首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
An α-l-arabinofuranosidase has been purified 1043-fold from radish (Raphanus sativus L.) seeds. The purified enzyme was a homogeneous glycoprotein consisting of a single polypeptide with an apparent molecular weight of 64,000 and an isoelectric point value of 4.7, as evidenced by denaturing gel electrophoresis and reversed-phase or size-exclusion high-performance liquid chromatography and isoelectric focusing. The enzyme characteristically catalyzes the hydrolysis of p-nitrophenyl α-l-arabinofuranoside and p-nitrophenyl β-d-xylopyranoside in a constant ratio (3:1) of the initial velocities at pH 4.5, whereas the corresponding α-l-arabinopyranoside and β-d-xylofuranoside are unsusceptible. The following evidence was provided to support that a single enzyme with one catalytic site was responsible for the specificity: (a) high purity of the enzyme preparation, (b) an invariable ratio of the activities toward the two substrates throughout the purification steps, (c) a parallelism of the activities in activation with bovine serum albumin and in heat inactivation of the enzyme as well as in the inhibition with heavy metal ions and sugars such as Hg2+, Ag+, l-arabino-(1→4)-lactone, and d-xylose, and (d) results of the mixed substrate kinetic analysis using the two substrates. The enzyme was shown to split off α-l-arabinofuranosyl residues in sugar beet arabinan, soybean arabinan-4-galactan, and radish seed and leaf arabinogalactan proteins. Arabinose and xylose were released by the action of the enzyme on oat-spelt xylan. Synergistic action of α-l-arabinofuranosidase and β-d-galactosidase on radish seed arabinogalactan protein resulted in the extensive degradation of the carbohydrate moiety.  相似文献   

2.
1. The previous study (Conchie, Gelman & Levvy, 1967b) of the specificity of β-glucosidase, β-galactosidase and β-d-fucosidase in barley, limpet, almond emulsin and rat epididymis was extended to α-l-arabinosidase. 2. The inhibitory action of l-arabinono-(1→5)-lactone was tested against all four types of enzyme, and α-l-arabinosidase was examined for inhibition by glucono-, galactono- and d-fucono-lactone. 3. In emulsin, the enzyme that hydrolyses β-glucosides, β-galactosides and β-d-fucosides also hydrolyses α-l-arabinosides. Rat epididymis resembles emulsin except that, as already noted, it lacks β-glucosidase activity. 4. In the limpet, α-l-arabinosidase activity is associated with the enzyme that hydrolyses β-glucosides and β-d-fucosides, and not with the separate β-galactosidase. 5. The effects of the different lactones on the barley preparation suggest that α-l-arabinosidase activity is associated with the β-galactosidase rather than with the enzyme that hydrolyses β-glucosides and β-d-fucosides. Fractionation and heat-inactivation experiments indicate that there is also a separate α-l-arabinosidase in the preparation.  相似文献   

3.
A basic β-galactosidase (β-Galase) has been purified 281-fold from imbibed radish (Raphanus sativus L.) seeds by conventional purification procedures. The purified enzyme is an electrophoretically homogeneous protein consisting of a single polypeptide with an apparent molecular mass of 45 kilodaltons and pl values of 8.6 to 8.8. The enzyme was maximally active at pH 4.0 on p-nitrophenyl β-d-galactoside and β-1,3-linked galactobiose. The enzyme activity was inhibited strongly by Hg2+ and 4-chloromercuribenzoate. d-Galactono-(1→4)-lactone and d-galactal acted as potent competitive inhibitors. Using galactooligosaccharides differing in the types of linkage as the substrates, it was demonstrated that radish seed β-Galase specifically split off β-1,3- and β-1,6-linked d-galactosyl residues from the nonreducing ends, and their rates of hydrolysis increased with increasing chain lengths. Radish seed and leaf arabino-3,6-galactan-proteins were resistant to the β-galase alone but could be partially degraded by the enzyme after the treatment with a fungal α-l-arabinofuranosidase leaving some oligosaccharides consisting of d-galactose, uronic acid, l-arabinose, and other minor sugar components besides d-galactose as the main product.  相似文献   

