首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sarcoplasmic reticulum membrane vesicles isolated from frog skeletal muscle display high conductance calcium channels when fused into phospholipid bilayers. The channels are selective for calcium and barium over Tris. The fractional open time was voltage-independent (-40 to +25 mV), but was steeply dependent on the free cis [Ca2+] (P0 = 0.02 at 10 microM cis Ca2+ and 0.77 at 150 microM Ca2+; estimated Hill coefficient: 1.6). Addition of ATP (1 mM; cis) further increased P0 from 0.77 to 0.94. Calcium activation was reversed by addition of EGTA to the cis compartment. Magnesium (2 mM) increased the frequency of rapid closures and 8 mM magnesium decreased the current amplitude from 3.4 to 1.2 pA at 0 mV, suggesting a reversible fast blockade. Addition of increasing concentrations of inositol (1, 4, 5)-triphosphate (cis), increased P0 from 0.10 +/- 0.01 (mean +/- SEM) in the control to 0.85 +/- 0.02 at 50 microM in an approximately sigmoidal fashion, with an apparent half-maximal activation at 15 microM inositol (1, 4, 5)-trisphosphate in the presence of 40 microM cis Ca2+. Lower concentrations of this agonist were required to produce a significant increase in P0 when 10 microM or less cis Ca2+ were used. The channel was blocked by the addition to the cis compartment of either 0.5 mM lanthanum, 0.5 microM ruthenium red, or 200 nM ryanodine, all known inhibitors of Ca2+ release from sarcoplasmic reticulum vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The neuroleptic malignant syndrome (NMS) is an uncommon but serious adverse effect of antipsychotic medication. Similarities in the clinical picture, and muscle alterations, between NMS and susceptibility to malignant hyperthermia (MH) suggest common mechanisms underlying both disorders. Sarcoplasmic ionic calcium concentration ([Ca2+]i) was measured by means of Ca2+ selective microelectrodes in intact intercostal muscle fibers isolated from NMS patients and from subjects with no evidence of neuromuscular disease, who served as controls. The mean resting membrane potential and [Ca2+]i were -84 +/- 0.4 mV and 0.11 +/- 0.01 microM (mean +/- SEM) in the control subjects, while they were -84 +/- 0.6 mV and 0.51 +/- 0.02 microM in NMS muscle fibers. Only the difference in [Ca2+]i is significant (P less than 0.001). The incubation of control and NMS muscle bundles in dantrolene (10(-6) M) induced a reduction of [Ca2+]i to 0.06 +/- 0.01 microM and 0.20 +/- 0.04 microM respectively. These results show an alteration in sarcoplasmic ionic [Ca2+] in NMS muscle fibers, suggesting that a dysfunction in skeletal muscle plays some role in the pathogenesis of NMS.  相似文献   

3.
The intracellular free Ca concentration was measured in invertebrate neurones using single-barrelled and double-barrelled neutral-carrier microelectrodes. The electrodes were calibrated in solutions containing different Ca concentrations between 1 mM and 0.01 microM. The electrode responses were also tested at different ionic strengths and at varying Na concentrations. The electrodes responded with 25-30 mV per 10-fold change in Ca concentration between 1 mM and 1 microM and with 10-25 mV between 1 and 0.1 microM Ca. The intracellular free Ca concentration was measured to be between 0.1 and 0.7 microM in the neurones. The changes of intracellular Ca in identified voltage-clamped neurones of Aplysia californica were recorded during iontophoretic injections of Ca2+ or EGTA. The decrease of intracellular Ca following EGTA injection was correlated with the suppression of the Ca-dependent K current and with the reduction of Ca-induced inactivation of voltage-dependent Ca current. In identified neurones of the leech Hirudo medicinalis a reversible increase of intracellular Ca2+ was recorded after inhibition of the Na-K pump, either by addition of ouabain (0.5 mM) or by lowering the external K concentration (0.2 mM). This rise in intracellular Ca2+ did not occur, and was even reversed, in the absence of external Na, suggesting the existence of Na-Ca exchange across the leech neuronal membrane.  相似文献   

