首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein L-isoaspartate O-methyltransferase (PIMT) is postulated to repair beta-aspartyl linkages (isoaspartyl (isoAsp)) that accumulate at certain Asp-Xaa and Asn-Xaa sites in association with protein aging and deamidation. To identify major targets of PIMT action we cultured rat PC12 cells with adenosine dialdehyde (AdOx), a methyltransferase inhibitor that promotes accumulation of isoAsp in vivo. Subcellular fractionation of AdOx-treated cells revealed marked accumulation of isoAsp in a 14-kDa nuclear protein. Gel electrophoresis and chromatography of nuclei (3)H-methylated in vitro by PIMT revealed this protein to be histone H2B. The isoAsp content of H2B in AdOx-treated cells was approximately 18 times that in control cells, although no isoAsp was seen in other core histones, regardless of treatment. To confirm the relevance and specificity of this effect, we measured isoAsp levels in histones from brains of PIMT knockout mice. IsoAsp was found at near stoichiometric levels in H2B extracted from knockout brains and was at least 80 times greater than that in H2B from normal mice. Little or no isoAsp was detected in H2A, H3, or H4 from mice of either genotype. Accumulation of isoAsp in histone H2B may disrupt normal gene regulation and contribute to the reduced life span that characterizes PIMT knockouts. In addition to disrupting protein function, isoAsp has been shown to trigger immunity against self-proteins. The propensity of H2B to generate isoAsp in vivo may help explain why this histone in particular is found as a major antigen in autoimmune diseases such as lupus erythematosus.  相似文献   

2.
Collapsin response mediator protein 2 (CRMP2) binds to microtubules and regulates axon outgrowth in neurons. This action is regulated by sequential phosphorylation by the kinases cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase 3 (GSK3) at sites that are hyperphosphorylated in Alzheimer disease. The increased phosphorylation in Alzheimer disease could be due to increases in Cdk5 and/or GSK3 activity or, alternatively, through decreased activity of a CRMP phosphatase. Here we establish that dephosphorylation of CRMP2 at the residues targeted by GSK3 (Ser-518/Thr-514/Thr-509) is carried out by a protein phosphatase 1 family member in vitro, in neuroblastoma cells, and primary cortical neurons. Inhibition of GSK3 activity using insulin-like growth factor-1 or the highly selective inhibitor CT99021 causes rapid dephosphorylation of CRMP2 at these sites. In contrast, pharmacological inhibition of Cdk5 using purvalanol results in only a gradual and incomplete dephosphorylation of CRMP2 at the site targeted by Cdk5 (Ser-522), suggesting a distinct phosphatase targets this residue. A direct comparison of dephosphorylation at the Cdk5 versus GSK3 sites in vitro shows that the Cdk5 site is comparatively resistant to phosphatase treatment. The presence of the peptidyl-prolyl isomerase enzyme, Pin1, does not affect dephosphorylation of Ser-522 in vitro, in cells, or in Pin1 transgenic mice. Instead, the relatively high resistance of this site to phosphatase treatment is at least in part due to the presence of basic residues located nearby. Similar sequences in Tau are also highly resistant to phosphatase treatment. We propose that relative resistance to phosphatases might be a common feature of Cdk5 substrates and could contribute to the hyperphosphorylation of CRMP2 and Tau observed in Alzheimer disease.  相似文献   

3.
Isoaspartate (isoAsp) formation is a common type of spontaneous protein damage that is normally kept in check by the repair enzyme protein-L-isoaspartyl methyltransferase (PIMT). PIMT-KO (knockout) mice exhibit a pronounced neuropathology highlighted by death from an epileptic seizure at 30 to 60 days after birth. The mechanisms by which isoaspartyl damage disrupts normal brain function are incompletely understood. Proteomic analysis of the PIMT-KO mouse brain has shown that a number of key neuronal proteins accumulate high levels of isoAsp, but the extent to which their cellular functions is altered has yet to be determined. One of the major neuronal targets of PIMT is creatine kinase B (CKB), a well-characterized enzyme whose activity is relatively easy to assay. We show here that (1) the specific activity of CKB is significantly reduced in the brains of PIMT-deficient mice, (2) that in vitro aging of recombinant CKB results in significant accumulation of isoAsp sites with concomitant loss of enzymatic activity, and (3) that incubation of in vitro aged CKB with PIMT and its methyl donor S-adenosyl-L-methionine substantially repairs the aged CKB with regard to both its isoAsp content and its enzymatic activity. These results, combined with similarity in phenotypes of PIMT-KO and CKB-KO mice, suggests that loss of normal CKB structure and function contributes to the mechanisms by which isoAsp accumulation leads to CNS dysfunction in the PIMT-KO mouse.  相似文献   