4.
β-Primeverosidase (PD) is a disaccharide-specific β-glycosidase in tea leaves. This enzyme is involved in aroma formation during the manufacturing process of oolong tea and black tea. PD hydrolyzes β-primeveroside (6-O-β-d-xylopyranosyl-β-d-glucopyranoside) at the β-glycosidic bond of primeverose to aglycone, and releases aromatic alcoholic volatiles of aglycones. PD only accepts primeverose as the glycone substrate, but broadly accepts various aglycones, including 2-phenylethanol, benzyl alcohol, linalool, and geraniol. We determined the crystal structure of PD complexes using highly specific disaccharide amidine inhibitors, N-β-primeverosylamidines, and revealed the architecture of the active site responsible for substrate specificity. We identified three subsites in the active site: subsite −2 specific for 6-O-β-d-xylopyranosyl, subsite −1 well conserved among β-glucosidases and specific for β-d-glucopyranosyl, and wide subsite +1 for hydrophobic aglycone. Glu-470, Ser-473, and Gln-477 act as the specific hydrogen bond donors for 6-O-β-d-xylopyranosyl in subsite −2. On the other hand, subsite +1 was a large hydrophobic cavity that accommodates various aromatic aglycones. Compared with aglycone-specific β-glucosidases of the glycoside hydrolase family 1, PD lacks the Trp crucial for aglycone recognition, and the resultant large cavity accepts aglycone and 6-O-β-d-xylopyranosyl together. PD recognizes the β-primeverosides in subsites −1 and −2 by hydrogen bonds, whereas the large subsite +1 loosely accommodates various aglycones. The glycone-specific activity of PD for broad aglycone substrates results in selective and multiple release of temporally stored alcoholic volatile aglycones of β-primeveroside.  相似文献   

5.
A UDP glucosyltransferase from Bacillus licheniformis was overexpressed, purified, and incubated with nucleotide diphosphate (NDP) d- and l-sugars to produce glucose, galactose, 2-deoxyglucose, viosamine, rhamnose, and fucose sugar-conjugated resveratrol glycosides. Significantly higher (90%) bioconversion of resveratrol was achieved with α-d-glucose as the sugar donor to produce four different glucosides of resveratrol: resveratrol 3-O-β-d-glucoside, resveratrol 4′-O-β-d-glucoside, resveratrol 3,5-O-β-d-diglucoside, and resveratrol 3,5,4′-O-β-d-triglucoside. The conversion rates and numbers of products formed were found to vary with the other NDP sugar donors. Resveratrol 3-O-β-d-2-deoxyglucoside and resveratrol 3,5-O-β-d-di-2-deoxyglucoside were found to be produced using TDP-2-deoxyglucose as a donor; however, the monoglycosides resveratrol 4′-O-β-d-galactoside, resveratrol 4′-O-β-d-viosaminoside, resveratrol 3-O-β-l-rhamnoside, and resveratrol 3-O-β-l-fucoside were produced from the respective sugar donors. Altogether, 10 diverse glycoside derivatives of the medically important resveratrol were generated, demonstrating the capacity of YjiC to produce structurally diverse resveratrol glycosides.  相似文献   

6.
The ability of an inulosucrase (IS) from Lactobacillus gasseri DSM 20604 to synthesize fructooligosaccharides (FOS) and maltosylfructosides (MFOS) in the presence of sucrose and sucrose-maltose mixtures was investigated after optimization of synthesis conditions, including enzyme concentration, temperature, pH, and reaction time. The maximum formation of FOS, which consist of β-2,1-linked fructose to sucrose, was 45% (in weight with respect to the initial amount of sucrose) and was obtained after 24 h of reaction at 55°C in the presence of sucrose (300 g liter−1) and 1.6 U ml−1 of IS–25 mM sodium acetate buffer–1 mM CaCl2 (pH 5.2). The production of MFOS was also studied as a function of the initial ratios of sucrose to maltose (10:50, 20:40, 30:30, and 40:20, expressed in g 100 ml−1). The highest yield in total MFOS was attained after 24 to 32 h of reaction time and ranged from 13% (10:50 sucrose/maltose) to 52% (30:30 sucrose/maltose) in weight with respect to the initial amount of maltose. Nuclear magnetic resonance (NMR) structural characterization indicated that IS from L. gasseri specifically transferred fructose moieties of sucrose to either C-1 of the reducing end or C-6 of the nonreducing end of maltose. Thus, the trisaccharide erlose [α-d-glucopyranosyl-(1→4)-α-d-glucopyranosyl-(1→2)-β-d-fructofuranoside] was the main synthesized MFOS followed by neo-erlose [β-d-fructofuranosyl-(2→6)-α-d-glucopyranosyl-(1→4)-α-d-glucopyranose]. The formation of MFOS with a higher degree of polymerization was also demonstrated by the transfer of additional fructose residues to C-1 of either the β-2,1-linked fructose or the β-2,6-linked fructose to maltose, revealing the capacity of MFOS to serve as acceptors.  相似文献   