4.
Intracellular free calcium ([Ca2+]i) was measured in individual pancreatic beta-cells from mice using dual emission microfluorometry and the indicator Indo-1 applied by a patch clamp pipette. GTP-gamma-S (100 microM) injected together with 0.3 or 3 mM ATP evoked repetitive [Ca2+]i transients with a frequency of about 1 per min in beta-cells kept at a membrane potential of -70 mV. The oscillatory pattern was unaffected by the Ca2+ channel blocker verapamil (50 microM). When omitting GTP-gamma-S from the pipette medium it became evident that 3 mM ATP alone can induce oscillations. The results provide additional evidence for an important role of ATP in the ionic control of insulin release, indicating that such regulation may also involve activation of G-proteins.  相似文献   

5.
Spermine. A regulator of mitochondrial calcium cycling   总被引:9,自引:0,他引:9  
Steady-state free Ca2+ concentrations have been measured with a Ca2+ electrode using suspensions of isolated rat liver mitochondria or saponin-treated hepatocytes. Mitochondria, when incubated in the presence of Mg2+ and MgATP2-, maintain a steady-state pCa2+ (-log [Ca2+]) of approximately 6.1 (0.8 microM). Addition of spermine lowered this value to a pCa2+ of 6.6 (0.25 microM). Spermine was the most effective polyamine, giving half-maximal effects at 170 microM and maximal effects at 400 microM. With saponin-permeabilized hepatocytes, spermine addition similarly showed that the mitochondria buffered the steady-state medium-free Ca2+ at a level approximating the cytosolic free Ca2+ concentration of intact hepatocytes. The initial rate of Ca2+ uptake by the mitochondrial Ca2+ uniporter was investigated using Ca2+-depleted mitochondria incubated in the presence of succinate and 0.3 mM free Mg2+. Under control conditions, Ca2+ uptake was not observed at free Ca2+ concentrations below 0.5 microM. Spermine (350 microM) increased the rate of Ca2+ uptake at all Ca2+ concentrations below 4.5 microM, but at higher Ca2+ concentrations, it was inhibitory. Spermine also affected mitochondrial Ca2+ efflux by decreasing the apparent Km from 16 to 3.8 nmol of Ca2+/mg of mitochondrial protein with no change of Vmax. Experiments with 45Ca2+ confirmed that spermine increased mitochondrial Ca2+ cycling at 0.2 microM free Ca2+. Hepatic spermine contents are reported to be about 1 mumol/g, wet weight, suggesting that this polyamine may have an important physiological role in intracellular calcium homeostasis.  相似文献   

6.
After the incorporation of the tracheal microsomal membrane into bilayer lipid membrane (BLM), a new single channel permeable for calcium was observed. Using the BLM conditions, 53 mM Ca2+ in trans solution versus 200 nM Ca2+ in cis solution, the single calcium channel current at 0 mV was 1.4-2.1 pA and conductance was 62-75 pS. The channel Ca2+/K+ permeability ratio was 4.8. The open probability (P-open) was in the range of 0.7-0.97. The P-open, measured at -10 mV to +30 mV (trans-cis), was not voltage dependent. The channel was neither inhibited by 10-20 microM ruthenium red, a specific blocker of ryanodine calcium release channel, nor by 10-50 microM heparin, a specific blocker of IP3 receptor calcium release channel, and its activity was not influenced by addition of 0.1 mM MgATP. We suggest that the observed new channel is permeable for calcium, and it is neither identical with the known type 1 or 2 ryanodine calcium release channel, nor type 1 or 2 IP3 receptor calcium release channel.  相似文献   

