首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Glycosyl phosphatidylinositol lipids of cultured L.mex, mexicana LV732 promastigotes, T. cruzi Peru epimastigotes and Tritrichomonas foetus have been isolated and characterized using metabolic labelling and chromatographic and mass spectrometric (MS) techniques. TLC of the unsaponifiable lipid fractions of L. mex. mexicana and T. cruzi obtained from DEAE Sephadex A-25 followed by Iatrobead column chromatography showed three inositol phosphate-containing lipid components. [3H]myo-inositol, [3H]palmitic acid or H3 32PO4 lipid precursors were incorporated into these three lipid components. Fraction 2 (LM2 and TCP-2) comprises inositol phosphate ceramides. The other two fractions appear to contain mono-O-alkyl and di-O-alkyl glycerol inositol phosphates. Lyso-1-O-alkyl phosphatidylinositols could be cleaved by treatment of PI-specific phosphalipase C. The di-O-alkyl-phospho inositols of these parasites being the first dialkylglycerol lipids reported from eukaryotic membranes raises the possibility of chemotherapy for leishmaniasis and trypanosomiasis based upon functional impairment of alkyl ether lipids. Tritrichomonas foetus contains two major glycophosphosphingolipids, designated TF1 and TF2, which are metabolically labelled with [3H]myo-inositol and H3 32PO4. Both lipids contained ceramides. The major ceramide contains the 18:0 and 18:1 bases and 16:0 N-acyl group. The major glycolipid fraction (TF1) contains fucose linked to inositol diphosphate; one of the phosphates being linked to the ceramide moiety, and the other to ethanolamine. TF1 appears to be a novel class of glycophosphosphingolipid, which may be a part of a membrane anchor.  相似文献   

2.
Phosphatidylinositol anchor of HeLa cell alkaline phosphatase   总被引:7,自引:0,他引:7  
R Jemmerson  M G Low 《Biochemistry》1987,26(18):5703-5709
Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either 3H-fatty acids or [3H]ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the 3H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of [3H]ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from 3H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the 3H-fatty acid and the [3H]ethanolamine label from the purified alkaline phosphatase. Subtilisin was also able to remove the [3H]ethanolamine-labeled from purified alkaline phosphatase. The 3H radioactivity in alkaline phosphatase purified from [3H]ethanolamine-labeled cells comigrated with authentic [3H]ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the 3H-fatty acid and [3H]ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.  相似文献   

3.
The effect of prolactin on phospholipid metabolism in the prolactin-dependent rat lymphoma cell line Nb2 was investigated in cells prelabeled with [3H]arachidonic acid or [3H]ethanolamine. Prolactin (20 ng/ml) caused (a) a 20-60% loss of radiolabeled phosphatidylethanolamine within 0.5 to 2 min, (b) a loss of [3H]ethanolamine-labeled phosphatidylethanolamine from crude membranes, (c) a rapid accumulation of [3H]phosphoethanolamine and [3H]ethanolamine, and (d) a transient increase (15 s to 2 min) in prostaglandin F2 alpha and E2. Arachidonic acid (1-2 micrograms/ml) induced Nb2 cell growth but prostaglandin F2 alpha, E2, ethanolamine, and phosphoethanolamine did not. Prostaglandin E2 inhibited while prostaglandin F2 alpha enhanced growth in the presence of prolactin or arachidonic acid. These results suggest that stimulation of Nb2 cell growth by prolactin is linked to activation of a phosphatidylethanolamine-specific phospholipase C. Arachidonic acid and prostaglandin F2 alpha may participate in regulating the mitogenic action of prolactin.  相似文献   

