首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
An increase in the intracellular calcium ion concentration ([Ca2+]) impacts a diverse range of cell functions, including adhesion, motility, gene expression and proliferation. Elevation of intracellular calcium ion (Ca2+) regulates various cellular events after the stimulation of cells. Initial increase in Ca2+ comes from the endoplasmic reticulum (ER), intracellular storage space. However, the continuous influx of extracellular Ca2+ is required to maintain the increased level of Ca2+ inside cells. Store-operated Ca2+ entry (SOCE) manages this process, and STIM1, a newly discovered molecule, has a unique and essential role in SOCE. STIM1 can sense the exhaustion of Ca2+ in the ER, and activate the SOC channel in the plasma membrane, leading to the continuous influx of extracellular Ca2+. STIM1 senses the status of the intracellular Ca2+ stores via a luminal N-terminal Ca2+-binding EF-hand domain. Dissociation of Ca2+ from this domain induces the clustering of STIM1 to regions of the ER that lie close to the plasma membrane, where it regulates the activity of the store-operated Ca2+ channels/entry (calcium-release-activated calcium channels/entry). In this review, we summarize the mechanism by which STIM1 regulates SOCE, and also its role in the control of mast cell functions and allergic responses.  相似文献   

2.
The extended synaptotagmins (E-Syts) are ER proteins that act as Ca2+-regulated tethers between the ER and the plasma membrane (PM) and have a putative role in lipid transport between the two membranes. Ca2+ regulation of their tethering function, as well as the interplay of their different domains in such function, remains poorly understood. By exposing semi-intact cells to buffers of variable Ca2+ concentrations, we found that binding of E-Syt1 to the PI(4,5)P2-rich PM critically requires its C2C and C2E domains and that the EC50 of such binding is in the low micromolar Ca2+ range. Accordingly, E-Syt1 accumulation at ER-PM contact sites occurred only upon experimental manipulations known to achieve these levels of Ca2+ via its influx from the extracellular medium, such as store-operated Ca2+ entry in fibroblasts and membrane depolarization in β-cells. We also show that in spite of their very different physiological functions, membrane tethering by E-Syt1 (ER to PM) and by synaptotagmin (secretory vesicles to PM) undergo a similar regulation by plasma membrane lipids and cytosolic Ca2+.  相似文献   

3.
The epithelial Ca2+ channel transient receptor potential vanilloid 6 (TRPV6) undergoes Ca2+-induced inactivation that protects the cell from toxic Ca2+ overload and may also limit intestinal Ca2+ transport. To dissect the roles of individual signaling pathways in this phenomenon, we studied the effects of Ca2+, calmodulin (CaM), and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in excised inside-out patches. The activity of TRPV6 strictly depended on the presence of PI(4,5)P2, and Ca2+-CaM inhibited the channel at physiologically relevant concentrations. Ca2+ alone also inhibited TRPV6 at high concentrations (IC50 = ∼20 μm). A double mutation in the distal C-terminal CaM-binding site of TRPV6 (W695A/R699E) essentially eliminated inhibition by CaM in excised patches. In whole cell patch clamp experiments, this mutation reduced but did not eliminate Ca2+-induced inactivation. Providing excess PI(4,5)P2 reduced the inhibition by CaM in excised patches and in planar lipid bilayers, but PI(4,5)P2 did not inhibit binding of CaM to the C terminus of the channel. Overall, our data show a complex interplay between CaM and PI(4,5)P2 and show that Ca2+, CaM, and the depletion of PI(4,5)P2 all contribute to inactivation of TRPV6.  相似文献   