4.
Carter WG  Aswad DW 《Biochemistry》2008,47(40):10757-10764
Formation of l-isoaspartyl (isoAsp) peptide bonds is a major source of protein damage in vivo and in vitro. Accumulation of isoAsp in cells is limited by a ubiquitous repair enzyme, protein l-isoaspartyl methyltransferase (PIMT). Reduction of PIMT activity in mouse brain or rat PC12 cells leads to a dramatic and selective accumulation of isoAsp sites in histone H2B. To learn more about the mechanism and specificity of isoAsp formation in histones, we purified mononucleosomes from rat liver and chicken erythrocytes and subjected them to in vitro aging for 0-16 days. In rat nucleosomes, the pattern of isoAsp accumulation duplicated that observed in vivo; only H2B accumulated significant isoAsp that we have now localized to the Asp25-Gly26 bond in the N-terminal tail. In chicken nucleosomes, isoAsp accumulated mainly in histone H2A and, to a lesser extent, in histone H2B. Minor sequence differences are consistent with the species-specific patterns of isoAsp accumulation and suggest that, in chicken, isoAsp occurs at the Asp121-Ser122 bond in the flexible C-terminal tail of H2A and at the Asp26-Lys27 bond in the N-terminal tail of H2B. The aging-induced accumulation of isoAsp in rat and chicken nucleosomes is repaired upon incubation of the damaged nucleosomes with PIMT and AdoMet. Our findings suggest that in vivo generation of isoAsp sites in histones occurs as a self-catalyzed process at the level of the nucleosome and is driven by the same structural features that have been shown to promote isoAsp formation in purified proteins and synthetic peptides.  相似文献   

5.
Protein L-isoaspartyl methyltransferase (PIMT) catalyzes repair of L-isoaspartyl peptide bonds, a major source of protein damage under physiological conditions. PIMT knock-out (KO) mice exhibit brain enlargement and fatal epileptic seizures. All organs accumulate isoaspartyl proteins, but only the brain manifests an overt pathology. To further explore the role of PIMT in brain function, we undertook a global analysis of endogenous substrates for PIMT in mouse brain. Extracts from PIMT-KO mice were subjected to two-dimensional gel electrophoresis and blotted onto membranes. Isoaspartyl proteins were radiolabeled on-blot using [methyl-(3)H]S-adenosyl-L-methionine and recombinant PIMT. Fluorography of the blot revealed 30-35 (3)H-labeled proteins, 22 of which were identified by peptide mass fingerprinting. These isoaspartate-prone proteins represent a wide range of cellular functions, including neuronal development, synaptic transmission, cytoskeletal structure and dynamics, energy metabolism, nitrogen metabolism, pH homeostasis, and protein folding. The following five proteins, all of which are rich in neurons, accumulated exceptional levels of isoaspartate: collapsin response mediator protein 2 (CRMP2/ULIP2/DRP-2), dynamin 1, synapsin I, synapsin II, and tubulin. Several of the proteins identified here are prone to age-dependent oxidation in vivo, and many have been identified as autoimmune antigens, of particular interest because isoaspartate can greatly enhance the antigenicity of self-peptides. We propose that the PIMT-KO phenotype results from the cumulative effect of isoaspartate-related damage to a number of the neuron-rich proteins detected in this study. Further study of the isoaspartate-prone proteins identified here may help elucidate the molecular basis of one or more developmental and/or age-related neurological diseases.  相似文献   