4.
The insoluble residue from Tetrahymena mimbres cells that had been preincubated in vivo for 2 h with [3H]myristic acid and then exhaustively delipidated with organic solvents retained radioactivity, principally in material which migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular mass of 10-14 kDa. This material was extractable from the delipidated cell residue with organic solvents known to solubilize phosphatidylinositol glycans (PI glycans). The same material could also be labeled with [3H]inositol, [14C]glucosamine, and [3H] ethanolamine. When the delipidated residue of cells labeled for 2 h with [3H]myristate was treated with phosphatidylinositol-specific phospholipase C or nitrous acid, much of the associated radioactivity was released. A similar release was obtained using the putative PI glycan fraction extracted from the cell residue. After further purification by thin layer chromatography, this latter material was hydrolyzed with HCl and shown to contain fatty acids, alkylglyceryl ethers, phosphate, inositol, glucosamine, mannose, and ethanolamine. The findings indicate that T. mimbres contains PI glycans resembling in structure those recently characterized in trypanosomes and mammalian cells. As the time of incubation with the radiotracers enumerated above was increased to 6-24 h, increasing amounts of radioactivity appeared in the 22-27-kDa region of sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. This higher molecular weight material is shown in the companion paper (Pak, Y., Ryals, P.E., and Thompson, G.A., Jr. (1991) J. Biol. Chem. 266, 15054-15059) to be released by in vivo phosphatidylinositol-specific phospholipase C treatment. Thus T. mimbres contains a pool of free PI glycans and at least one phosphatidylinositol-anchored protein.  相似文献   

5.
Metabolism of triacylglycerol (TAG) in developing brain has been examined. TAG is a relatively minor fraction of brain lipid in both suckling and adult rats and cannot be accounted for as entrapped blood. When glycerol tri[1-14C]oleate and [2-3H]glycerol trioleate were simultaneously injected intracerebrally into suckling rats, both labels appeared in diacylglycerol and the major phospholipids; acyl chain label was incorporated more extensively at early time points, with choline phosphoglycerides being most actively labeled. With [1-14C]fatty acids and [2-3H] glycerol administration, the specific activity of TAG was much greater than that of the more abundant phospholipids. Although direct acyl exchange between TAG and phospholipids was not demonstrated, relationships of TAG to selective mechanisms of phosphoglyceride synthesis were indicated.Abbreviations used TAG triacylglycerol - DAG diacylcerol - HPLC high performance liquid chromatography - CoA coenzyme A - BSA bovine serum albumin - TLC thin layer chromatography - DPM disintegrations per minute - ATP adenosine triphosphate - GLC gas liquid chromatography - PC choline, phosphoglyceride - PE ethanolamine phosphoglyceride - PS serine phosphoglyceride - PI inositol phosphoglyceride  相似文献   

6.
We analyzed the asparagine-linked oligosaccharide chains of rat haptoglobin which were synthesized and secreted by hepatocytes in primary culture. When the cells were incubated with either [3H]mannose, [3H]galactose, or [3H]fucose, all the radioactive precursors were incorporated into the beta subunit of haptoglobin. [3H]Mannose-labeled haptoglobin was purified from the culture medium by immunoaffinity chromatography, and [3H]oligosaccharides were prepared by strong alkali-borohydride treatment. The oligosaccharides obtained were analyzed by anion-exchange high-performance liquid chromatography, concanavalin-A--Sepharose chromatography and Bio-Gel P-4 chromatography before and after sequential exoglycosidase digestions. The oligosaccharides labeled with [3H]fucose or [3H]galactose were also characterized by the above methods. The results indicate that rat haptoglobin contains two complex-type oligosaccharide chains in each beta subunit; one with a possible structure of ( +/- NeuAc----Gal beta----GlcNAc beta----)3(Man alpha----)2 Man beta----GlcNAc----( +/- Fuc alpha----)GlcNAc and the other with ( +/- NeuAc----Gal beta----GlcNAc beta----Man alpha----)2 Man beta----GlcNAc----( +/- Fuc alpha----)GlcNAc.  相似文献   

7.
The cellular receptor for human urokinase-type plasminogen activator (u-PAR) is shown by several independent criteria to be a true member of a family of integral membrane proteins, anchored to the plasma membrane exclusively by a COOH-terminal glycosyl-phosphatidylinositol moiety. 1) Amino acid analysis of u-PAR after micropurification by affinity chromatography and N-[2-hydroxy-1,1-bis(hydroxymethyl)-ethyl]glycine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of 2-3 mol of ethanolamine/mol protein. 2) Membrane-bound u-PAR is efficiently released from the surface of human U937 cells by trace amounts of purified bacterial phosphatidylinositol-specific phospholipase C. This soluble form of u-PAR retains the binding specificity toward both u-PA and its amino-terminal fragment holding the receptor-binding domain. 3) Treatment of purified u-PAR with phosphatidylinositol-specific phospholipase C or mild alkali completely alters the hydrophobic properties of the receptor as judged by temperature-induced detergent-phase separation and charge-shift electrophoresis. 4) Biosynthetic labeling of u-PAR was obtained with [3H]ethanolamine and myo-[3H]inositol. 5) Finally, comparison of amino acid compositions derived from cDNA sequence and amino acid analysis shows that a polypeptide of medium hydrophobicity is excised from the COOH terminus of the nascent u-PAR. A similar proteolytic processing has been reported for other proteins that are linked to the plasma membrane by a glycosyl-phosphatidylinositol membrane anchor.  相似文献   

