首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Monocyte (MO) subpopulations display distinct phenotypes and functions which can drastically change during inflammatory states. We hypothesized that discrete MO subpopulations are induced during malaria infection and associated with anti-parasitic activity. We characterized the phenotype of blood MO from healthy malaria-exposed individuals and that of patients with acute uncomplicated malaria by flow cytometry. In addition, MO defense function was evaluated by an in vitro antibody dependent cellular inhibition (ADCI) assay. At the time of admission, the percentages and absolute numbers of CD16+ MO, and CCR2+CX3CR1+ MO, were high in a majority of patients. Remarkably, expression of CCR2 and CX3CR1 on the CD14high (hi) MO subset defined two subgroups of patients that also differed significantly in their functional ability to limit the parasite growth, through the ADCI mechanism. In the group of patients with the highest percentages and absolute numbers of CD14hiCCR2+CX3CR1+ MO and the highest mean levels of ADCI activity, blood parasitemias were lower (0.14±0.34%) than in the second group (1.30±3.34%; p = 0.0053). Data showed that, during a malaria attack, some patients'' MO can exert a strong ADCI activity. These results bring new insight into the complex relationships between the phenotype and the functional activity of blood MO from patients and healthy malaria-exposed individuals and suggest discrete MO subpopulations are induced during malaria infection and are associated with anti-parasitic activity.  相似文献   

2.
Highlights? The intraerythrocytic malaria parasite extrudes Na+ via a Na+-ATPase ? Parasite Na+ homeostasis is disrupted by the antimalarial spiroindolones ? Mutations in PfATP4 confer resistance to Na+ disruption by the spiroindolones ? PfATP4 is postulated to be a Na+ efflux ATPase and a target of the spiroindolones  相似文献   

3.

SUMMARY

Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen.  相似文献   

4.
Malaria parasites generate vast quantities of heme during blood stage infection via hemoglobin digestion and limited de novo biosynthesis, but it remains unclear if parasites metabolize heme for utilization or disposal. Recent in vitro experiments with a heme oxygenase (HO)-like protein from Plasmodium falciparum suggested that parasites may enzymatically degrade some heme to the canonical HO product, biliverdin (BV), or its downstream metabolite, bilirubin (BR). To directly test for BV and BR production by P. falciparum parasites, we DMSO-extracted equal numbers of infected and uninfected erythrocytes and developed a sensitive LC-MS/MS assay to quantify these tetrapyrroles. We found comparable low levels of BV and BR in both samples, suggesting the absence of HO activity in parasites. We further tested live parasites by targeted expression of a fluorescent BV-binding protein within the parasite cytosol, mitochondrion, and plant-like plastid. This probe could detect exogenously added BV but gave no signal indicative of endogenous BV production within parasites. Finally, we recombinantly expressed and tested the proposed heme degrading activity of the HO-like protein, PfHO. Although PfHO bound heme and protoporphyrin IX with modest affinity, it did not catalyze heme degradation in vivo within bacteria or in vitro in UV absorbance and HPLC assays. These observations are consistent with PfHO''s lack of a heme-coordinating His residue and suggest an alternative function within parasites. We conclude that P. falciparum parasites lack a canonical HO pathway for heme degradation and thus rely fully on alternative mechanisms for heme detoxification and iron acquisition during blood stage infection.  相似文献   

5.
Apicoplasts are vestigial plastids in apicomplexan parasites like Plasmodium, the causative agent of malaria. Apicomplexan parasites are dependant on their apicoplasts for synthesis of various molecules that they are unable to scavenge in sufficient quantity from their host, which makes apicoplasts attractive drug targets. Proteins known as plastid phosphate translocators (pPTs) are embedded in the outer apicoplast membrane and are responsible for the import of carbon, energy and reducing power to drive anabolic synthesis in the organelle. We investigated how a pPT is targeted into the outer apicoplast membrane of the human malaria parasite P. falciparum. We showed that a transmembrane domain is likely to act as a recessed signal anchor to direct the protein into the endomembrane system, and that a tyrosine in the cytosolic N-terminus of the protein is essential for targeting, but one or more, as yet unidentified, factors are also essential to direct the protein into the outer apicoplast membrane.  相似文献   