7.
A new β-glucosidase from a novel strain of Terrabacter ginsenosidimutans (Gsoil 3082T) obtained from the soil of a ginseng farm was characterized, and the gene, bgpA (1,947 bp), was cloned in Escherichia coli. The enzyme catalyzed the conversion of ginsenoside Rb1 {3-O-[β-d-glucopyranosyl-(1-2)-β-d-glucopyranosyl]-20-O-[β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol} to the more pharmacologically active rare ginsenosides gypenoside XVII {3-O-β-d-glucopyranosyl-20-O-[β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol}, gypenoside LXXV {20-O-[β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol}, and C-K [20-O-(β-d-glucopyranosyl)-20(S)-protopanaxadiol]. A BLAST search of the bgpA sequence revealed significant homology to family 3 glycoside hydrolases. Expressed in E. coli, β-glucosidase had apparent Km values of 4.2 ± 0.8 and 0.14 ± 0.05 mM and Vmax values of 100.6 ± 17.1 and 329 ± 31 μmol·min−1·mg of protein−1 against p-nitrophenyl-β-d-glucopyranoside and Rb1, respectively. The enzyme catalyzed the hydrolysis of the two glucose moieties attached to the C-3 position of ginsenoside Rb1, and the outer glucose attached to the C-20 position at pH 7.0 and 37°C. These cleavages occurred in a defined order, with the outer glucose of C-3 cleaved first, followed by the inner glucose of C-3, and finally the outer glucose of C-20. These results indicated that BgpA selectively and sequentially converts ginsenoside Rb1 to the rare ginsenosides gypenoside XVII, gypenoside LXXV, and then C-K. Herein is the first report of the cloning and characterization of a novel ginsenoside-transforming β-glucosidase of the glycoside hydrolase family 3.Ginseng refers to the roots of members of the plant genus Panax, which have been used as a traditional medicine in Asian countries for over 2,000 years due to their observed beneficial effects on human health. Ginseng saponins, also referred to as ginsenosides, are the major active components of ginseng (27). Various biological activities have been ascribed to ginseng saponins, including anti-inflammatory activity (43), antitumor effects (23, 39), and neuroprotective and immunoprotective (15, 31) effects.Ginsenosides can be categorized as protopanaxadiol (PPD), protopanaxatriol, and oleanane saponins, based on the structure of the aglycon, with a dammarane skeleton (29). The PPD-type ginsenosides are further classified into subgroups based on the position and number of sugar moieties attached to the aglycon at positions C-3 and C-20. For example, one of the largest PPD-type ginsenosides, Rb1 {3-O-[β-d-glucopyranosyl-(1-2)-β-d-glucopyranosyl]-20-O-[β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol}, contains 4 glucose moieties, two each attached via glycosidic linkages to the C-3 and C-20 positions of the aglycon (Fig. (Fig.11).Open in a separate windowFIG. 1.Chemical structures of protopanaxadiol and protopanaxatriol ginsenosides (5). The ginsenosides represented here are all (S)-type ginsenosides. glc, β-d-glucopyranosyl; arap, α-l-arabinopyranosyl; araf, α-l-arabinofuranosyl; rha, α-l-rhamnopyranosyl; Gyp, gypenoside; C, compound.Because of their size, low solubility, and poor permeability across the cell membrane, it is difficult for human body to directly absorb large ginsenosides (44), although these components constitute the major portion of the total ginsenoside in raw ginseng (30). Moreover, the lack of the availability of the rare ginsensoides limits the research on their biological and medicinal properties. Therefore, transformation of these major ginsenosides into smaller deglycosylated ginsenosides, which are more effective in in vivo physiological action, is required (1, 37).The production of large amounts of rare ginsenosides from the major ginsenosides can be accomplished through a number of physiochemical methods such as heating (17), acid treatment (2), and alkali treatment (48). However, these approaches produce nonspecific racemic mixtures of rare ginsenosides. As an alternative, enzymatic methods have been explored as a way to convert the major ginsenosides into more pharmacologically active rare ginsenosides in a more specific manner (14, 20).To date, three types of glycoside hydrolases, β-d-glucosidase, α-l-arabinopyranosidase, and α-l-arabinofuranosidase, have been found to be involved in the biotransformation of PPD-type ginsenosides. For example, a β-glucosidase isolated from a fungus converts Rb1 to C-K [20-O-(β-d-glucopyranosyl)-20(S)-protopanaxadiol] (45), and an α-l-arabinopyranosidase and α-l-arabinofuranosidase have been isolated from an intestinal bacterium that hydrolyze, respectively, Rb2 {3-O-[β-d-glucopyranosyl-(1-2)-β-d-glucopyranosyl]-20-O-[α-l-arabinopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol} to Rd {3-O-[β-d-glucopyranosyl-(1-2)-β-d-glucopyranosyl]-20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol} and Rc {3-O-[β-d-glucopyranosyl-(1-2)-β-d-glucopyranosyl]-20-O- [α-l-arabinofuranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol} to Rd (34). Two recombinant enzymes that convert major ginsenosides into rare ginsenosides have been cloned and expressed in Escherichia coli: Solfolobus solfataricus β-glycosidase, which transforms Rb1 or Rc to C-K (28), and β-glucosidase from a soil metagenome, which transforms Rb1 to Rd (16). Both of these glycoside hydrolases are family 1 glycoside hydrolases.Here, we report the cloning and expression in E. coli of a gene (bgpA) encoding a new ginsenoside-hydrolyzing β-glucosidase from a novel bacterial strain, Terrabacter ginsenosidimutans sp. nov. Gsoil 3082, isolated from a ginseng farm in Korea. BgpA is a family 3 glycoside hydrolase, and the recombinant enzyme employs a different enzymatic pathway from ginsenoside-hydrolyzing family 1 glycoside hydrolases. BgpA preferentially and sequentially hydrolyzed the terminal and inner glucoses at the C-3 position of ginsenoside Rb1 and then the outer glucose at the C-20 position. Thus, BgpA could be effective in the biotransformation of ginsenoside Rb1 to gypenoside (Gyp) XVII {3-O-β-d-glucopyranosyl-20-O-[β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol}, Gyp LXXV {20-O-[β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol}, and C-K.  相似文献   

