosis and M. marinum genes in this region that we designate extRD1 (extended RD1). We suggest that diminished membranolytic activity and defective spreading is a mechanism for the attenuation of the extRD1 mutants. These results extend recent findings on the genomic boundaries and functions of M. tuberculosis RD1 and establish a molecular cellular basis for the role that extRD1 plays in mycobacterial virulence. Disruption of the M. marinum homologue of Rv3881c, not previously implicated in virulence, led to a much more attenuated phenotype in macrophages and in vivo, suggesting that this gene plays additional roles in M. marinum survival in the host.  相似文献   

3.
Virulence of Mycobacterium tuberculosis and related pathogenic mycobacteria requires the secretion of early secretory antigenic 6 kDa (ESAT-6) and culture filtrate protein 10 (CFP-10), two small proteins that lack traditional signal sequences and are exported through an alternative secretion pathway encoded primarily by the RD1 genetic locus. Mutations affecting the synthesis or secretion of ESAT-6 or CFP-10 attenuate the virulence of M. tuberculosis in murine models of infection. However, the specific functions of these proteins and of their secretion system are currently unclear. In this study, we isolated a mutant of Mycobacterium marinum defective in the secretion of ESAT-6 and CFP-10. The mutation was localized within MM5446, which is orthologous to Rv3871 of M. tuberculosis H37Rv and encodes an ATPase that is a component of the ESAT-6/CFP-10 secretion system. The mutant bacteria were unable to replicate within J774 macrophages although their growth in 7H9 medium was equivalent to the parental strain. Phagosome maturation and acidification were analysed in infected macrophages by confocal and electron microscopy using the late endosome/lysosome marker LAMP-1, along with various fluid-phase markers such as rhodamine-dextran and ferritin and the acidotropic dye LysoTracker Red. These studies demonstrated that while the wild-type parental strain of M. marinum primarily resides in a poorly acidified, non-lysosomal compartment, a significantly higher percentage of the MM5446 mutant organisms are in acidified compartments. These results suggest that the ESAT-6/CFP-10 secretion system plays a role in preventing phagolysosomal fusion, a novel function that accounts for the ability of bacteria to survive inside host cells. This finding provides a mechanism by which the ESAT-6/CFP-10 secretion system potentiates the virulence of pathogenic mycobacteria.  相似文献   

4.
The ESX-1 secretion system of Mycobacterium tuberculosis delivers bacterial virulence factors to host cells during infection. The most abundant factor, the ESAT-6/CFP-10 dimer, is targeted for secretion via a C-terminal signal sequence on CFP-10 that is recognized by the cytosolic ATPase, Rv3871. However, the selection determinants for other ESX-1 substrates appear to be more complex. Some substrates, such as ESAT-6, are secreted despite lacking signal sequences. Furthermore, all substrates require targeting of the other ESX-1 secreted proteins, a distinguishing feature of this system. How ESX-1 substrates are selected and the basis for co-dependent secretion is unknown. Here we show that the EspC substrate interacts with Rv3868, a cytosolic AAA ATPase, through its C-terminus. Swapping the C-termini of EspC and CFP-10 revealed that these signals are functionally distinct, suggesting that the proteins are targeted via interactions with different ATPases. Surprisingly, biochemical purification experiments demonstrate that these substrates and ATPases form multi-protein complexes inside the cell and identified a new secreted substrate. By interfering with this protein interaction network, we have partially uncoupled co-dependent substrate secretion. Our results suggest that proper functioning of the ESX-1 pathway requires the interaction of multiple ESX-1 substrates and components prior to their secretion. Ultimately, understanding the details of ESX-1 targeting may allow for engineering of better vaccines to prevent tuberculosis.  相似文献   

5.
A 9.5-kb section of DNA called region of deletion 1 (RD1) is present in virulent Mycobacterium tuberculosis strains but is deleted in all attenuated Mycobacterium bovis BCG vaccine strains. This region codes for at least nine genes. Some or all RD1 gene products may be involved in virulence and pathogenesis, and at least two, ESAT-6 and CFP-10, represent potent T- and B-cell antigens. In order to produce the entire set of RD1 proteins with their natural posttranslational modifications, a robust expression system for M. tuberculosis proteins in the fast-growing saprophytic strain Mycobacterium smegmatis was developed. Our system employs the inducible acetamidase promoter and allows translational fusion of recombinant M. tuberculosis proteins with polyhistidine or influenza hemagglutinin epitope tags for affinity purification. Using eGFP as reporter gene, we showed that the acetamidase promoter is tightly regulated in M. smegmatis and that this promoter is much stronger than the widely used constitutive groEL2 promoter. We then cloned 11 open reading frames (ORFs) found within RD1 and successfully expressed and purified the respective proteins. Sera from tuberculosis patients and M. tuberculosis-infected mice reacted with 10 purified RD1 proteins, thus demonstrating that Rv3871, Rv3872, Rv3873, CFP-10, ESAT-6, Rv3876, Rv3878, Rv3879c and ORF-14 are expressed in vivo. Finally, glycosylation of the RD1 proteins was analyzed. We present preliminary evidence that the PPE protein Rv3873 is glycosylated at its C terminus, thus highlighting the ability of M. smegmatis to produce M. tuberculosis proteins bearing posttranslational modifications.  相似文献   