6.
Orthodox seeds are capable of withstanding severe dehydration. However, in the dehydrated state, Asn and Asp residues in proteins can convert to succinimide residues that can further react to predominantly form isomerized isoAsp residues upon rehydration (imbibition). IsoAsp residues can impair protein function and can render seeds nonviable, but PROTEIN ISOASPARTYL METHYLTRANSFERASE (PIMT) can initiate isoAsp conversion to Asp residues. The proteins necessary for translation upon imbibition in orthodox seeds may be particularly important to maintain in an active state. One such protein is the large, multidomain protein, Arabidopsis thaliana PLANT RNA HELICASE75 (PRH75), a DEAD-box helicase known to be susceptible to isoAsp residue accumulation. However, the consequences of such isomerization on PRH75 catalysis and for the plant are unknown. Here, it is demonstrated that PRH75 is necessary for successful seed development. It acquires isoAsp rapidly during heat stress, which eliminates RNA unwinding (but not rewinding) competence. The repair by PIMT is able to restore PRH75’s complex biochemical activity provided isoAsp formation has not led to subsequent, destabilizing conformational alterations. For PRH75, an important enzymatic activity associated with translation would be eliminated unless rapidly repaired by PIMT prior to additional, deleterious conformational changes that would compromise seed vitality and germination.  相似文献   

7.
Ischemia-reperfusion (I/R) is a model of acute kidney injury (AKI) that is characterized by vasoconstriction, oxidative stress, apoptosis and inflammation. Previous studies have shown that activation of the renin-angiotensin system (RAS) may contribute to these processes. Angiotensin converting enzyme 2 (ACE2) metabolizes angiotensin II (Ang II) to angiotensin-(1–7), and recent studies support a beneficial role for ACE2 in models of chronic kidney disease. However, the role of ACE2 in models of AKI has not been fully elucidated. In order to test the hypothesis that ACE2 plays a protective role in AKI we assessed I/R injury in wild-type (WT) mice and ACE2 knock-out (ACE2 KO) mice. ACE2 KO and WT mice exhibited similar histologic injury scores and measures of kidney function at 48 hours after reperfusion. Loss of ACE2 was associated with increased neutrophil, macrophage, and T cell infiltration in the kidney. mRNA levels for pro-inflammatory cytokines, interleukin-1β, interleukin-6 and tumour necrosis factor-α, as well as chemokines macrophage inflammatory protein 2 and monocyte chemoattractant protein-1, were increased in ACE2 KO mice compared to WT mice. Changes in inflammatory cell infiltrates and cytokine expression were also associated with greater apoptosis and oxidative stress in ACE2 KO mice compared to WT mice. These data demonstrate a protective effect of ACE2 in I/R AKI.  相似文献   

8.
Although α-synuclein (α-syn) phosphorylation has been considered as a hallmark of sporadic and familial Parkinson disease (PD), little is known about the effect of PD-linked mutations on α-syn phosphorylation. In this study, we investigated the effects of the A30P, E46K, and A53T PD-linked mutations on α-syn phosphorylation at residues Ser-87 and Ser-129. Although the A30P and A53T mutants slightly affected Ser(P)-129 levels compared with WT α-syn, the E46K mutation significantly enhanced Ser-129 phosphorylation in yeast and mammalian cell lines. This effect was not due to the E46K mutant being a better kinase substrate nor due to alterations in endogenous kinase levels, but was mostly linked with enhanced nuclear and endoplasmic reticulum accumulation. Importantly, lentivirus-mediated overexpression in mice also showed enhanced Ser-129 phosphorylation of the E46K mutant compared to WT α-syn, thus providing in vivo validation of our findings. Altogether, our findings suggest that the different PD-linked mutations may contribute to PD pathogenesis via different mechanisms.  相似文献   