8.
Isolated intermediate lobe cells from 40 rat pituitaries were incubated for 3 h with [35S]methionine + [3H]-phenylalanine, [35S]methionine, [3H]valine, and [3H]leucine. The cell extracts were purified by carboxymethyl-cellulose chromatography (CMC) and the fraction eluting with ovine adrenocorticotropic hormone (ACTH) was further purified either by another CMC under the same conditions or by high performance liquid chromatography (HPLC). Microsequencing of the product from the second CMC allowed the identification of a peptide containing methionine 4 and phenylalanine 7, as expected for the NH2 terminus of ACTH. Purification by HPLC of a similar peptide obtained from the three other incubations gave three main raoactive peaks which were further characterized by their migration rates on polyacrylamide gels, molecular weight, and microsequencing. Results indicated that intact ACTH (residues 1-39) is present in extracts of rat intermediate lobe, but in very small quantities (less than 1% of the beta-endorphin content). ACTH is probably broken down into smaller fragments, e.g. alpha-melanocyte-stimulating hormone (alpha-MSH) (ACTH, 1-13) and corticotropin-like intermediate lobe peptide (CLIP) (ACTH, 18-39). These studies also revealed with existence of a peptide having identical sequence with the (N-1) terminus of the ACTH/lipotropin (LPH) precursor.  相似文献   

9.
Murine T-lymphomas and Thy-1- mutants were labeled overnight with [3H]ethanolamine to detect proteins which possess a glycophospholipid anchor. When labeled cells were treated with 10% trichloroacetic acid and then analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography, both Thy-1 and a second intensely labeled protein (46 kDa) were observed. The presence of the radiolabeled 46-kDa protein in wild type and class E Thy-1 negative cells (cells in which Thy-1 is synthesized but cannot be labeled with [3H]ethanolamine) suggested incorporation into a distinct moiety. Labeling of the 46-kDa protein with [3H]ethanolamine is rapidly inhibited by cycloheximide. Further characterization of the 46-kDa protein by subcellular fractionation and Triton X-114 partitioning indicated that the protein is located in the cytosol. The protein is basic and does not bind to either concanavalin A or wheat germ agglutinin. Labeling of a 46-kDa protein has also been demonstrated in Chinese hamster ovary, COS, rat myeloma, cloned human T-lymphocytes, and HeLa cells. Pronase digestion of the [3H]ethanolamine-labeled 46-kDa protein of wild type lymphoma cells generated a nonbasic and polar labeled fragment which is labile to strong acid and base ([3H]ethanolamine is liberated), insensitive to periodate oxidation and alkaline phosphatase, and does not bind to concanavalin A or wheat germ agglutinin. Judging from methylation studies, the labeled ethanolamine residue does not contain a free amino group. Based on these results, we report a novel post-translational modification of selected protein(s) by the covalent addition of [3H]ethanolamine.  相似文献   

10.
Origin of the gamma polypeptide of the Na+/K+-ATPase   总被引:1,自引:0,他引:1  
The Na+/K+-ATPase purified from lamb kidney contains a gamma polypeptide fraction which is a collection of fragments derived from the alpha and beta polypeptides of the enzyme. This fraction has the solubility characteristics of a proteolipid and was isolated either by high performance liquid chromatography (size exclusion chromatography) in 1% sodium dodecyl sulfate or by sequential organic extraction of purified lamb kidney Na+/K+-ATPase. Formation of gamma polypeptide(s) from detergent solubilized holoenzyme was accelerated by sulfhydryl containing reagents and was unaffected by addition of inhibitors of proteolytic enzymes. Treatment of the holoenzyme with the photoaffinity reagent N-(2-nitro-4-azidophenyl)[3H]ouabain ([3H]NAP-ouabain) labeled the alpha polypeptide and the gamma polypeptide fraction but not the beta polypeptide. Amino acid sequence analysis of one gamma polypeptide preparation revealed homology of one component of this fraction with the N-terminus of the beta subunit of the Na+/K+-ATPase. Amino acid analysis of two preparations of proteolipid showed similar amino acid compositions with a peptide derived from the alpha subunit. The insolubility and complexity of the gamma polypeptide(s)/proteolipid fraction appears to preclude a conclusive sequence analysis of all components of this fraction.  相似文献   