7.
The ionic currents of clonal Y-1 adrenocortical cells were studied using the whole-cell variant of the patch-clamp technique. These cells had two major current components: a large outward current carried by K ions, and a small inward Ca current. The Ca current depended on the activity of two populations of Ca channels, slow (SD) and fast (FD) deactivating, that could be separated by their different closing time constants (at -80 mV, SD, 3.8 ms, and FD, 0.13 ms). These two kinds of channels also differed in (a) activation threshold (SD, approximately -50 mV; FD, approximately -20 mV), (b) half-maximal activation (SD, between -15 and -10 mV; FD between +10 and +15 mV), and (c) inactivation time course (SD, fast; FD, slow). The total amplitude of the Ca current and the proportion of SD and FD channels varied from cell to cell. The amplitude of the K current was strongly dependent on the internal [Ca2+] and was almost abolished when internal [Ca2+] was less than 0.001 microM. The K current appeared to be independent, or only slightly dependent, of Ca influx. With an internal [Ca2+] of 0.1 microM, the activation threshold was -20 mV, and at +40 mV the half-time of activation was 9 ms. With 73 mM external K the closing time constant at -70 mV was approximately 3 ms. The outward current was also modulated by internal pH and Mg. At a constant pCa gamma a decrease of pH reduced the current amplitude, whereas the activation kinetics were not much altered. Removal of internal Mg produced a drastic decrease in the amplitude of the Ca-activated K current. It was also found that with internal [Ca2+] over 0.1 microM the K current underwent a time-dependent transformation characterized by a large increase in amplitude and in activation kinetics.  相似文献   

8.
We have investigated why fura-2 and Ca(2+)-sensitive microelectrodes report different values for the intracellular free calcium ion concentration ([Ca(2+)]i or its negative log, pCa(i)) of snail neurons voltage-clamped to -50 or -60 mV. Both techniques were initially calibrated in vitro, using calcium calibration solutions that had ionic concentrations similar to those of snail neuron cytoplasm. Pressure injections of the same solutions at resting and elevated [Ca(2+)]i were used to calibrate both methods in vivo. In fura-2-loaded cells these pressure injections generated changes in [Ca(2+)]i that agreed well with those expected from the in vitro calibration. Thus, using fura-2 calibrated in vitro, the average resting [Ca(2+)]i was found to be 38 nM (pCa(i) 7.42 +/- 0.05). With Ca(2+)-sensitive microelectrodes, the first injection of calibration solutions always caused a negative shift in the recorded microelectrode potential, as if the injection lowered [Ca2+]i. No such effects were seen on the fura-2 ratio. When calibrated in vivo the Ca(2+)-sensitive microelectrode gave an average resting [Ca2+]i of approximately 25 nM (pCa(i) 7.6 +/- 0.1), much lower than when calibrated in vitro. We conclude that [Ca(2+)]i in snail neurons is approximately 40 nM and that Ca(2+)-sensitive microelectrodes usually cause a leak at the point of insertion. The effects of the leak were minimized by injection of a mobile calcium buffer.  相似文献   

9.
J R Lopez  L Parra 《Cell calcium》1991,12(8):543-557
Inositol 1,4,5-trisphosphate (InsP3) has been proposed as an intracellular messenger which mobilizes calcium from the sarcoplasmic reticulum, during excitation-contraction coupling in skeletal muscle. We have measured the myoplasmic free calcium concentration ([Ca2+]i) by means of calcium selective microelectrodes in intact fibers isolated from Leptodactylus insularis microinjected with InsP3. In muscle fibers bathed in normal Ringer, the mean resting [Ca2+]i was 0.11 +/- 0.01 microM (M +/- SEM, n = 30). The microinjection of 0.3, 0.5 and 1 microM InsP3 induced transient increments in the [Ca2+]i to 0.35 +/- 0.02 microM (n = 9), to 0.53 +/- 0.03 microM (n = 11) and 0.94 +/- 0.06 microM (n = 10) respectively. Microinjection of 0.3, 0.5 and 1 microM InsP3 in muscle fibers incubated in low Ca2+ solution induced increments in [Ca2+]i similar to those observed in fibers bathed with normal Ringer. The microinjection of 0.3, 0.5 and 1 microM InsP3 in muscle fibers partially depolarized with 10 mM [K+]o induced transient enhancements of the resting [Ca2+]i that were greater than the transients observed in the normally polarized muscle. In partially depolarized fibers microinjected with 0.3, 0.5 and 1 microM InsP3, the [Ca2+]i was changed to 1.45 +/- 0.14 microM (n = 20), to 3.37 +/- 0.34 microM (n = 7) and to 7.43 +/- 0.70 microM (n = 6) respectively. In all partially depolarized fibers these increments in [Ca2+]i were associated with local contraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The inside-out mode of the patch-clamp method was used to study the effects of internal Mg2+ on single large-conductance (193+/-7 pS) Ca(2+)-activated K+ channels in cultured kidney cells. In the absence of Ca2+, Mg2+ (1 to 10 mM) did not activate the channels but modified the activating effect of Ca2+ ions: it decreased the Hill coefficient (n), reduced the apparent dissociation constant (K0.5), and modified the channel open and closed times. K0.5 was found to be a voltage-dependent parameter. In the absence of Mg2+, it averaged 600 microM at -20 mV and 27 microM at +30 mV (22 degrees C, pH 6.8). Mg2+ at saturating concentrations (5 to 10 mM) decreased K0.5 to 50 microM at -20 mV and to 15 microM at +30 mV. Irrespective of the membrane potential, K0.5 tended to its limit value of about 12.6 microM. Thus, the effects of membrane depolarization and Mg2+ exhibited a non-additive, competitive relationship. Mg2+ perturbed the exponential shape of the voltage dependences of K0.5. The Hill coefficient characterizing the interaction of Ca2+ ions with the channels was found to be voltage-dependent. In the absence of Mg2+, it increased rather sharply from approx. 2 to 3.5 when the membrane potential was raised from -10 to 0 mV. Mg2+ increased n in a dose-dependent manner; however, about a twofold increase of n occurred within a narrow concentration range (2 to 3 mM). The action of Mg2+ on n was, apparently, voltage-independent, and the effects of Mg2+ and voltage on n were seemingly additive.  相似文献   