6.
结核分枝杆菌作为肺结核病的病原菌,在人类中致死率远高于其他病原菌.结核分枝杆菌具有特殊的疏水性细胞壁结构,这种致密的细胞壁结构帮助结核分枝杆菌抵御外界环境压力和来自宿主细胞的毒素.同时,它利用特殊的分泌系统将体内的毒力蛋白输出体外,ESX-1分泌系统就是其中之一.结核分枝杆菌ESX-1系统在结核分枝杆菌进入宿主细胞吞噬小体、逃逸至细胞质以及杀死吞噬细胞这些过程中发挥重要作用.研究表明,在结核分枝杆菌内膜上存在一个由多亚基组成、旨在帮助结核分枝杆菌向外输送分泌蛋白的分泌装置.在这个分泌装置的帮助下,结核分枝杆菌重要的毒力蛋白ESAT-6跨内膜向外分泌,EspB也通过这个内膜上的分泌装置被转运至胞外.EspB存在于静置培养的结核分枝杆菌的胶囊层中,也可在振荡培养的结核分枝杆菌的培养液中被检测.通过X射线晶体衍射分析,我们解析了EspB的晶体结构,相比于其他同源结构,发现了EspB的不同构象,即EspB单体能够自组装成为七聚体的规则结构,联系其与毒力因子ESAT-6具有共分泌的特点,七聚体构象的发现为解释EspB在结核分枝杆菌向外分泌蛋白的过程中发挥的作用提供线索,即EspB具有锚定在结核分枝杆菌胶囊层中,作为运输ESAT-6的孔道而存在的可能.  相似文献   

7.
Tuberculosis is a chronic infectious disease caused by bacteria of the Mycobacterium tuberculosis complex. One of the major contributors to virulence and intercellular spread of M. tuberculosis is the ESAT-6 secretion system 1 (ESX-1) that has been lost by the live vaccines Mycobacterium bovis BCG (Bacille Calmette Guérin) and Mycobacterium microti as a result of independent deletions. ESX-1 consists of at least 10 genes (Rv3868-Rv3877) encoding the T-cell antigens ESAT-6 and CFP-10 as well as AAA-ATPases, chaperones, and membrane proteins which probably form a novel export system. To better understand the mode of action of the ESX-1 proteins, as a prelude to drug development, we examined systematically the interactions between the various proteins using the two-hybrid system in Saccharomyces cerevisiae. Interestingly, ESAT-6 and CFP-10 formed both hetero- and homodimers. Moreover, Rv3866, Rv3868, and CFP-10 interacted with Rv3873 which also homodimerized. The data were summarized in a protein linkage map that is consistent with the model for the secretion apparatus and can be used as a basis to identify inhibitors of specific interactions.  相似文献   

8.

Background

Mycobacterium tuberculosis Region-of-Difference-1 gene products present opportunities for specific diagnosis of M. tuberculosis infection, yet immune responses to only two gene-products, Early Secretory Antigenic Target-6 (ESAT-6) and Culture Filtrate Protein-10 (CFP-10), have been comprehensively investigated.

Methods

T-cell responses to Rv3873, Rv3878 and Rv3879c were quantified by IFN-γ-enzyme-linked-immunospot (ELISpot) in 846 children with recent household tuberculosis exposure and correlated with kinetics of tuberculin skin test (TST) and ESAT-6/CFP-10-ELISpot conversion over six months and clinical outcome over two years.

Results

Responses to Rv3873, Rv3878, and Rv3879c were present in 20–25% of contacts at enrolment. Rv3873 and Rv3879c responses were associated with and preceded TST conversion (P = 0.02 and P = 0.04 respectively), identifying these antigens as early targets of cell-mediated immunity following M. tuberculosis exposure. Responses to Rv3873 were additionally associated with subsequent ESAT-6/CFP-10-ELISpot conversion (P = 0.04). Responses to Rv3873 and Rv3878 predicted progression to active disease (adjusted incidence rate ratio [95% CI] 3.06 [1.05,8.95; P = 0.04], and 3.32 [1.14,9.71; P = 0.03], respectively). Presence of a BCG-vaccination scar was associated with a 67% (P = 0.03) relative risk reduction for progression to active tuberculosis.