4.
Sorting of yeast Ist2 to the plasma membrane (PM) or the cortical endoplasmic reticulum (ER) requires a cortical sorting signal (CSSIst2) that interacts with lipids including phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) at the PM. Here, we show that the expression of Ist2 in mammalian cells resulted in a peripheral patch-like localization without any detection of Ist2 at the cell surface. Attached to C-termini of mammalian integral membrane proteins, the CSSIst2 targeted these proteins to PM-associated domains of the ER and abolished trafficking via the classical secretory pathway. The interaction of integral membrane proteins with PI(4,5)P2 at the PM created ER–PM contacts. This process is similar to the regulated coupling of ER domains to the PM via stromal interaction molecule (STIM) proteins during store-operated Ca2+ entry (SOCE). The CSSIst2 and the C-terminus of the ER-located Ca2+ sensor STIM2 were sufficient to bind PI(4,5)P2 and PI(3,4,5)P3 at the PM, showing that an evolutionarily conserved mechanism is involved in the sorting of integral membrane proteins to PM-associated domains of the ER. Yeast Ist2 and STIM2 share a common basic and amphipathic signal at their extreme C-termini. STIM1 showed binding preference for liposomes containing PI(4,5)P2, suggesting a specific contribution of lipids to the recruitment of ER domains to the PM during SOCE.  相似文献   

5.
Recent studies identified two main components of store-operated calcium entry (SOCE): the endoplasmic reticulum-localized Ca2+ sensor protein, STIM1, and the plasma membrane (PM)-localized Ca2+ channel, Orai1/CRACM1. In the present study, we investigated the phosphoinositide dependence of Orai1 channel activation in the PM and of STIM1 movements from the tubular to PM-adjacent endoplasmic reticulum regions during Ca2+ store depletion. Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) levels were changed either with agonist stimulation or by chemically induced recruitment of a phosphoinositide 5-phosphatase domain to the PM, whereas PtdIns4P levels were decreased by inhibition or down-regulation of phosphatidylinositol 4-kinases (PI4Ks). Agonist-induced phospholipase C activation and PI4K inhibition, but not isolated PtdIns(4,5)P2 depletion, substantially reduced endogenous or STIM1/Orai1-mediated SOCE without preventing STIM1 movements toward the PM upon Ca2+ store depletion. Patch clamp analysis of cells overexpressing STIM1 and Orai1 proteins confirmed that phospholipase C activation or PI4K inhibition greatly reduced ICRAC currents. These results suggest an inositide requirement of Orai1 activation but not STIM1 movements and indicate that PtdIns4P rather than PtdIns(4,5)P2 is a likely determinant of Orai1 channel activity.Store-operated Ca2+ entry (SOCE)3 is a ubiquitous Ca2+ entry pathway that is regulated by the Ca2+ content of the endoplasmic reticulum (ER) (1). SOCE has been identified as the major route of Ca2+ entry during activation of cells of the immune system such as T cells and mast cells (2, 3), and it is also present and functionally important in other cells such as platelets (4) and developing myotubes (5). The long awaited mechanism of how the ER luminal Ca2+ content is sensed and the information transferred to the plasma membrane (PM) has been clarified recently after identification of the ER Ca2+ sensor proteins STIM1 and -2 (6, 7) and the PM Ca2+ channels Orai1, -2, and -3 (810). According to current views, a decrease in the ER Ca2+ concentration is sensed by the luminal EF-hand of the single-transmembrane STIM proteins causing their multimerization. This oligomerization occurs in the tubular ER, where it promotes the interaction of the cytoplasmic C termini of STIM with PM components and association with the PM-localized Orai channels, causing both their clustering and activation in the PM (reviewed recently in Refs. 1113). Analysis of the interacting domains within the STIM1 and Orai1 proteins suggests that the cytoplasmic domain of STIM1 is necessary and sufficient to activate Orai1 (14), whereas the latter requires its C-terminal membrane-adjacent cytoplasmic tail to be fully activated by the STIM proteins (15, 16). Both STIM1 and -2 contain a polybasic segment in their C termini, and such regions are often responsible for the PM localization of proteins (mostly of the small GTP-binding protein class) via interaction with anionic phospholipids such as phosphatidylserine or PtdIns(4,5)P2 (17). However, the role of this domain in STIM1 function(s) remains controversial. Deletion of the polybasic tail is reported to prevent PM association but not clustering of STIM1 upon ER store depletion (18). In other studies, truncated STIM1 lacking the polybasic domain shows only slightly altered activation (15) or inactivation (19) kinetics without major defects in supporting Orai1-mediated Ca2+ influx. The most recent studies identify the minimal Orai1 activation domain in STIM1 (20, 21) and find that the polybasic domain is not essential for this function but makes electrostatic interaction with classical transient receptor potential channels (22).PM phosphoinositides have been widely reported as regulators of the activity of several ion channels and transporters (23). However, only a few studies have addressed the inositide requirement of SOCE and none specifically that of the Orai1-mediated Ca2+ entry process. Sensitivity of SOCE to phosphatidylinositol 3-kinases (PI3K) inhibitors has been reported, but this required concentrations that suggested inhibition of targets other than PI3Ks, possibly myosin light chain kinase or the type-III PI4Ks (4, 2426). Here we have described studies addressing the role of PM phosphoinositides in STIM1 movements as well as in Orai1 channel gating. Our results show that phosphoinositides do not have a major role in the prominent reorganization of STIM1 after Ca2+ store depletion but suggest a function of PtdIns4P rather than PtdIns(4,5)P2 in supporting the Orai1-mediated Ca2+ entry process.  相似文献   