8.
Streptococcus intermedius is a known human pathogen and belongs to the anginosus group (S. anginosus, S. intermedius, and S. constellatus) of streptococci (AGS). We found a large open reading frame (6,708 bp) in the lac operon, and bioinformatic analysis suggested that this gene encodes a novel glycosidase that can exhibit β-d-galactosidase and N-acetyl-β-d-hexosaminidase activities. We, therefore, named this protein “multisubstrate glycosidase A” (MsgA). To test whether MsgA has these glycosidase activities, the msgA gene was disrupted in S. intermedius. The msgA-deficient mutant no longer showed cell- and supernatant-associated β-d-galactosidase, β-d-fucosidase, N-acetyl-β-d-glucosaminidase, and N-acetyl-β-d-galactosaminidase activities, and all phenotypes were complemented in trans with a recombinant plasmid carrying msgA. Purified MsgA had all four of these glycosidase activities and exhibited the lowest Km with 4-methylumbelliferyl-linked N-acetyl-β-d-glucosaminide and the highest kcat with 4-methylumbelliferyl-linked β-d-galactopyranoside. In addition, the purified LacZ domain of MsgA had β-d-galactosidase and β-d-fucosidase activities, and the GH20 domain exhibited both N-acetyl-β-d-glucosaminidase and N-acetyl-β-d-galactosaminidase activities. The β-d-galactosidase and β-d-fucosidase activities of MsgA are thermolabile, and the optimal temperature of the reaction was 40°C, whereas almost all enzymatic activities disappeared at 49°C. The optimal temperatures for the N-acetyl-β-d-glucosaminidase and N-acetyl-β-d-galactosaminidase activities were 58 and 55°C, respectively. The requirement of sialidase treatment to remove sialic acid residues of the glycan branch end for glycan degradation by MsgA on human α1-antitrypsin indicates that MsgA has exoglycosidase activities. MsgA and sialidase might have an important function in the production and utilization of monosaccharides from oligosaccharides, such as glycans for survival in a normal habitat and for pathogenicity of S. intermedius.  相似文献   