Conclusions

These RD1-derived antigens are early targets of cellular immunity following tuberculosis exposure and T-cells specific for these antigens predict progression to active tuberculosis suggesting diagnostic and prognostic utility.  相似文献   

9.
EsxA (ESAT-6) and EsxB (CFP-10) are virulence factors exported by the ESX-1 system in mycobacterial pathogens. In Mycobacterium marinum, an established model for ESX-1 secretion in Mycobacterium tuberculosis, genes required for ESX-1 export reside at the extended region of difference 1 (RD1) locus. In this study, a novel locus required for ESX-1 export in M. marinum was identified outside the RD1 locus. An M. marinum strain bearing a transposon-insertion between the MMAR_1663 and MMAR_1664 genes exhibited smooth-colony morphology, was deficient for ESX-1 export, was nonhemolytic, and was attenuated for virulence. Genetic complementation revealed a restoration of colony morphology and a partial restoration of virulence in cell culture models. Yet hemolysis and the export of ESX-1 substrates into the bacteriological medium in vitro as measured by both immunoblotting and quantitative proteomics were not restored. We show that genetic complementation of the transposon insertion strain partially restored the translocation of EsxA and EsxB to the mycobacterial cell surface. Our findings indicate that the export of EsxA and EsxB to the cell surface, rather than secretion into the bacteriological medium, correlates with virulence in M. marinum. Together, these findings not only expand the known genetic loci required for ESX-1 secretion in M. marinum but also provide an explanation for the observed disparity between in vitro ESX-1 export and virulence.  相似文献   

10.
The EspA protein of Mycobacterium tuberculosis is essential for the type VII ESX-1 protein secretion apparatus, which delivers the principal virulence factors ESAT-6 and CFP-10. In this study, site-directed mutagenesis of EspA was performed to elucidate its influence on the ESX-1 system. Replacing Trp55 (W55) or Gly57 (G57) residues in the putative W-X-G motif of EspA with arginines impaired ESAT-6 and CFP-10 secretion in vitro and attenuated M. tuberculosis. Replacing the Phe50 (F50) and Lys62 (K62) residues, which flank the W-X-G motif, with arginine and alanine, respectively, destabilized EspA, abolished ESAT-6 and CFP-10 secretion in vitro, and attenuated M. tuberculosis. Likewise, replacing the Phe5 (F5) and Lys41 (K41) residues with arginine and alanine, respectively, also destabilized EspA and blocked ESAT-6 and CFP-10 secretion in vitro. However, these two particular mutations did not attenuate M. tuberculosis in cellular models of infection or during acute infection in mice. We have thus identified amino acid residues in EspA that are important for facilitating ESAT-6 and CFP-10 secretion and virulence. However, our data also indicate for the first time that blockage of M. tuberculosis ESAT-6 and CFP-10 secretion in vitro and attenuation are mutually exclusive.  相似文献   

11.
The Mycobacterium tuberculosis complex CFP-10/ESAT-6 family proteins play essential but poorly defined roles in tuberculosis pathogenesis. In this article we report the results of detailed spectroscopic studies of several members of the CFP-10/ESAT-6 family. This work shows that the CFP-10/ESAT-6 related proteins, Rv0287 and Rv0288, form a tight 1:1 complex, which is predominantly helical in structure and is predicted to closely resemble the complex formed by CFP-10 and ESAT-6. In addition, the Rv0287.Rv0288 complex was found to be significantly more stable to both chemical and temperature induced denaturation than CFP-10.ESAT-6. This approach demonstrated that neither Rv0287.Rv0288 nor the CFP-10.ESAT-6 complexes are destabilized at low pH (4.5), indicating that even in low pH environments, such as the mature phagosome, both Rv0287.Rv0288 and CFP-10.ESAT-6 undoubtedly function as complexes rather than individual proteins. Analysis of the structure of the CFP-10.ESAT-6 complex and optimized amino acid sequence alignments of M. tuberculosis CFP-10/ESAT-6 family proteins revealed that residues involved in the intramolecular contacts between helices are conserved across the CFP-10/ESAT-6 family, but not those involved in primarily intermolecular contacts. This analysis identified the molecular basis for the specificity and stability of complex formation between CFP-10/ESAT-6 family proteins, and indicates that the formation of functional complexes with key roles in pathogenesis will be limited to genome partners, or very closely related family members, such as Rv0287/Rv0288 and Rv3019c/Rv3020c.  相似文献   