6.
Store-operated Ca2+ entry (SOCE) is a functionally relevant mechanism for Ca2+ influx present in electrically excitable and non-excitable cells. Regulation of Ca2+ entry through store-operated channels is essential to maintain an appropriate intracellular Ca2+ homeostasis and prevent cell damage. Calcium-release activated channels exhibit Ca2+-dependent inactivation mediated by two temporally separated mechanisms: fast Ca2+-dependent inactivation takes effect in the order of milliseconds and involves the interaction of Ca2+ with residues in the channel pore while slow Ca2+-dependent inactivation (SCDI) develops over tens of seconds, requires a global rise in [Ca2+]cyt and is a mechanism regulated by mitochondria. Recent studies have provided evidence that the protein SARAF (SOCE-associated regulatory factor) is involved in the mechanism underlying SCDI of Orai1. SARAF is an endoplasmic reticulum (ER) membrane protein that associates with STIM1 and translocate to plasma membrane-ER junctions in a STIM1-dependent manner upon store depletion to modulate SOCE. SCDI mediated by SARAF depends on the location of the STIM1-Orai1 complex within a PI(4,5)P2-rich microdomain. SARAF also interacts with Orai1 and TRPC1 in cells endogenously expressing STIM1 and cells with a low STIM1 expression and modulates channel function. This review focuses on the modulation by SARAF of SOCE and other forms of Ca2+ influx mediated by Orai1 and TRPC1 in order to provide spatio-temporally regulated Ca2+ signals.  相似文献   

7.
Sigma1 receptors (σ1Rs) are expressed widely; they bind diverse ligands, including psychotropic drugs and steroids, regulate many ion channels, and are implicated in cancer and addiction. It is not known how σ1Rs exert such varied effects. We demonstrate that σ1Rs inhibit store-operated Ca2+ entry (SOCE), a major Ca2+ influx pathway, and reduce the Ca2+ content of the intracellular stores. SOCE was inhibited by expression of σ1R or an agonist of σ1R and enhanced by loss of σ1R or an antagonist. Within the endoplasmic reticulum (ER), σ1R associated with STIM1, the ER Ca2+ sensor that regulates SOCE. This interaction was modulated by σ1R ligands. After depletion of Ca2+ stores, σ1R accompanied STIM1 to ER–plasma membrane (PM) junctions where STIM1 stimulated opening of the Ca2+ channel, Orai1. The association of STIM1 with σ1R slowed the recruitment of STIM1 to ER–PM junctions and reduced binding of STIM1 to PM Orai1. We conclude that σ1R attenuates STIM1 coupling to Orai1 and thereby inhibits SOCE.  相似文献   