9.
Fry SC  Northcote DH 《Plant physiology》1983,73(4):1055-1061
Cultured spinach (Spinacia oleracea L. cv Monstrous Viroflay) cells incorporated exogenous l-[3H]arabinose sequentially into β-l-arabinopyranose-1-phosphate, uridine diphospho-β-l-arabinopyranose, uridine diphospho-α-d-xylopyranose and (in some experiments) α-d-xylopyranose-1-phosphate. The amount of 3H in each of these compounds reached a plateau after a few minutes, and could be rapidly chased with nonradioactive l-arabinose, demonstrating rapid turnover. After a few minutes' lag, incorporation of 3H into the arabinofuranosyl, arabinopyranosyl, and xylopyranosyl residues of polysaccharides was linear with respect to time. The kinetics of labeling were compatible with UDP-β-l-arabinopyranose and UDP-α-d-xylopyranose being the immediate precursors of arabians (both the pyranose and the furanose residues) and xylans, respectively. No other radioactive nucleotides were formed; in particular, UDP-arabinofuranose was absent. There was no evidence for conversion of arabinopyranose to arabinofuranose within the polysaccharides, suggesting that this conversion occurs during polymer synthesis. The glycolipids detected showed too slow a turnover to be intermediates of pentosan synthesis.  相似文献   

10.
Bacteria which were β-d-galactosidase and β-d-glucuronidase positive or expressed only one of these enzymes were isolated from environmental water samples. The enzymatic activity of these bacteria was measured in 25-min assays by using the fluorogenic substrates 4-methylumbelliferyl-β-d-galactoside and 4-methylumbelliferyl-β-d-glucuronide. The enzyme activity, enzyme induction, and enzyme temperature characteristics of target and nontarget bacteria in assays aimed at detecting coliform bacteria and Escherichia coli were investigated. The potential interference of false-positive bacteria was evaluated. Several of the β-d-galactosidase-positive nontarget bacteria but none of the β-d-glucuronidase-positive nontarget bacteria contained unstable enzyme at 44.5°C. The activity of target bacteria was highly inducible. Nontarget bacteria were induced much less or were not induced by the inducers used. The results revealed large variations in the enzyme levels of different β-d-galactosidase- and β-d-glucuronidase-positive bacteria. The induced and noninduced β-d-glucuronidase activities of Bacillus spp. and Aerococcus viridans were approximately the same as the activities of induced E. coli. Except for some isolates identified as Aeromonas spp., all of the induced and noninduced β-d-galactosidase-positive, noncoliform isolates exhibited at least 2 log units less mean β-d-galactosidase activity than induced E. coli. The noncoliform bacteria must be present in correspondingly higher concentrations than those of target bacteria to interfere in the rapid assay for detection of coliform bacteria.Indicators of pollution (e.g., coliforms, fecal coliforms, and Escherichia coli) are traditionally used for monitoring the microbiological safety of water supplies and recreational water. Several techniques for detection of coliforms and E. coli are based on enzymatic hydrolysis of fluorogenic or chromogenic substrates for β-d-galactosidase and β-d-glucuronidase (9, 20). Current methods of recovery are usually culture based, and the analysis time is 18 to 24 h. In addition to enzymatic activity, these techniques use growth at appropriate temperatures in the presence of inhibitors, combined with demonstration of enzymatic activity, to selectively detect target bacteria.Rapid methods which require less than 6 h and are based on chromogenic, fluorogenic, or chemiluminogenic substrates for detection of coliforms, fecal coliforms, or E. coli have been described (13, 10, 27, 28). These rapid assays are based on the assumption that β-d-galactosidase and β-d-glucuronidase are markers for coliforms and E. coli, respectively. However, when the incubation time is 1 h or less, growth is not a selective step, and all β-d-galactosidase-positive or β-d-glucuronidase-positive microorganisms in a water sample contribute to the activity measured. At low initial concentrations of target bacteria (i.e., E. coli and total coliforms), increasing the preincubation time to 5 to 6 h did not result in a predominance of target bacteria compared to nontarget bacteria (28).The β-d-galactosidase or β-d-glucuronidase activity calculated per cultivable coliform or fecal coliform bacterium in environmental samples can be 1 to 2 log units higher than the activity per induced E. coli cell in pure culture (11, 26). The presence of active, noncultivable bacteria can be one reason for this. Studies of survival (7, 24, 25) and disinfection (26) of E. coli have shown that loss of cultivability does not necessarily result in a loss of β-d-galactosidase activity. The presence of false-positive bacteria can be another reason.β-d-Galactosidase has been found in numerous microorganisms, including gram-negative bacteria (e.g., strains belonging to the Enterobacteriaceae, Vibrionaceae, Pseudomonadaceae, and Neisseriaceae), several gram-positive bacteria, yeasts, protozoa, and fungi (17, 29). β-d-Glucuronidase is produced by most E. coli strains and also by other members of the Enterobacteriaceae, including some Shigella and Salmonella strains and a few Yersinia, Citrobacter, Edwardia, and Hafnia strains. Production of β-d-glucuronidase by Flavobacterium spp., Bacteroides spp., Staphylococcus spp., Streptococcus spp., anaerobic corynebacteria, and Clostridium has also been reported (12).High numbers of false-positive bacteria in sewage and contaminated water have been revealed by enumeration of β-d-galactosidase- and β-d-glucuronidase-positive CFU on nonselective agar supplemented with fluorogenic or chromogenic substrates (11, 28). Whether the activity from nontarget organisms can be neglected in a rapid assay depends on the number of nontarget organisms compared with the number of target bacteria and also on the level of their enzyme activity. Plant and algal biomass must be present at high concentrations to interfere in rapid bacterial β-d-galactosidase and β-d-glucuronidase assays (8).The main objective of this study was to investigate the enzyme characteristics of β-d-galactosidase- and β-d-glucuronidase-positive bacteria isolated from environmental water samples and to evaluate the potential influence of false-positive bacteria in rapid assays for coliform bacteria or E. coli in water. The effect of temperature on enzyme activity and on the interference of nontarget bacteria in the rapid assays was investigated as an important factor.(Some of the results were presented at the 97th General Meeting of the American Society for Microbiology 1997, Miami Beach, Fla., 4 to 8 May 1997.)  相似文献   