12.
ESX-5 is one of the five type VII secretion systems found in mycobacteria. These secretion systems are also known as ESAT-6-like secretion systems. Here, we have determined the secretome of ESX-5 by a proteomic approach in two different strains of Mycobacterium marinum . Comparison of the secretion profile of wild-type strains and their ESX-5 mutants showed that a number of PE_PGRS and PPE-MPTR proteins are dependent on ESX-5 for transport. The PE and PPE protein families are unique to mycobacteria, are highly expanded in several pathogenic species, such as Mycobacterium tuberculosis and M. marinum , and certain family members are cell surface antigens associated with virulence. Using a monoclonal antibody directed against the PGRS domain we showed that nearly all PE_PGRS proteins that are recognized by this antibody are missing in the supernatant of ESX-5 mutants. In addition to PE_PGRS and PPE proteins, the ESX-5 secretion system is responsible for the secretion of a ESAT-6-like proteins. Together, these data show that ESX-5 is probably a major secretion pathway for mycobacteria and that this system is responsible for the secretion of recently evolved PE_PGRS and PPE proteins.  相似文献   

13.
We have previously shown that the secreted M. tuberculosis complex proteins CFP-10 and ESAT-6 form a tight, 1:1 complex, which may represent their functional form. In the work reported here a combination of yeast two-hybrid and biochemical analysis has been used to characterise complex formation between two other pairs of CFP-10/ESAT-6 family proteins (Rv0287/Rv0288 and Rv3019c/Rv3020c) and to determine whether complexes can be formed between non-genome paired members of the family. The results clearly demonstrate that Rv0287/Rv0288 and Rv3019c/3020c form tight complexes, as initially observed for CFP-10/ESAT-6. The closely related Rv0287/Rv0288 and Rv3019c/Rv3020c proteins are also able to form non-genome paired complexes (Rv0287/Rv3019c and Rv0288/Rv3020c), but are not capable of binding to the more distantly related CFP-10/ESAT-6 proteins.  相似文献   

14.
In the present study, we demonstrate that, in analogy with the genes encoding ESAT-6 and CFP-10, the genes rv0287 and rv0288 from the ESAT-6 gene family are cotranscribed. Using Western-Western blotting and protein-print overlay methodologies, we demonstrate that ESAT-6 and CFP-10, as well as the protein pair Rv0288/Rv0287, interact pairwise in a highly specific way. Most notably, the ESAT-6 proteins interact directly with Rv3873, a possible cell envelope component of the ESAT-6 secretion pathway.  相似文献   

15.
Meher AK  Bal NC  Chary KV  Arora A 《The FEBS journal》2006,273(7):1445-1462
The 6-kDa early secretory antigenic target (ESAT-6) and culture filtrate protein-10 (CFP-10), expressed from the region of deletion-1 (RD1) of Mycobacterium tuberculosis H37Rv, are known to play a key role in virulence. In this study, we explored the thermodynamic and biochemical changes associated with the formation of the 1 : 1 heterodimeric complex between ESAT-6 and CFP-10. Using isothermal titration calorimetry (ITC), we precisely determined the association constant and free energy change for formation of the complex to be 2 x 10(7) M(-1) and -9.95 kcal.mol(-1), respectively. Strikingly, the thermal unfolding of the ESAT-6-CFP-10 heterodimeric complex was completely reversible, with a T(m) of 53.4 degrees C and DeltaH of 69 kcal.mol(-1). Mixing of ESAT-6 and CFP-10 at any temperature below the T(m) of the complex led to induction of helical conformation, suggesting molecular recognition between specific segments of unfolded ESAT-6 and CFP-10. Enhanced biochemical stability of the complex was indicated by protection of ESAT-6 and an N-terminal fragment of CFP-10 from proteolysis with trypsin. However, the flexible C-terminal of CFP-10 in the complex, which has been shown to be responsible for binding to macrophages and monocytes, was cleaved by trypsin. In the presence of phospholipid membranes, ESAT-6, but not CFP-10 and the complex, showed an increase in alpha-helical content and enhanced thermal stability. Overall, complex formation resulted in structural changes, enhanced thermodynamic and biochemical stability, and loss of binding to phospholipid membranes. These features of complex formation probably determine the physiological role of ESAT-6, CFP-10 and/or the complex in vivo. The ITC and thermal unfolding approach described in this study can readily be applied to characterization of the 11 other pairs of ESAT-6 family proteins and for screening ESAT-6 and CFP-10 mutants.  相似文献   