8.
Endoplasmic reticulum (ER)–plasma membrane (PM) junctions form functionally active microdomains that connect intracellular and extracellular environments. While the key role of these interfaces in maintenance of intracellular Ca2+ levels has been uncovered in recent years, the functional significance of ER‐PM junctions in non‐excitable cells has remained unclear. Here, we show that the ER calcium sensor protein STIM1 (stromal interaction molecule 1) interacts with the plasma membrane‐localized adenylyl cyclase 6 (ADCY6) to govern melanogenesis. The physiological stimulus α‐melanocyte‐stimulating hormone (αMSH) depletes ER Ca2+ stores, thus recruiting STIM1 to ER‐PM junctions, which in turn activates ADCY6. Using zebrafish as a model system, we further established STIM1's significance in regulating pigmentation in vivo. STIM1 domain deletion studies reveal the importance of Ser/Pro‐rich C‐terminal region in this interaction. This mechanism of cAMP generation creates a positive feedback loop, controlling the output of the classical αMSH‐cAMP‐MITF axis in melanocytes. Our study thus delineates a signaling module that couples two fundamental secondary messengers to drive pigmentation. Given the central role of calcium and cAMP signaling pathways, this module may be operative during various other physiological processes and pathological conditions.  相似文献   

9.
Store-operated Ca2+ entry, essential for the adaptive immunity, is initiated by the endoplasmic reticulum (ER) Ca2+ sensor STIM1. Ca2+ entry occurs through the plasma membrane resident Ca2+ channel Orai1 that directly interacts with the C-terminal STIM1 domain, named SOAR/CAD. Depletion of the ER Ca2+ store controls this STIM1/Orai1 interaction via transition to an extended STIM1 C-terminal conformation, exposure of the SOAR/CAD domain, and STIM1/Orai1 co-clustering. Here we developed a novel approach termed FRET-derived Interaction in a Restricted Environment (FIRE) in an attempt to dissect the interplay of coiled-coil (CC) interactions in controlling STIM1 quiescent as well as active conformation and cluster formation. We present evidence of a sequential activation mechanism in the STIM1 cytosolic domains where the interaction between CC1 and CC3 segment regulates both SOAR/CAD exposure and CC3-mediated higher-order oligomerization as well as cluster formation. These dual levels of STIM1 auto-inhibition provide efficient control over the coupling to and activation of Orai1 channels.  相似文献   

10.
We recently showed, in primary vascular smooth muscle cells (VSMCs), that the platelet-derived growth factor activates canonical store-operated Ca2+ entry and Ca2+ release-activated Ca2+ currents encoded by Orai1 and STIM1 genes. However, thrombin activates store-independent Ca2+ selective channels contributed by both Orai3 and Orai1. These store-independent Orai3/Orai1 channels are gated by cytosolic leukotriene C4 (LTC4) and require STIM1 downstream LTC4 action. However, the source of LTC4 and the signaling mechanisms of STIM1 in the activation of this LTC4-regulated Ca2+ (LRC) channel are unknown. Here, we show that upon thrombin stimulation, LTC4 is produced through the sequential activities of phospholipase C, diacylglycerol lipase, 5-lipo-oxygenease, and leukotriene C4 synthase. We show that the endoplasmic reticulum-resident STIM1 is necessary and sufficient for LRC channel activation by thrombin. STIM1 does not form sustained puncta and does not colocalize with Orai1 either under basal conditions or in response to thrombin. However, STIM1 is precoupled to Orai3 and Orai3/Orai1 channels under basal conditions as shown using Forster resonance energy transfer (FRET) imaging. The second coiled-coil domain of STIM1 is required for coupling to either Orai3 or Orai3/Orai1 channels and for LRC channel activation. We conclude that STIM1 employs distinct mechanisms in the activation of store-dependent and store-independent Ca2+ entry pathways.  相似文献   