11.
Membrane current and tension were measured in voltage-clamped sheep cardiac Purkinje fibers. Elevating the intracellular calcium concentration ([Ca2+]i) results in oscillations of membrane current and tension both at rest and during stimulation. During stimulation, an oscillatory transient inward current and an after contraction follow repolarization. We have examined the effects on the oscillations of changing the extracellular calcium concentration ([Ca2+]o) and of adding various drugs. In agreement with previous work, high concentrations of drugs that affect the sarcoplasmic reticulum, namely caffeine (10-20 mM), tetracaine (1 mM), and ryanodine (10 microM), abolish the oscillations. However, at lower concentrations, these three drugs have different effects on the oscillations. Caffeine (1-2 mM) decreases the oscillation amplitude but increases the frequency. Tetracaine (100-500 microM) has little effect on the magnitude of the oscillations but decreases their frequency. Ryanodine, at all concentrations used (0.1-10 microM), eventually abolishes the oscillations but, in doing so, decreases the magnitude, leaving the frequency unaffected. When [Ca2+]o was changed in order to vary [Ca2+]i, both the frequency and the magnitude of the oscillations always changed in the same direction. This suggests that these three drugs have effects in addition to just changing [Ca2+]i.  相似文献   

12.
H. Satoh 《Amino acids》1995,9(3):235-246
Summary Effects of taurine on the delayed rectifier K+ channel in isolated 10-day-old embryonic chick ventricular cardiomyocytes were examined at different intracellular Ca2+ concentrations ([Ca]i), using whole-cell voltage and current clamp techniques. Experiments were performed at room temperature (22°C). Test pulses were applied between -20 to +90m V from a holding potential of -40mV. When [Ca]i was pCa 7, addition of 10 and 20 mM taurine to the bath solution reduced the delayed rectifier K+ current (IK) at +90mV by 17.4 ± 2.8% (n = 5, P < 0.01) and 25.5 ± 2.6% (n = 5, P < 0.001), respectively. In contrast, when [Ca]i was pCa 10, IK at +90 mV was enhanced by 19.1 ± 3.1% (n = 7, P < 0.01) at 10mM taurine, and by 29.3 ± 2.4% (n = 7, P < 0.001) at 20mM taurine. The voltage of half-maximum activation (V1/2) was shifted in a hyperpolarizing direction; at pCa 7, the value was +0.2 ± 2.2mV (n = 5) in control and -10.6 ± 1.8mV (n = 5) in 20mM taurine. At pCa 10, the V1/2 value was +18.5 ± 4.6mV (n = 5) in control and +6.6 ± 5.2mV (n = 5) in taurine (20mM). Taurine decreased the action potential duration (APD) at pCa 10, but at pCa 7 did not affect it. In addition, taurine enhanced the transient outward current in a concentration-dependent manner. These results indicate that taurine modulates the delayed rectifier K+ channel, an effect dependent on [Ca]i and capable of regulating APD.  相似文献   