6.
7.
Intraerythrocytic development of the human malaria parasite Plasmodium falciparum appears as a continuous flow through growth and proliferation. To develop a greater understanding of the critical regulatory events, we utilized piggyBac insertional mutagenesis to randomly disrupt genes. Screening a collection of piggyBac mutants for slow growth, we isolated the attenuated parasite C9, which carried a single insertion disrupting the open reading frame (ORF) of PF3D7_1305500. This gene encodes a protein structurally similar to a mitogen-activated protein kinase (MAPK) phosphatase, except for two notable characteristics that alter the signature motif of the dual-specificity phosphatase domain, suggesting that it may be a low-activity phosphatase or pseudophosphatase. C9 parasites demonstrated a significantly lower growth rate with delayed entry into the S/M phase of the cell cycle, which follows the stage of maximum PF3D7_1305500 expression in intact parasites. Genetic complementation with the full-length PF3D7_1305500 rescued the wild-type phenotype of C9, validating the importance of the putative protein phosphatase PF3D7_1305500 as a regulator of pre-S-phase cell cycle progression in P. falciparum.  相似文献   

8.
SM1 is a twelve-amino-acid peptide that binds tightly to the Anopheles salivary gland and inhibits its invasion by Plasmodium sporozoites. By use of UV-crosslinking experiments between the peptide and its salivary gland target protein, we have identified the Anopheles salivary protein, saglin, as the receptor for SM1. Furthermore, by use of an anti-SM1 antibody, we have determined that the peptide is a mimotope of the Plasmodium sporozoite Thrombospondin Related Anonymous Protein (TRAP). TRAP binds to saglin with high specificity. Point mutations in TRAP''s binding domain A abrogate binding, and binding is competed for by the SM1 peptide. Importantly, in vivo down-regulation of saglin expression results in strong inhibition of salivary gland invasion. Together, the results suggest that saglin/TRAP interaction is crucial for salivary gland invasion by Plasmodium sporozoites.  相似文献   

9.
10.
The human malaria parasite Plasmodium falciparum is absolutely dependent on the acquisition of host pantothenate for its development within human erythrocytes. Although the biochemical properties of this transport have been characterized, the molecular identity of the parasite-encoded pantothenate transporter remains unknown. Here we report the identification and functional characterization of the first protozoan pantothenate transporter, PfPAT, from P. falciparum. We show using cell biological, biochemical, and genetic analyses that this transporter is localized to the parasite plasma membrane and plays an essential role in parasite intraerythrocytic development. We have targeted PfPAT to the yeast plasma membrane and showed that the transporter complements the growth defect of the yeast fen2Δ pantothenate transporter-deficient mutant and mediates the entry of the fungicide drug, fenpropimorph. Our studies in P. falciparum revealed that fenpropimorph inhibits the intraerythrocytic development of both chloroquine- and pyrimethamine-resistant P. falciparum strains with potency equal or better than that of currently available pantothenate analogs. The essential function of PfPAT and its ability to deliver both pantothenate and fenpropimorph makes it an attractive target for the development and delivery of new classes of antimalarial drugs.  相似文献   

11.
Malaria parasites retain a relict plastid (apicoplast) from a photosynthetic ancestor shared with dinoflagellate algae. The apicoplast is a useful drug target; blocking housekeeping pathways such as genome replication and translation in the organelle kills parasites and protects against malaria. The apicoplast of Plasmodium falciparum encodes 30 proteins and a suite of rRNAs and tRNAs that facilitate their expression. orf105 is a hypothetical apicoplast gene that would encode a small protein (PfOrf105) with a predicted C-terminal transmembrane domain. We produced antisera to a predicted peptide within PfOrf105. Western blot analysis confirmed expression of orf105 and immunofluorescence localised the gene product to the apicoplast. Pforf105 encodes a membrane protein that has an apparent mass of 17.5 kDa and undergoes substantial turnover during the 48-hour asexual life cycle of the parasite in blood stages. The effect of actinonin, an antimalarial with a putative impact on post-translational modification of apicoplast proteins like PfOrf105, was examined. Unlike other drugs perturbing apicoplast housekeeping that induce delayed death, actinonin kills parasites immediately and has an identical drug exposure phenotype to the isopentenyl diphosphate synthesis blocker fosmidomycin. Open reading frames of similar size to PfOrf105, which also have predicted C-terminal trans membrane domains, occur in syntenic positions in all sequenced apicoplast genomes from Phylum Apicomplexa. We therefore propose to name these genes ycf93 (hypothetical chloroplast reading frame 93) according to plastid gene nomenclature convention for conserved proteins of unknown function.  相似文献   