11.
The extended synaptotagmins (E‐Syts) are endoplasmic reticulum (ER) proteins that bind the plasma membrane (PM) via C2 domains and transport lipids between them via SMP domains. E‐Syt1 tethers and transports lipids in a Ca2+‐dependent manner, but the role of Ca2+ in this regulation is unclear. Of the five C2 domains of E‐Syt1, only C2A and C2C contain Ca2+‐binding sites. Using liposome‐based assays, we show that Ca2+ binding to C2C promotes E‐Syt1‐mediated membrane tethering by releasing an inhibition that prevents C2E from interacting with PI(4,5)P2‐rich membranes, as previously suggested by studies in semi‐permeabilized cells. Importantly, Ca2+ binding to C2A enables lipid transport by releasing a charge‐based autoinhibitory interaction between this domain and the SMP domain. Supporting these results, E‐Syt1 constructs defective in Ca2+ binding in either C2A or C2C failed to rescue two defects in PM lipid homeostasis observed in E‐Syts KO cells, delayed diacylglycerol clearance from the PM and impaired Ca2+‐triggered phosphatidylserine scrambling. Thus, a main effect of Ca2+ on E‐Syt1 is to reverse an autoinhibited state and to couple membrane tethering with lipid transport.  相似文献   

12.
Oligomerization of the ER Ca2+ sensor STIM1 is an essential step in store-operated Ca2+ entry. The lumenal EF-hand and SAM domains of STIM1 are believed to initiate oligomerization after Ca2+ store depletion, but the contributions of STIM1 cytosolic domains (coiled-coil 1, CC1; coiled-coil 2, CC2; CRAC activation domain, CAD) to this process are not well understood. By applying coimmunoprecipitation and fluorescence photobleaching and energy transfer techniques to truncated and mutant STIM1 proteins, we find that STIM1 cytosolic domains play distinct roles in forming both “resting” oligomers in cells with replete Ca2+ stores and higher-order oligomers in store-depleted cells. CC1 supports the formation of resting STIM1 oligomers and appears to interact with cytosolic components to slow STIM1 diffusion. On store depletion, STIM1 lacking all cytosolic domains (STIM1-ΔC) oligomerizes through EF-SAM interactions alone, but these oligomers are unstable. Addition of CC1 + CAD, but not CC1 alone, enables the formation of stable store-dependent oligomers. Within the CAD, both CC2 and C-terminal residues contribute to oligomer formation. Our results reveal a new function for the CAD: in addition to binding and activating Orai1, it is directly involved in STIM1 oligomerization, the initial event triggering store-operated Ca2+ entry.  相似文献   

13.
Stromal interaction molecules STIM1 and STIM2 are endoplasmic reticulum (ER) Ca2+ sensors that initiate store-operated Ca 2+ entry (SOCE). The roles of STIM1-mediated SOCE in cancer biology have been highlighted in different types of cancer, but that of STIM2 is unknown. By the model of cervical cancer, here we focus on the cooperative regulation of SOCE by STIM proteins and their distinct roles in cellular function. Immunofluorescent stainings of surgical specimens of cervical cancer show that STIM1 and STIM2 are abundant in tumor tissues, but STIM1 is the major ER Ca 2+ sensor identified in the invasive front of cancer tissues. STIM1 or STIM2 overexpression in cervical cancer SiHa cells induces an upregulated SOCE. Regarding cellular function, STIM1 and STIM2 are necessary for cell proliferation, whereas STIM1 is the dominant ER Ca 2+ sensor involved in cell migration. During SOCE, STIM1 is aggregated and translocated towards the Orai1-containing plasma membrane in association with the microtubule plus-end binding protein EB1. In contrast, STIM2 is constitutively aggregated without significant trafficking or association with microtubules. These results show the distinct role of STIM1 and STIM2 in SOCE and cellular function of cervical cancer cells.  相似文献   