13.
Inorganic phosphate (Pi) release was determined by means of a fluorescent Pi-probe in single permeabilized rabbit soleus and psoas muscle fibers. Measurements of Pi release followed photoliberation of approximately 1.5 mM ATP by flash photolysis of NPE-caged ATP in the absence and presence of Ca2+ at 15 degrees C. In the absence of Ca2+, Pi release occurred with a slow rate of 11 +/- 3 microM . s-1 (n = 3) in soleus fibers and 23 +/- 1 microM . s-1 (n = 10) in psoas fibers. At saturating Ca2+ concentrations (pCa 4.5), photoliberation of ATP was followed by rapid force development. The initial rate of Pi release was 0.57 +/- 0.05 mM . s-1 in soleus (n = 13) and 4.7 +/- 0.2 mM . s-1 in psoas (n = 23), corresponding to a rate of Pi release per myosin head of 3.8 s-1 in soleus and 31.5 s-1 in psoas. Pi release declined at a rate of 0.48 s-1 in soleus and of 5.2 s-1 in psoas. Pi release in soleus was slightly faster in the presence of an ATP regenerating system but slower when 0.5 mM ADP was added. The reduction in the rate of Pi release results from an initial redistribution of cross-bridges over different states and a subsequent ADP-sensitive slowing of cross-bridge detachment.  相似文献   

14.
We have developed a model for characterizing calcium handling by the intact cardiac sarcoplasmic reticulum (SR) that yields data consistent with both mathematical simulations of in situ SR Ca2+ uptake and deduced behavior of the Ca2(+)-induced Ca2+ efflux channels in mechanically skinned single cardiac cells. In Na(+)-based media (37 degrees C, pH 7.2, 50 mM Pi, 10 mM MgATP, pMg 3.3, 10 mM phosphocreatine), SR 45Ca2+ uptake by digitonin-lysed rat myocytes as a function of free [Ca2+] peaked at pCa 6.2, declined until pCa 5.6 and increased again at lower pCa. When Ca2(+)-induced Ca2+ efflux was inhibited with 30 microM ruthenium red and 10 mM procaine, uptake was saturable with a Vmax of 160 +/- 5 nmol.min-1.mg-1, K0.5 of 500 nM free [Ca2+] and slope factor of 1.6. In K(+)-based media, maximum Pi- and oxalate-supported uptake increased to 220 and 260 nmol.min-1.mg-1, respectively. Without phosphocreatine, 45Ca2+ uptake declined under all conditions; this was correlated with a decrease in ATP/ADP. Vmax for 45Ca2+ uptake was increased 20% in hyperthyroid myocytes but depressed 30% in myocytes from heart failure-prone rats. In canine myocytes, Vmax was the same as in normal rat cells, but K0.5 was 830 nM. Without efflux inhibitors, ryanodine caused a concentration-dependent decline in net Pi-supported 45Ca2+ uptake at pCa 6.3 (K0.5 = 1 microM), while 10 microM ryanodine depressed uptake at all pCa between 7.2 and 5.6. Ruthenium red/procaine fully reversed this effect.  相似文献   

15.
We have studied the effects of local anesthetics (dibucaine, tetracaine, lidocaine, and procaine) on calcium fluxes through the plasma membrane of synaptosomes. All these local anesthetics inhibit the ATP-dependent calcium uptake by inverted plasma membrane vesicles at concentrations close to those that promote an effective blockade of the action potential. The values obtained for the K0.5 of inhibition of calcium uptake are the following: 23 microM (dibucaine), 0.44 mM (lidocaine), 1.5 mM (procaine), and 0.8 mM (tetracaine). There is a good correlation between these K0.5 values and the concentrations of the local anesthetics that inhibit the Ca2(+)-dependent Mg2(+)-ATPase of these membranes. In addition, except for procaine, these local anesthetics stimulate severalfold the Ca2+ outflow via the Na+/Ca2+ exchange in these membranes. This effect, however, is observed at concentrations slightly higher than those that effectively inhibit the ATP-dependent Ca2+ uptake, e.g., 80-700 microM dibucaine, 2-10 mM lidocaine, and 1-3 mM tetracaine. The results suggest that the Ca2+ buffering of neuronal cytosol is altered by these anesthetics at pharmacological concentrations.  相似文献   