12.
Recently, striatal-enriched protein tyrosine phosphatase (STEP) and its upstream regulator protein kinase A (PKA) have been suspected to play a role in the intracellular mechanisms of fear conditioning and spatial memory. However, whether they contribute to the learning and memory of motor skills is totally unknown. In this study, we have investigated the role of STEP and PKA activities during motor skill learning associated with the accelerating rotarod task. We observed that learning the rotarod task differentially modulated the levels of phosphorylated STEP61 at serine 221, a site directly regulated by PKA, in the hippocampus, motor cortex and striatum. In a second set of experiments, we have pharmacologically inhibited PKA by the injection of Rp-cAMPS directly into the dorsal striatum of mice before rotarod trainings. PKA phosphorylation of STEP prevents the dephosphorylation of STEP substrates, whereas inhibition of PKA promotes STEP activity. Striatal PKA inhibitions dose-dependently impaired mice performances on the accelerating rotarod task. General motor abilities testing revealed an intact motor control in mice treated with 5 and 20 µg of Rp-cAMPS, but not at the highest dose of 40 µg. This suggested that motor learning was selectively affected by PKA inhibition at lower doses. Most notably, striatal inhibition of PKA reduced the levels of phosphorylated STEP61 at serine 221. Our data support that inactivation of STEP61 by the PKA activity is part of the molecular process associated with motor skill learning.  相似文献   

13.
The patterns of molecular evolution of the most diverse region of the apical membrane antigen 1 (AMA1) gene in Plasmodium falciparum from a Vietnamese subpopulation (Bao Loc) were investigated. Within the Bao Loc population, the sequenced gene region showed relatively high allelic and nucleotide diversity (0.985 and 0.02694, respectively). Further, the level of population recombination was substantial, resulting in a significant decay of linkage disequilibrium along the gene region. The results suggest that AMA1 is a useful genetic marker for studying the relationships between adaptation of parasite populations (to the human host immune system) and malaria epidemiology.  相似文献   

14.
During blood stage Plasmodium falciparum infection, merozoites invade uninfected erythrocytes via a complex, multistep process involving a series of distinct receptor-ligand binding events. Understanding each element in this process increases the potential to block the parasite’s life cycle via drugs or vaccines. To investigate specific receptor-ligand interactions, they were systematically blocked using a combination of genetic deletion, enzymatic receptor cleavage and inhibition of binding via antibodies, peptides and small molecules, and the resulting temporal changes in invasion and morphological effects on erythrocytes were filmed using live cell imaging. Analysis of the videos have shown receptor-ligand interactions occur in the following sequence with the following cellular morphologies; 1) an early heparin-blockable interaction which weakly deforms the erythrocyte, 2) EBA and PfRh ligands which strongly deform the erythrocyte, a process dependant on the merozoite’s actin-myosin motor, 3) a PfRh5-basigin binding step which results in a pore or opening between parasite and host through which it appears small molecules and possibly invasion components can flow and 4) an AMA1–RON2 interaction that mediates tight junction formation, which acts as an anchor point for internalization. In addition to enhancing general knowledge of apicomplexan biology, this work provides a rational basis to combine sequentially acting merozoite vaccine candidates in a single multi-receptor-blocking vaccine.  相似文献   

15.

Background

Outside of Africa, P. falciparum and P. vivax usually coexist. In such co-endemic regions, successful malaria control programs have a greater impact on reducing falciparum malaria, resulting in P. vivax becoming the predominant species of infection. Adding to the challenges of elimination, the dormant liver stage complicates efforts to monitor the impact of ongoing interventions against P. vivax. We investigated molecular approaches to inform the respective transmission dynamics of P. falciparum and P. vivax and how these could help to prioritize public health interventions.