14.
Calcium depletion of the endoplasmic reticulum (ER) induces oligomerisation, puncta formation and translocation of the ER Ca2+ sensor proteins, STIM1 and -2 into plasma membrane (PM)-adjacent regions of the ER, where they activate the Orai1, -2 or -3 proteins present in the opposing PM. These proteins form ion channels through which store-operated Ca2+ influx (SOC) occurs. Calcium ions exert negative feed-back on SOC. Here we examined whether subplasmalemmal mitochondria, which reduce this feed-back by Ca2+ uptake, are located within or out of the high-Ca2+ microdomains (HCMDs) formed between the ER and plasmalemmal Orai1 channels. For this purpose, COS-7 cells were cotransfected with Orai1, STIM1 labelled with YFP or mRFP and the mitochondrially targeted Ca2+ sensitive fluorescent protein inverse-Pericam. Depletion of ER Ca2+ with ATP + thapsigargin (in Ca2+-free medium) induced the appearance of STIM1 puncta in the ≤100 nm wide subplasmalemmal space, as examined with TIRF. Mitochondria were located either in the gaps between STIM1-tagged puncta or in remote, STIM1-free regions. After addition of Ca2+ mitochondrial Ca2+ concentration increased irrespective of the mitochondrion–STIM1 distance. These observations indicate that mitochondria are exposed to Ca2+ diffused laterally from the HCMDs formed between the PM and the subplasmalemmal ER.  相似文献   

15.
《Biophysical journal》2020,118(1):70-84
STIM1 (a Ca2+ sensor in the endoplasmic reticulum (ER) membrane) and Orai1 (a pore-forming subunit of the Ca2+-release-activated calcium channel in the plasma membrane) diffuse in the ER membrane and plasma membrane, respectively. Upon depletion of Ca2+ stores in the ER, STIM1 translocates to the ER-plasma membrane junction and binds Orai1 to trigger store-operated Ca2+ entry. However, the motion of STIM1 and Orai1 during this process and its roles to Ca2+ entry is poorly understood. Here, we report real-time tracking of single STIM1 and Orai1 particles in the ER membrane and plasma membrane in living cells before and after Ca2+ store depletion. We found that the motion of single STIM1 and Orai1 particles exhibits anomalous diffusion both before and after store depletion, and their mobility—measured by the radius of gyration of the trajectories, mean-square displacement, and generalized diffusion coefficient—decreases drastically after store depletion. We also found that the measured displacement distribution is non-Gaussian, and the non-Gaussian parameter drastically increases after store depletion. Detailed analyses and simulations revealed that single STIM1 and Orai1 particles are confined in the compartmentalized membrane both before and after store depletion, and the changes in the motion after store depletion are explained by increased confinement and polydispersity of STIM1-Orai1 complexes formed at the ER-plasma membrane junctions. Further simulations showed that this increase in the confinement and polydispersity after store depletion localizes a rapid increase of Ca2+ influx, which can facilitate the rapid activation of local Ca2+ signaling pathways and the efficient replenishing of Ca2+ store in the ER in store-operated Ca2+ entry.  相似文献   

16.
The receptor-evoked Ca2+ signal in secretory epithelia mediate many cellular functions essential for cell survival and their most fundamental functions of secretory granules exocytosis and fluid and electrolyte secretion. Ca2+ influx is a key component of the receptor-evoked Ca2+ signal in secretory cell and is mediated by both TRPC and the STIM1-activated Orai1 channels that mediates the Ca2+ release-activated current (CRAC) Icrac. The core components of the receptor-evoked Ca2+ signal are assembled at the ER/PM junctions where exchange of materials between the plasma membrane and internal organelles take place, including transfer of lipids and Ca2+. The Ca2+ signal generated at the confined space of the ER/PM junctions is necessary for activation of the Ca2+-regulated proteins and ion channels that mediate exocytosis with high fidelity and tight control. In this review we discuss the general properties of Ca2+ signaling, PI(4,5)P2 and other lipids at the ER/PM junctions with regard to secretory cells function and disease caused by uncontrolled Ca2+ influx.  相似文献   