9.
The cardiac Na(+) channel Na(V)1.5 current (I(Na)) is critical to cardiac excitability, and altered I(Na) gating has been implicated in genetic and acquired arrhythmias. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is up-regulated in heart failure and has been shown to cause I(Na) gating changes that mimic those induced by a point mutation in humans that is associated with combined long QT and Brugada syndromes. We sought to identify the site(s) on Na(V)1.5 that mediate(s) the CaMKII-induced alterations in I(Na) gating. We analyzed both CaMKII binding and CaMKII-dependent phosphorylation of the intracellularly accessible regions of Na(V)1.5 using a series of GST fusion constructs, immobilized peptide arrays, and soluble peptides. A stable interaction between δ(C)-CaMKII and the intracellular loop between domains 1 and 2 of Na(V)1.5 was observed. This region was also phosphorylated by δ(C)-CaMKII, specifically at the Ser-516 and Thr-594 sites. Wild-type (WT) and phosphomutant hNa(V)1.5 were co-expressed with GFP-δ(C)-CaMKII in HEK293 cells, and I(Na) was recorded. As observed in myocytes, CaMKII shifted WT I(Na) availability to a more negative membrane potential and enhanced accumulation of I(Na) into an intermediate inactivated state, but these effects were abolished by mutating either of these sites to non-phosphorylatable Ala residues. Mutation of these sites to phosphomimetic Glu residues negatively shifted I(Na) availability without the need for CaMKII. CaMKII-dependent phosphorylation of Na(V)1.5 at multiple sites (including Thr-594 and Ser-516) appears to be required to evoke loss-of-function changes in gating that could contribute to acquired Brugada syndrome-like effects in heart failure.  相似文献   

10.
This study used two mouse models with genetic manipulation of the melanocortin system to investigate prolactin regulation. Mice with overexpression of the melanocortin receptor (MC-R) agonist, α-melanocyte-stimulating hormone (Tg-MSH) or deletion of the MC-R antagonist agouti-related protein (AgRP KO) were studied. Male Tg-MSH mice had lower blood prolactin levels at baseline (2.9±0.3 vs. 4.7±0.7ng/ml) and after restraint stress (68±6.5 vs. 117±22ng/ml) vs. WT (p<0.05); however, pituitary prolactin content was not different. Blood prolactin was also decreased in male AgRP KO mice at baseline (4.2±0.5 vs. 7.6±1.3ng/ml) and after stress (60±4.5 vs. 86.1±5.7ng/ml) vs. WT (p<0.001). Pituitary prolactin content was lower in male AgRP KO mice (4.3±0.3 vs. 6.7±0.5μg/pituitary, p<0.001) vs. WT. No differences in blood or pituitary prolactin levels were observed in female AgRP KO mice vs. WT. Hypothalamic dopamine activity was assessed as the potential mechanism responsible for changes in prolactin levels. Hypothalamic tyrosine hydroxylase mRNA was measured in both genetic models vs. WT mice and hypothalamic dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) content were measured in male AgRP KO and WT mice but neither were significantly different. However, these results do not preclude changes in dopamine activity as dopamine turnover was not directly investigated. This is the first study to show that baseline and stress-induced prolactin release and pituitary prolactin content are reduced in mice with genetic alterations of the melanocortin system and suggests that changes in hypothalamic melanocortin activity may be reflected in measurements of serum prolactin levels.  相似文献   

11.
Calmodulin is phosphorylated by casein kinase II on Thr-79, Ser-81, Ser-101 and Thr-117. To determine the consensus sequences for casein kinase II in intact calmodulin, we examined casein kinase II-mediated phosphorylation of engineered calmodulins with 1-4 deletions in the central helical region (positions 81-84). Total casein kinase II-catalyzed phosphate incorporation into all deleted calmodulins was similar to control calmodulin. Neither CaM delta 84 (Glu-84 deleted) nor CaM delta 81-84 (Ser-81 to Glu-84 deleted) has phosphate incorporated into Thr-79 or Ser-81, but both exhibit increased phosphorylation of residues Ser-101 and Thr-117. These data suggest that phosphoserine in the +2 position may be a specificity determinant for casein kinase II in intact proteins and/or secondary structures are important in substrate recognition by casein kinase II.  相似文献   