Methodology/ Principal Findings

Genotype data generated at 8 and 9 microsatellite loci were analysed in 168 P. falciparum and 166 P. vivax isolates, respectively, from four co-endemic sites in Indonesia (Bangka, Kalimantan, Sumba and West Timor). Measures of diversity, linkage disequilibrium (LD) and population structure were used to gauge the transmission dynamics of each species in each setting. Marked differences were observed in the diversity and population structure of P. vivax versus P. falciparum. In Bangka, Kalimantan and Timor, P. falciparum diversity was low, and LD patterns were consistent with unstable, epidemic transmission, amenable to targeted intervention. In contrast, P. vivax diversity was higher and transmission appeared more stable. Population differentiation was lower in P. vivax versus P. falciparum, suggesting that the hypnozoite reservoir might play an important role in sustaining local transmission and facilitating the spread of P. vivax infections in different endemic settings. P. vivax polyclonality varied with local endemicity, demonstrating potential utility in informing on transmission intensity in this species.

Conclusions/ Significance

Molecular approaches can provide important information on malaria transmission that is not readily available from traditional epidemiological measures. Elucidation of the transmission dynamics circulating in a given setting will have a major role in prioritising malaria control strategies, particularly against the relatively neglected non-falciparum species.  相似文献   

16.
17.
18.
19.
Antifolate antimalarials, such as pyrimethamine, have experienced a dramatic reduction in therapeutic efficacy as resistance has evolved in multiple malaria species. We present evidence from one such species, Plasmodium vivax, which has experienced sustained selection for pyrimethamine resistance at the dihydrofolate reductase (DHFR) locus since the 1970s. Using a transgenic Saccharomyces cerevisiae model expressing the P. vivax DHFR enzyme, we assayed growth rate and resistance of all 16 combinations of four DHFR amino acid substitutions. These substitutions were selected based on their known association with drug resistance, both in natural isolates and in laboratory settings, in the related malaria species P. falciparum. We observed a strong correlation between the resistance phenotypes for these 16 P. vivax alleles and previously observed resistance data for P. falciparum, which was surprising since nucleotide diversity levels and common polymorphic variants of DHFR differ between the two species. Similar results were observed when we expressed the P. vivax alleles in a transgenic bacterial system. This suggests common constraints on enzyme evolution in the orthologous DHFR proteins. The interplay of negative trade-offs between the evolution of novel resistance and compromised endogenous function varies at different drug dosages, and so too do the major trajectories for DHFR evolution. In simulations, it is only at very high drug dosages that the most resistant quadruple mutant DHFR allele is favored by selection. This is in agreement with common polymorphic DHFR data in P. vivax, from which this quadruple mutant is missing. We propose that clinical dosages of pyrimethamine may have historically been too low to select for the most resistant allele, or that the fitness cost of the most resistant allele was untenable without a compensatory mutation elsewhere in the genome.  相似文献   

20.
The malaria parasite harbors a relict plastid called the apicoplast and its discovery opened a new avenue for drug discovery and development due to its unusual, nonmammalian metabolism. The apicoplast is essential during the asexual intraerythrocytic and hepatic stages of the parasite, and there is strong evidence supporting its essential metabolic role during the mosquito stages of the parasite. Supply of the isoprenoid building blocks isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) is the essential metabolic function of the apicoplast during the asexual intraerythrocytic stages. However, the metabolic role of the apicoplast during gametocyte development, the malaria stages transmitted to the mosquito, remains unknown. In this study, we showed that production of IPP for isoprenoid biosynthesis is the essential metabolic function of the apicoplast during gametocytogenesis, by obtaining normal gametocytes lacking the apicoplast when supplemented with IPP. When IPP supplementation was removed early in gametocytogenesis, developmental defects were observed, supporting the essential role of isoprenoids for normal gametocytogenesis. Furthermore, mosquitoes infected with gametocytes lacking the apicoplast developed fewer and smaller oocysts that failed to produce sporozoites. This finding further supports the essential role of the apicoplast in establishing a successful infection in the mosquito vector. Our study supports isoprenoid biosynthesis as a valid drug target for development of malaria transmission-blocking inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号