11.
In brain, phosphatidylethanolamine can be synthesized from free ethanolamine either by a pathway involving the formation of CDP-ethanolamine and its transfer to diglyceride, or by base-exchange of ethanolamine with existing phospholipids. Although de novo synthesis from serine has also been demonstrated, the metabolic pathway involved is not known. The enzyme phosphatidylserine decarboxylase appears to be involved in the synthesis of much of the phosphatidylethanolamine in liver, but the significance of this route in brain has been challenged. Our in vitro studies demonstrate the existence of phosphatidylserine decarboxylase activity in rat brain and characterize some of its properties. This enzyme is localized in the mitochondrial fraction, whereas the enzymes involved in base-exchange and the cytidine pathway are localized to microsomal membranes. Parallel in vivo studies showed that after the intracranial injection of L-[G-3H]serine, the specific activity of phosphatidylserine was greater in the microsomal fractions than in the mitochondrial fraction, whereas the opposite was true for phosphatidylethanolamine. When L-[U-14C]serine and [1-3H]ethanolamine were simultaneously injected, the 14C/3H ratio in mitochondrial phosphatidylethanolamine was 10 times that in microsomal phosphatidylethanolamine. The results demonstrate that serine is incorporated into the base moiety of phosphatidylethanolamine primarily through the decarboxylation of phosphatidylserine in brain mitochondria. A minimal value of 7% for the contribution of phosphatidylserine decarboxylase to whole-brain phosphatidylethanolamine synthesis can be estimated from the in vivo data.  相似文献   

12.
1. Primary cultures of chondrocytes from the Swarm rat chondrosarcoma were labelled with either [3H]glucosamine or [14C]glucosamine, and hyaluronate synthesized by the cells was isolated from the cell layer. Parallel cultures were labelled with either [3H]serine or [3H]lysine, and identical fractions were isolated from the cell layer. Some cultures were dual-labelled. 2. In cultures labelled with [3H]serine for between 30 min and 24 h and extracted with 4.0 M-guanidine, a procedure that solubilizes predominantly extracellular macromolecules, small amounts of [3H]serine-labelled molecules were found associated with the hyaluronate fraction purified from the extract by dissociative CsCl-density-gradient centrifugation and dissociative Sepharose CL-2B chromatography. About 75% of the [3H]serine-labelled molecules in the fraction were specifically associated with hyaluronate, since they could be removed by prior treatment with proteinase-free Streptomyces hyaluronidase. The association of the [3H]serine-labelled molecules with hyaluronate was non-covalent, since they could be separated from it by further centrifugation in CsCl density gradients containing 4 M-guanidinium chloride and a zwitterionic detergent. 3. In other experiments the cultures were extracted with a sequential zwitterionic-detergent/guanidinium chloride procedure that completely solubilized the cell layer and enabled fractions containing newly synthesized cell-associated hyaluronate to be isolated. Zwitterionic detergent was present throughout. No [3H]lysine was incorporated into these fractions, irrespective of whether the cultures were pulsed concurrently with [3H]lysine and [14C]glucosamine or sequentially with [3H]lysine to prelabel the protein pool (24 h) followed by [14C]-glucosamine to label hyaluronate (1 h). 4. The results show that newly synthesized hyaluronate is not associated with covalently bound protein, and suggest that chain synthesis is initiated by a mechanism other than on to a core protein. Small amounts of [3H]serine-labelled molecules are, however, non-covalently associated with extracellular hyaluronate. Their identity is at present unknown, but they are probably of low molecular weight.  相似文献   