16.
Ca2+ currents (ICa) and myoplasmic Ca2+ transients were simultaneously recorded in single muscle fibers from the semitendinosus muscle of Rana pipiens. The vaseline-gap voltage-clamp technique was used. Ca2+ transients were recorded with the metallochromic indicator dye antipyrylazo III. Ca2+ transients consisted of an early fast rising phase followed by a late slower one. The second phase was increased by experimental maneuvers that enlarged ICa, such as augmenting [Ca2+]o (from 2 to 10 mM) or adding (-)-Bay K 8644 (2 microM). When [Ca2+]o was increased, the second phase of the Ca2+ transients and ICa showed an average increase at 0 mV of 2 +/- 0.9 microM (4) and 1.4 +/- 0.3 mA/ml (4), respectively. (-)-Bay K 8644 increased the late phase of the Ca2+ transients and ICa at 0 mV by 0.8 +/- 0.3 microM (3) and 6.7 +/- 2.0 mA/ml (4), respectively. The initial fast rising phase of the Ca2+ transients was not modified. (-)-Bay K 8644 slowed the time constant of decay of the transients by 57 +/- 6 ms. In other experimental conditions, Ca2+ release from the sarcoplasmic reticulum (SR) was impaired with repetitive stimulation in 1 mM [EGTA]i-containing fibers. Under those circumstances, Ca2+ transients directly followed the time integral of ICa. Pulses to 0 mV caused a large Ca2+ transient that became suppressed when large pulses to 100 mV were applied. In fibers with functioning SR, pulses to 100 mV elicited somewhat smaller or similar amplitude Ca2+ transients when compared with those elicited by pulses to 0 mV. The increase in ICa after raising [Ca2+]o or adding (-)-Bay K 8644 cannot directly explain the change in Ca2+ transients in fibers with functioning SR. On the other hand, when Ca2+ release from the SR is impaired Ca2+ transients depend on ICa.  相似文献   

17.
Macroscopic and unitary currents through Ca(2+)-activated Cl- channels were examined in enzymatically isolated guinea-pig hepatocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+]i) was set at 1 microM (pCa = 6), membrane currents were observed under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by approximately 60 mV per 10-fold change in the external Cl- concentration. In addition, the current did not appear when Cl- was omitted from the internal and external solutions, indicating that the current was Cl- selective. The current was activated by increasing [Ca2+]i and was inactivated in Ca(2+)-free, 5 mM EGTA internal solution (pCa > 9). The current was inhibited by bath application of 9- anthracenecarboxylic acid (9-AC) and 4,4'-diisothiocyanatostilbene-2,2'- disulfonic acid (DIDS) in a voltage-dependent manner. In single channel recordings from outside-out patches, unitary current activity was observed, whose averaged slope conductance was 7.4 +/- 0.5 pS (n = 18). The single channel activity responded to extracellular Cl- changes as expected for a Cl- channel current. The open time distribution was best described by a single exponential function with mean open lifetime of 97.6 +/- 10.4 ms (n = 11), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 21.5 +/- 2.8 ms (n = 11) and that for the slow component of 411.9 +/- 52.0 ms (n = 11). In excised inside-out patch recordings, channel open probability was sensitive to [Ca2+]i. The relationship between [Ca2+]i and channel activity was fitted by the Hill equation with a Hill coefficient of 3.4 and the half-maximal activation was 0.48 microM. These results suggest that guinea-pig hepatocytes possess Ca(2+)-activated Cl- channels.  相似文献   