16.
The 6-kDa early secreted antigenic target ESAT-6 and the 10-kDa culture filtrate protein CFP-10 of Mycobacterium tuberculosis are secreted by the ESX-1 system into the host cell and thereby contribute to pathogenicity. Although different studies performed at the organismal and cellular levels have helped to explain ESX-1-associated phenomena, not much is known about how ESAT-6 and CFP-10 contribute to pathogenesis at the molecular level. In this study we describe the interaction of both proteins with lipid bilayers, using biologically relevant liposomal preparations containing dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol, and cholesterol. Using flotation gradient centrifugation, we demonstrate that ESAT-6 showed strong association with liposomes, and in particular with preparations containing DMPC and cholesterol, whereas the interaction of CFP-10 with membranes appeared to be weaker and less specific. Most importantly, binding to the biomembranes no longer occurred when the proteins were present as a 1:1 ESAT-6.CFP-10 complex. However, lowering of the pH resulted in dissociation of the protein complex and subsequent protein-liposome interaction. Finally, cryoelectron microscopy revealed that ESAT-6 destabilized and lysed liposomes, whereas CFP-10 did not. In conclusion, we propose that one of the main features of ESAT-6 in the infection process of M. tuberculosis is the interaction with biomembranes that occurs after dissociation from its putative chaperone CFP-10 under acidic conditions typically encountered in the phagosome.  相似文献   

17.
Mycobacterial genomes contain two unique gene families, the so-called PE and PPE gene families, which are highly expanded in the pathogenic members of this genus. Here we report that one of the PPE proteins, i.e. PPE41, is secreted by pathogenic mycobacteria, both in culture and in infected macrophages. As PPE41 lacks a signal sequence a dedicated secretion system must be involved. A single gene was identified in Mycobacterium marinum that showed strongly reduced PPE41 secretion. This gene was located in a gene cluster whose predicted proteins encode components of an ESAT-6-like secretion system. This cluster, designated ESX-5, is conserved in various pathogenic mycobacteria, but not in the saprophytic species Mycobacterium smegmatis. Therefore, different regions of this cluster were introduced in M. smegmatis. Only introduction of the complete ESX-5 locus resulted in efficient secretion of heterologously expressed PPE41. This PPE secretion system is also involved in the virulence of pathogenic mycobacteria, as the ESX-5 mutant of M. marinum was affected in spreading to uninfected macrophages.  相似文献   

18.
Gey Van Pittius NC  Gamieldien J  Hide W  Brown GD  Siezen RJ  Beyers AD 《Genome biology》2001,2(10):research0044.1-research004418

Background  

The genome of Mycobacterium tuberculosis H37Rv has five copies of a cluster of genes known as the ESAT-6 loci. These clusters contain members of the CFP-10 (lhp) and ESAT-6 (esat-6) gene families (encoding secreted T-cell antigens that lack detectable secretion signals) as well as genes encoding secreted, cell-wall-associated subtilisin-like serine proteases, putative ABC transporters, ATP-binding proteins and other membrane-associated proteins. These membrane-associated and energy-providing proteins may function to secrete members of the ESAT-6 and CFP-10 protein families, and the proteases may be involved in processing the secreted peptide.  相似文献   

19.
Rv3868, a conserved hypothetical protein of the ESAT-6 secretion system of Mycobacterium tuberculosis, is essential for the secretion of at least four virulence factors. Each protein chain is approximately 63 kDa and assembles into a hexamer. Limited proteolysis demonstrates that it consists of two domains joined by a linker. The N-terminal domain is a compact, helical domain of approximately 30 kDa and apparently functions to regulate the ATPase activity of the C-terminal domain and the oligomerization. The nucleotide binding site is situated in the C-terminal domain, which exhibits ATP-dependent self-association. It is also the oligomerization domain. Dynamic fluorescence quenching studies demonstrate that the domain is proximal to the C terminus in the apoprotein and exhibits a specific movement upon ATP binding. In silico modeling of the domains suggests that Arg-429 of a neighboring subunit forms a part of the binding site upon oligomerization. Mutational analysis of binding site residues demonstrates that the Arg-429 functions as the important "sensor arginine" in AAA-ATPases. Protein NMR experiments involving CFP-10 and activity assays rule out a general chaperone-like function for Rv3868. On the other hand, ATP-dependent "open-close" movements of the individual domains apparently enable it to interact and transfer energy to co-proteins in the ESX-1 pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号