13.
Slices of various types of cartilage were incubated with either L-[6-3H]fucose or [1,4-3H(N)]putrescine. Homogenization of the slices and fractionation of the homogenates showed for both labels that an insoluble collagenase-resistant fraction had the highest specific activity (dpm/mg dry weight). Examination of an exhaustive proteolytic digest of this insoluble fraction by ion-exchange high performance liquid chromatography showed the presence of gamma-glutamyl[3H]putrescine. Chromatography of solubilized [3H]fucoprotein fractions showed the presence of several low molecular weight peaks, as well as high molecular weight material. Incubation of [3H]fucoprotein extracts with transglutaminase increased the high molecular weight peaks and decreased the low molecular weight ones. Incubation of the cartilage slices with L-[3H]fucose plus 0.5 mM dansylcadaverine, an inhibitor of transglutaminase, caused a decrease in the insoluble and high molecular weight fraction relative to the low molecular weight peaks. It is hypothesized that this is due to inhibition of cross-link formation between fucoprotein components of the cartilage which are transglutaminase substrates. One major low molecular weight peak, which labels with both fucose and putrescine, corresponds in size with the 15,000 subunit of collagen III aminopropeptide, which is known to be a substrate for transglutaminase.  相似文献   

14.
Immunoaffinity-purified TF1.17 adhesin antigen was compared biochemically and antigenically to Tritrichomonas foetus (TF) lipophosphoglycan (LPG) and a soluble glycosylated antigen (SGA) released from T. foetus and implicated in pathogenesis and immunity. The monoclonal antibodies (Mabs TF1.15 and TF1.17) specific for a glycosylated TF1.17 antigen were previously shown to prevent adhesion of the T. foetus parasites to bovine vaginal epithelial cells and to mediate killing by bovine complement. SGA was isolated from T. foetus-conditioned buffer and purified by octyl-Sepharose hydrophobic column chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of SGA showed a major SGA1 component (approximately 190 kDa) and a minor SGA2 component (50-70 kDa), which migrated close to TF-LPG and TF1.17. The carbohydrate and lipid compositional analyses of affinity-purified TF1.17 and SGA2 by high-performance liquid chromatography (HPLC) and gas-liquid chromatography revealed the presence of monosaccharides and fatty acids as found in TF-LPG. All antigens contained terminal fucose as determined by alpha-fucosidase digestion followed by HPLC. ELISA and western blots were used to further characterize these glycosylated antigens and to analyze their relationships. The Mabs TF1.15 and TF1.17 reacted very strongly to TF-LPG and SGA2. as well as TF1.17 antigen, indicating that these molecules share common epitopes. These Mabs did not react with the SGA1 component either in ELISA and western blot analyses. Also, the monosaccharide composition of SGA1 was very different from the other three antigen, suggesting SGA1 was different from LPG, SGA2 and TF1.17. Although LPG reacted with Mabs to native TF1.17 antigen, LPG did not induce an immune response in cattle with the same route and adjuvant used to produce strong antibody responses to the native antigen. The latter response suggests that the tightly bound peptide present in the immunoaffinity-purified antigen is necessary for induction of a response to (an) epitope(s) in TF-LPG and TF1.17. Furthermore, vaginal fluid from T. foetus-infected heifers and serum from a cow with a T. foetus-associated pyometra recognized both TF1.17 and TF-LPG in western blots. These results suggest that T. foetus LPG and SGA2 are related to TF1.17 antigen, which was previously shown to play an important role in the pathogenesis and host response in bovine trichomoniasis.  相似文献   

15.
The glycosylphosphatidylinositol (GPI)-anchor of the plasma membrane-associated heparan sulfate (HS) proteoglycan was metabolically radiolabeled with [3H]myristic acid, [3H]palmitic acid, [3H]inositol, [3H]ethanolamine, or [32P]phosphate in rat ovarian granulosa cell culture. Cell cultures labeled with [3H]myristic acid or [3H]palmitic acid were extracted with 4 M guanidine HCl buffer containing 2% Triton X-100 and the proteoglycans were purified by ion exchange chromatography after extensive delipidation. Specific incorporation of 3H into GPI-anchor was demonstrated by removing the label with a phosphatidylinositol-specific phospholipase C (PI-PLC). Incorporation of 3H activity into glycosaminoglycans and core glycoproteins was also demonstrated. However, the specific activity of 3H in these structures was approximately 2 orders of magnitude lower than that in the GPI-anchor, suggesting that 3H label was the result of the metabolic utilization of catabolic products of the 3H-labeled fatty acids. PI-PLC treatment of cell cultures metabolically labeled with [3H]inositol, [3H]ethanolamine, or [32P]phosphate specifically released radiolabeled cell surface-associated HS proteoglycans indicating the presence of GPI-anchor in these proteoglycans. GPI-anchored HS proteoglycans accounted for 20-30% of the total cell surface-associated HS proteoglycans and virtually all of them were removed by PI-PLC. These results further substantiate the presence of GPI-anchored heparan sulfate proteoglycan in ovarian granulosa cells and its cell surface localization.  相似文献   