12.
13.
Liu F  Iqbal K  Grundke-Iqbal I  Gong CX 《FEBS letters》2002,530(1-3):209-214
Microtubule-associated protein tau is abnormally hyperphosphorylated, glycosylated, and aggregated in affected neurons in the brains of individuals with Alzheimer’s disease (AD). We recently found that the glycosylation might precede hyperphosphorylation of tau in AD. In this study, we investigated the effect of glycosylation on phosphorylation of tau catalyzed by cyclin-dependent kinase 5 (cdk5) and glycogen synthase kinase-3β (GSK-3β). The phosphorylation of the longest isoform of recombinant human brain tau, tau441, at various sites was detected by Western blots and by radioimmuno-dot-blot assay with phosphorylation-dependent and site-specific tau antibodies. We found that cdk5 phosphorylated tau441 at Thr-181, Ser-199, Ser-202, Thr-205, Thr-212, Ser-214, Thr-217, Thr-231, Ser-235, Ser-396, and Ser-404, but not at Ser-262, Ser-400, Thr-403, Ser-409, Ser-413, or Ser-422. GSK-3β phosphorylated all the cdk5-catalyzed sites above except Ser-235. Deglycosylation by glycosidases depressed the subsequent phosphorylation of AD-tau (i) with cdk5 at Thr-181, Ser-199, Ser-202, Thr-205, and Ser-404, but not at Thr-212; and (ii) with GSK-3β at Thr-181, Ser-202, Thr-205, Ser-217, and Ser-404, but not at Ser-199, Thr-212, Thr-231, or Ser-396. These data suggest that aberrant glycosylation of tau in AD might be involved in neurofibrillary degeneration by promoting abnormal hyperphosphorylation by cdk5 and GSK-3β.  相似文献   

14.
The C terminus of AMPA-type glutamate receptor (AMPAR) GluA1 subunits contains several phosphorylation sites that regulate AMPAR activity and trafficking at excitatory synapses. Although many of these sites have been extensively studied, little is known about the signaling mechanisms regulating GluA1 phosphorylation at Thr-840. Here, we report that neuronal depolarization in hippocampal slices induces a calcium and protein phosphatase 1/2A-dependent dephosphorylation of GluA1 at Thr-840 and a nearby site at Ser-845. Despite these similarities, inhibitors of NMDA-type glutamate receptors and protein phosphatase 2B prevented depolarization-induced Ser-845 dephosphorylation but had no effect on Thr-840 dephosphorylation. Instead, depolarization-induced Thr-840 dephosphorylation was prevented by blocking voltage-gated calcium channels, indicating that distinct Ca2+ sources converge to regulate GluA1 dephosphorylation at Thr-840 and Ser-845 in separable ways. Results from immunoprecipitation/depletion assays indicate that Thr-840 phosphorylation inhibits protein kinase A (PKA)-mediated increases in Ser-845 phosphorylation. Consistent with this, PKA-mediated increases in AMPAR currents, which are dependent on Ser-845 phosphorylation, were inhibited in HEK-293 cells expressing a Thr-840 phosphomimetic version of GluA1. Conversely, mimicking Ser-845 phosphorylation inhibited protein kinase C phosphorylation of Thr-840 in vitro, and PKA activation inhibited Thr-840 phosphorylation in hippocampal slices. Together, the regulation of Thr-840 and Ser-845 phosphorylation by distinct sources of Ca2+ influx and the presence of inhibitory interactions between these sites highlight a novel mechanism for conditional regulation of AMPAR phosphorylation and function.  相似文献   

15.
《Translational oncology》2020,13(3):100746
Pancreatic intraepithelial neoplasia (PanIN), the most common premalignant lesion of the pancreas, is a histologically well-defined precursor to invasive pancreatic ductal adenocarcinoma (PDAC). However, the molecular mechanisms underlying the progression of PanINs have not been fully elucidated. Previously, we demonstrated that the expression of collapsin response mediator protein 4 (CRMP4) in PDAC was associated with poor prognosis. The expression of CRMP4 was also augmented in a pancreatitis mouse model. However, the role of CRMP4 in the progression of PanIN lesions remains uncertain. In the present study, we examined the relationship between CRMP4 expression and progression of PanIN lesions using genetically engineered mouse models. PanIN lesions were induced by peritoneal injection of the cholecystokinin analog caerulein in LSL-KRASG12D; Pdx1-Cre (KC-Crmp4 wild-type, WT) mice and LSL-KRASG12D; Pdx1-Cre; Crmp4−/− (KC-Crmp4 knockout, KO) mice. We analyzed pancreatic tissue sections from these mice and evaluated PanIN grade by hematoxylin and eosin staining. CRMP4 expression was examined and the cellular components assessed by immunohistochemistry using antibodies against CRMP4, CD3, and α-smooth muscle actin (SMA). The incidence of high-grade PanIN in KC-Crmp4 WT mice was higher than that in KC-Crmp4 KO animals. CRMP4 was expressed not only in epithelial cells but also in αSMA-positive cells in stromal areas of PanIN lesions. The CRMP4 expression in stromal areas correlated with PanIN grade in WT mice. These results suggested that the expression of CRMP4 in stromal cells may underlie the incidence or progression of PanIN.  相似文献   