17.
We reported recently that activation of the inositol 1,4,5-triphosphate receptor (IP3R) is required for efficient HIV-1 Gag trafficking and viral particle release. IP3R activation requires phospholipase C (PLC)-catalyzed hydrolysis of PI(4,5)P2 to IP3 and diacylglycerol. We show that Sprouty2 (Spry2), which binds PI(4,5)P2 and PLCγ, interfered with PI(4,5)P2 in a manner similar to that of U73122, an inhibitor of PI(4,5)P2 hydrolysis, suggesting that Spry2 negatively regulates IP3R by preventing formation of its activating ligand, IP3. Mutation to Asp of R252, a crucial determinant of PI(4,5)P2 binding in the C-terminal domain of Spry2, prevented the interference, indicating that binding to the phospholipid is required. By contrast, deletion of the PLCγ binding region or mutation of a critical Tyr residue in the region did not prevent the interference but Spry2-PI(4,5)P2 colocalization was not detected, suggesting that PLC binding is required for their stable association. Like U73122, Spry2 over-expression inhibited wild type Gag release as virus-like particles. Disrupting either binding determinant relieved the inhibition. IP3R-mediated Ca2+signaling, in turn, was found to influence Spry2 subcellular distribution and ERK, a Spry2 regulator. Our findings suggest that Spry2 influences IP3R function through control of PI(4,5)P2 and IP3R influences Spry2 function by controlling its distribution and ERK activation.  相似文献   

18.
19.
Ca2+ entry through store-operated Ca2+ channels (SOCs) in the plasma membrane (PM) of hepatocytes plays a central role in the hormonal regulation of liver metabolism. SOCs are composed of Orai1, the channel pore protein, and STIM1, the activator protein, and are regulated by hormones and reactive oxygen species (ROS). In addition to Orai1, STIM1 also interacts with several other intracellular proteins. Most previous studies of the cellular functions of Orai1 and STIM1 have employed immortalised cells in culture expressing ectopic proteins tagged with a fluorescent polypeptide such as GFP. Little is known about the intracellular distributions of endogenous Orai1 and STIM1. The aims are to determine the intracellular distribution of endogenous Orai1 and STIM1 in hepatocytes and to identify novel STIM1 binding proteins. Subcellular fractions of rat liver were prepared by homogenisation and differential centrifugation. Orai1 and STIM1 were identified and quantified by western blot. Orai1 was found in the PM (0.03%), heavy (44%) and light (27%) microsomal fractions, and STIM1 in the PM (0.09%), and heavy (85%) and light (13%) microsomal fractions. Immunoprecipitation of STIM1 followed by LC/MS or western blot identified peroxiredoxin-4 (Prx-4) as a potential STIM1 binding protein. Prx-4 was found principally in the heavy microsomal fraction. Knockdown of Prx-4 using siRNA, or inhibition of Prx-4 using conoidin A, did not affect Ca2+ entry through SOCs but rendered SOCs susceptible to inhibition by H2O2. It is concluded that, in hepatocytes, a considerable proportion of endogenous Orai1 and STIM1 is located in the rough ER. In the rough ER, STIM1 interacts with Prx-4, and this interaction may contribute to the regulation by ROS of STIM1 and SOCs.  相似文献   

20.
The endothelium is actively involved in many functions of the cardiovascular system, such as the modulation of arterial pressure and the maintenance of blood flow. These functions require a great versatility of the intracellular Ca2+ signaling that resides in the fact that different signals can be encoded by varying the frequency and the amplitude of the Ca2+ response. Cells use both extracellular and intracellular Ca2+ pools to modulate the intracellular Ca2+ concentration. In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP3R), located on the endoplasmic reticulum (ER), is responsible for the release of Ca2+ from the intracellular store. The proteins STIM1 and STIM2 are also located on the ER and they are involved in the activation of a store-operated Ca2+ entry (SOCE). Due to their Ca2+ sensor property and their close proximity with IP3Rs on the ER, STIMs could modulate the activity of IP3R. In this study, we showed that STIM1 and STIM2 are expressed in bovine aortic endothelial cells and they both interact with IP3R. While STIM2 appears to play a minor role, STIM1 plays an important role in the regulation of agonist-induced Ca2+ mobilization in BAECs by a positive effect on both the SOCE and the IP3R-dependent Ca2+ release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号