16.
Each salivary gland contains about 135 pmol of phosphatidylinositol. In glands prelabelled by incubation for 1 h with [32P]Pi or [3H]inositol there was a subsequent breakdown of 80% of the labelled phosphatidylinositol over a 2 h incubation period with 10 micrometer-5-hydroxytryptamine. However, there was no detectable decrease either in total phosphatidylinositol based on phosphorus analysis by chemical estimation or in the radioactivity of [32P]phosphatidylinositol in salivary glands of flies raised from the larval stage on diets containing[32P]Pi and whose phospholipids were uniformly labelled. These results suggest that the pool of phosphatidylinositol involved with Ca2+ gating is a small fraction of the total phosphatidylinositol content. Furthermore it is this small compartment that is preferentially radioactively labelled during short-term incubations with radioactively labelled precursors. In salivary glands incubated for 2 h with 10 micrometer-5-hydroxytryptamine there was a marked decrease in the flux of 45Ca2+ across the gland. After removal of the hormone, incubation of salivary glands for 1 h in the presence of 2mM-inositol, but not choline or ethanolamine, resulted in a recovery of hormone-responsive 45Ca2+ flux. Quantitative studies revealed that less than 9 pmol of phosphatidylinositol must be formed to fully restoret he 5-hydroxytryptamine-responsive 45Ca2+ flux.  相似文献   

17.
1. Electron microscope autoradiography indicated that L-[3H]fucose and D-[3H]glucosamine were both incorporated into cell-surface-associated glycoconjugates in the epidermis of cultured pig skin slices. 2. Acid hydrolysis and paper chromatography of skin homogenates confirmed that there was little metabolic conversion of the labeled precursors to other sugars. 3. Epidermis was separated from dermis using CaCl2, and was extracted with 8 M-urea/5% (w/v) sodium dodecyl sulphate and was then analysed by gel electrophoresis. The major component labelled with D-[3H]glucosamine had an apparent molecular weight in excess of 200 000. This material was not labelled with L-[3H]fucose. Lower molecular-weight components were labelled to a similar extent with both L-[3H]fucose and D-[3H]glucosamine. 4. The high molecular-weight material labelled with D-[3H]glucosamine was released into the medium when the epidermal cells were dispersed with trypsin, indicating that it was either surface-associated or was extracellular. It was also labelled with D-[14C]glucuronic acid, 35SO4(2-) and to a small extent with 14C-labelled amino acids indicating that it contained glycosaminoglycans derived from epidermal proteoglycans. This was confirmed by the fact that it was degraded by testicular hyaluronoglucosidase. It was not present in isolated membranes but was recovered in the soluble fraction from epidermal homogenates. It is therefore only very loosely bound at the cell surface or is present in the extracellular spaces. 5. Membrane-bound [3H]glycoproteins were identified after differential centrifugation of epidermal homogenates. The radioactivity profiles of membrane glycoproteins were similar whether L-[3H]fucose or D-[3H]glucosamine were used and both consisted of a major heterogeneous peak in the apparent mol.wt. range 70 000--150 000. [3H]Glycoproteins in this molecular-weight range were also major components of a plasma-membrane-enriched fraction. These glycoproteins were probably bound to the membrane by hydrophobic interactions, since they were only solubilized by treatment with detergent or organic solvent. They contained terminal sialic acid residues, since they were degraded by neuraminidase.  相似文献   