18.
The effects of high myoplasmic L-lactate concentrations (20-40 mM) at constant pH (7.1) were investigated on contractile protein function, voltage-dependent Ca(2+) release, and passive Ca(2+) leak from the sarcoplasmic reticulum (SR) in mechanically skinned fast-twitch (extensor digitorum longus; EDL) and slow-twitch (soleus) fibers of the rat. L-Lactate (20 mM) significantly reduced maximum Ca(2+)-activated force by 4 +/- 0.5% (n = 5, P < 0.05) and 5 +/- 0.4% (n = 6, P < 0.05) for EDL and soleus, respectively. The Ca(2+) sensitivity was also significantly decreased by 0.06 +/- 0. 002 (n = 5, P < 0.05) and 0.13 +/- 0.01 (n = 6, P < 0.001) pCa units, respectively. Exposure to L-lactate (20 mM) for 30 s reduced depolarization-induced force responses by ChCl substitution by 7 +/- 3% (n = 17, P < 0.05). This inhibition was not obviously affected by the presence of the lactate transport blocker quercetin (10 microM), or the chloride channel blocker anthracene-9-carboxylic acid (100 microM). L-Lactate (20 mM) increased passive Ca(2+) leak from the SR in EDL fibers (the integral of the response to caffeine was reduced by 16 +/- 5%, n = 9, P < 0.05) with no apparent effect in soleus fibers (100 +/- 2%, n = 3). These results indicate that the L-lactate ion per se has negligible effects on either voltage-dependent Ca(2+) release or SR Ca(2+) handling and exerts only a modest inhibitory effect on muscle contractility at the level of the contractile proteins.  相似文献   

19.
Calcium channel currents in isolated smooth muscle cells from human bronchus   总被引:10,自引:0,他引:10  
An electrophysiological study was carried out on smooth muscle cells that were enzymatically dissociated from bundles of muscle fibers dissected out of human bronchi obtained at thoracotomy. These cells that retain the contractile properties of intact bundles were voltage-clamped by means of the whole-cell patch-clamp technique. Upon voltage steps from a holding potential of -60 mV to more positive levels, the initial inward current was followed by large outward currents that inactivated slowly. These were subsequently reduced by substituting Cs+ for K+ in the internal solution and by using Ba2+ instead of Ca2+ as a charge carrier in the external solution. Under these conditions, the inward current did not completely inactivate in the course of 300-ms voltage steps. Inward current measured after leak subtraction was activated at a membrane potential of -25.8 +/- 5 mV, was maximum at +18 +/- 4 mV, and had an apparent reversal potential of +52.5 +/- 5.5 mV (n = 5). The potential at which steady-state inactivation was half-maximum was -28 mV (n = 5). This inward current was identified as a calcium current on the following basis: 1) it was not altered by 10 microM tetrodotoxin (TTX) or by lowering to 10 mM external Na+ concentration; 2) it was blocked by 2.5 mM Co2+ or 1 microM PN 200-110; 3) it was enhanced by 1 microM BAY K 8644, which in addition suppressed the PN 200-110 blockade.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The role of calcium in the release of superoxide anion (O2-) was examined in alveolar macrophages after stimulation with the soluble stimuli: concanavalin A (Con A), N-formyl methionyl phenylalanine (FMP), and the calcium ionophore. A23187. The release of O2- by Con A was unaffected over a wide range of extracellular calcium concentrations (20 microM to 3 mM), whereas increasing the extracellular calcium above 2 mM inhibited FMP-stimulated O2- release. In contrast, A23187 did not stimulate O2- release in calcium-free medium (less than or equal to 30 microM). The addition of EGTA (50 microM) to calcium-free medium had no effect on Con A stimulation of O2- release or FMP-stimulated O2- release. These results suggest that, for the three soluble stimuli, there are different roles for Ca+2 in the activation and transmission of stimulatory signals across the cell membrane. Con A- or FMP-stimulated calcium efflux from calcium-loaded cells in either calcium-free medium or 0.5 mM calcium-containing medium. In calcium-free medium, FMP transiently retarded 45Ca+2 uptake, while in 0.5 mM calcium-containing medium, FMP transiently stimulated 45Ca+2 uptake. For either Con A or FMP, calcium efflux preceded O2- release by 30-45 sec. Quinine, an agent that blocks membrane hyperpolarization in macrophages, completely blocked O2- release by concanavalin A or FMP and inhibited 45CA+2 efflux by 50% or more for both agents. These results support the hypothesis that redistribution of cellular Ca+2 is one of the initial steps leading to the release of O2-.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号