16.
Brassinosteroid-insensitive 1 (BRI1), the receptor of brassinosteroids (BRs), is a dual-function serine/threonine/tyrosine protein kinase which initiates BR signaling and regulates plant growth via its protein kinase activity. Previous research has identified phosphorylation sites of Arabidopsis BRI1 in vivo and in vitro, but the significance of which to BR signaling and plant development has not been discussed comprehensively. To investigate this, we systematically characterized Arabidopsis BRI1 site-directed mutants in the weak bri1-5 background. For vegetative organ development regulation, we demonstrated that Thr-1039, Ser-1042, and Ser-1044 were critical for vegetative development because mutants with eliminated phosphorylation at these residues exhibited aberrant leaf growth, whereas Ser-1172 and Ser-1187 slightly inhibited leaf growth. For reproductive organ development regulation, first, the notion that Thr-1039, Ser-1042, and Ser-1044 were essential for normal plant height is supported by the evidence that mutations preventing phosphorylation at Thr-1039, Ser-1042, and Ser-1044 decreased plant height. Second, comparison of seed yield-related traits showed that unphosphorylated Ser-1168-Ala, Ser-1172-Ala, and Ser-1179-Ala+Thr-1180-Ala mutants reduced seed yield dramatically, whereas eliminating phosphorylation at Ser-1042 caused increased seed production. In addition, we found that Ser-1042 and Ser-1044 were essential for BR signaling. The unphosphorylated Ser-1042-Ala and Ser-1044-Ala mutants displayed hyposensitive phenotypes accompanied with decreased accumulation of dephosphorylated BRI1-EMS suppressor 1 (BES1) protein and increased Constitutive Photomorphogenesis Dwarf expression levels as well as limited inhibition of hypocotyl and root elongation under exogenous brassinolide. Taken together, our data suggest that BRI1 phosphorylation at specific sites differentially affects growth and development which may provide novel approaches to precisely regulate economic yield through modifying specific BRI1 phosphorylation sites in crop species.  相似文献   

17.
Fibroblast growth factor 21 (FGF21) plays an important role in energy homoeostasis. The unaddressed question of FGF21's effect on the development and progression of diabetic cardiomyopathy (DCM) is investigated here with FGF21 knockout (FGF21KO) diabetic mice. Type 1 diabetes was induced in both FGF21KO and C57BL/6J wild‐type (WT) mice via streptozotocin. At 1, 2 and 4 months after diabetes onset, the plasma FGF21 levels were significantly decreased in WT diabetic mice compared to controls. There was no significant difference between FGF21KO and WT diabetic mice in blood glucose and triglyceride levels. FGF21KO diabetic mice showed earlier and more severe cardiac dysfunction, remodelling and oxidative stress, as well as greater increase in cardiac lipid accumulation than WT diabetic mice. Western blots showed that increased cardiac lipid accumulation was accompanied by further increases in the expression of nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2) and its target protein CD36, along with decreases in the phosphorylation of AMP‐activated protein kinase and the expression of hexokinase II and peroxisome proliferator‐activated receptor gamma co‐activator 1α in the heart of FGF21KO diabetic mice compared to WT diabetic mice. Our results demonstrate that FGF21 deletion‐aggravated cardiac lipid accumulation is likely mediated by cardiac Nrf2‐driven CD36 up‐regulation, which may contribute to the increased cardiac oxidative stress and remodelling, and the eventual development of DCM. These findings suggest that FGF21 may be a therapeutic target for the treatment of DCM.  相似文献   