18.
Metabolism of retinoids by embryonal carcinoma cells   总被引:4,自引:0,他引:4  
Several embryonal carcinoma (EC) cell lines were tested in culture for their ability to metabolize all-trans-[3H]retinol, all-trans-[3H]retinyl acetate, and all-trans-[3H]retinoic acid. There was little, if any, metabolism of all-trans-retinol to more polar compounds; we failed to detect conversion to acidic retinoids by reverse-phase high performance liquid chromatography and derivatization. We also did not observe [3H]retinoic acid when EC cells were incubated with [3H]retinyl acetate. Unlike the other retinoids, all-trans-[3H]retinoic acid, even at micromolar levels, was almost totally modified by cells from several EC lines within 24 h. Most of the labeled products were secreted into the medium. Some EC lines metabolized retinoic acid constitutively, whereas others had an inducible enzyme system. A differentiation-defective line, which contains little or no cellular retinoic acid-binding protein activity, metabolized retinoic acid poorly, even after exposure to inducers. At least eight retinoic acid metabolites were generated; many contain hydroxyl residues. Our data lead us to propose that retinol does not induce differentiation of EC cells in vitro via conversion to retinoic acid. Also, the relatively rapid metabolism of retinoic acid by EC cells suggests either that the induction of differentiation need involve only a transient exposure to this retinoid or that one or more of the retinoic acid metabolites can also promote differentiation.  相似文献   

19.
This study identifies and partially characterizes an insulin-sensitive glycophospholipid in H35 hepatoma cells. The incorporation of [3H]glucosamine into cell lipids was investigated. A major labeled lipid was purified by sequential thin layer chromatography using first an acid followed by a basic solvent system. After hydrochloric acid hydrolysis and sugar analysis by thin layer chromatography, 80% of the radioactivity in the purified lipid was found to comigrate with glucosamine. H35 cells were prelabeled with [3H]glucosamine for either 4 or 24 h and treated with insulin causing a dose-dependent stimulation of turnover of the glycophospholipid which was detected within 1 min. The purified glycolipid was cleaved by nitrous acid deamination indicating that the glucosamine C-1 was linked to the lipid moiety through a glycosidic bond. [14C]Ethanolamine, [3H]inositol, and [3H]sorbitol were not incorporated into the purified glycolipid. The incorporation of various fatty acids into this glycolipid was also studied. [3H]Palmitate was found to be preferentially incorporated while myristic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, and arachidonic acid were either not incorporated or incorporated less than 10% of palmitate. The purified glycolipid labeled with [3H]palmitate was cleaved by treatment with phospholipase A2 but was resistant to mild alkali hydrolysis suggesting the presence of a 1-hexadecyl,2-palmitoyl-glyceryl moiety in the purified lipid. Treatment of labeled glycophospholipid with phosphatidylinositol-specific phospholipase C from Staphylococcus aureus generated a compound migrating as 1-alkyl,2-acyl-glycerol and a polar head group with a size in the range from 800 to 3500. These findings coupled with the nitrous acid deamination demonstrate that glucosamine was covalently linked through a phosphodiester bond to the glyceryl moiety of the purified glycolipid. These findings suggest that insulin acts on this glycophospholipid by stimulating an insulin-sensitive phospholipase C. This unique glycophospholipid may play an important role in insulin action by serving as precursor of insulin-generated mediators.  相似文献   

20.
A simple assay for phosphatidylserine decarboxylase is described. Following incubation of a mitochondrial fraction from Saccharomyces cerevisiae with purified, exogenous phosphatidyl[3H]serine, the lipid extract is applied to a small DEAE-cellulose column equilibrated in CHCI3-CH3OH (1:1). The unreacted substrate, phosphatidyl[3H]serine, is quantitatively bound by the ion-exchange column while the product, phosphatidyl[3H]ethanolamine, is eluted by sequential washing with CHCI3-CH3OH (1:1) and CH3OH. The organic solvents are evaporated, and the amount of radiolabeled phosphatidyl[3H]ethanolamine formed by enzymatic decarboxylation is determined by liquid scintillation spectrometry. The reliability of this assay was established by showing that several enzymatic properties of the yeast enzyme, defined by the new assay, were essentially identical to the properties characterized by a more tedious paper chromatographic assay described previously. Virtually identical rates of enzymatic decarboxylation of phosphatidyl[3H]serine were also obtained for mitochondrial fractions from pig brain and rat liver when the activities were compared by the column and paper chromatographic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号