18.
Synapsins are synaptic vesicle-associated phosphoproteins that play a major role in the fine regulation of neurotransmitter release. In Drosophila, synapsins are required for complex behavior including learning and memory. Synapsin isoforms were immunoprecipitated from homogenates of wild-type Drosophila heads using monoclonal antibody 3C11. Synapsin null mutants (Syn(97)) served as negative controls. The eluted proteins were separated by SDS-PAGE and visualized by silver staining. Gel pieces picked from five bands specific for wild type were analyzed by nano-LC-ESI-MS/MS following multienzyme digestion (trypsin, chymotrypsin, AspN, subtilisin, pepsin, and proteinase K). The protein was unambiguously identified with high sequence coverage (90.83%). A number of sequence conflicts were observed and the N-terminal amino acid was identified as methionine rather than leucine expected from the cDNA sequence. Several peptides from the larger isoform demonstrated that the in-frame UAG stop codon at position 582 which separates two large open reading frames is read through by tRNAs for lysine. Seven novel phosphorylation sites in Drosophila synapsin were identified at Thr-86, Ser-87, Ser-464, Thr-466, Ser-538, Ser-961, and Tyr-982 and verified by phosphatase treatment. No phosphorylation was observed at the conserved PKA/CaM kinase-I/IV site (RRFS, edited to RGFS) in domain A or a potential PKA site near domain E.  相似文献   

19.
Mammalian target of rapamycin complex 2 (mTORC2) is a key activator of protein kinases that act downstream of insulin and growth factor signaling. Here we report that mice lacking the essential mTORC2 component rictor in liver (Lrictor(KO)) are unable to respond normally to insulin. In response to insulin, Lrictor(KO) mice failed to inhibit hepatic glucose output. Lrictor(KO) mice also fail to develop hepatic steatosis on a high fat diet and manifest half-normal serum cholesterol levels. This is accompanied by lower levels of expression of SREBP-1c and SREBP-2 and genes of fatty acid and cholesterol biosynthesis. Lrictor(KO) mice had defects in insulin-stimulated Akt Ser-473 and Thr-308 phosphorylation, leading to decreased phosphorylation of Akt substrates FoxO, GSK-3β, PRAS40, AS160, and Tsc2. Lrictor(KO) mice also manifest defects in insulin-activated mTORC1 activity, evidenced by decreased S6 kinase and Lipin1 phosphorylation. Glucose intolerance and insulin resistance of Lrictor(KO) mice could be fully rescued by hepatic expression of activated Akt2 or dominant negative FoxO1. However, in the absence of mTORC2, forced Akt2 activation was unable to drive hepatic lipogenesis. Thus, we have identified an Akt-independent relay from mTORC2 to hepatic lipogenesis that separates the effects of insulin on glucose and lipid metabolism.  相似文献   

20.
The human T-cell leukemia virus type 1 oncoprotein Tax is a phosphoprotein with a predominately nuclear subcellular localization that accomplishes multiple functions via protein-protein interactions. It has been proposed that regulation of this protein's pleiotropic functions may be accomplished through phosphorylation of specific amino acid residues. We have conducted a phosphoryl mapping of mammalian-expressed Tax protein using a combination of affinity purification, liquid chromatography tandem mass spectrometry, and site-directed substitution mutational analysis. We achieved physical coverage of 77% of the Tax sequence and identified four novel sites of phosphorylation at Thr-48, Thr-184, Thr-215, and Ser-336. Previously identified potential serine phosphorylation sites at Ser-10, Ser-77, and Ser-274 could not be confirmed by mass spectrometry. The functional significance of these novel phosphorylation events was evaluated by mutational analysis and subsequent evaluation for activity via both CREB and NF-kappaB-responsive promoters. Our results demonstrate that phosphorylation at Thr-215 is associated with loss of both Tax functions, phosphorylation at Thr-48 was specifically deficient for activation via NF-kappaB, and phosphorylation at Thr-184 and Ser-336 had no effect on these Tax functions. Semiquantitation of phosphopeptides revealed that the majority of Tax was phosphorylated at Thr-48, Thr-184, Thr-215, and Ser-336, whereas only a minor population of Tax was phosphorylated at either Ser-300 or Ser-301. These results suggest that both positive and negative phosphorylation signals result in the maintenance of a subfraction of Tax as "active" protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号