11.
A gene cluster involved in N-glycan metabolism was identified in the genome of Bacteroides thetaiotaomicron VPI-5482. This gene cluster encodes a major facilitator superfamily transporter, a starch utilization system-like transporter consisting of a TonB-dependent oligosaccharide transporter and an outer membrane lipoprotein, four glycoside hydrolases (α-mannosidase, β-N-acetylhexosaminidase, exo-α-sialidase, and endo-β-N-acetylglucosaminidase), and a phosphorylase (BT1033) with unknown function. It was demonstrated that BT1033 catalyzed the reversible phosphorolysis of β-1,4-d-mannosyl-N-acetyl-d-glucosamine in a typical sequential Bi Bi mechanism. These results indicate that BT1033 plays a crucial role as a key enzyme in the N-glycan catabolism where β-1,4-d-mannosyl-N-acetyl-d-glucosamine is liberated from N-glycans by sequential glycoside hydrolase-catalyzed reactions, transported into the cell, and intracellularly converted into α-d-mannose 1-phosphate and N-acetyl-d-glucosamine. In addition, intestinal anaerobic bacteria such as Bacteroides fragilis, Bacteroides helcogenes, Bacteroides salanitronis, Bacteroides vulgatus, Prevotella denticola, Prevotella dentalis, Prevotella melaninogenica, Parabacteroides distasonis, and Alistipes finegoldii were also suggested to possess the similar metabolic pathway for N-glycans. A notable feature of the new metabolic pathway for N-glycans is the more efficient use of ATP-stored energy, in comparison with the conventional pathway where β-mannosidase and ATP-dependent hexokinase participate, because it is possible to directly phosphorylate the d-mannose residue of β-1,4-d-mannosyl-N-acetyl-d-glucosamine to enter glycolysis. This is the first report of a metabolic pathway for N-glycans that includes a phosphorylase. We propose 4-O-β-d-mannopyranosyl-N-acetyl-d-glucosamine:phosphate α-d-mannosyltransferase as the systematic name and β-1,4-d-mannosyl-N-acetyl-d-glucosamine phosphorylase as the short name for BT1033.  相似文献   

12.
β-Galactosidase-catalysed hydrolysis of β-d-galactopyranosyl azide   总被引:3,自引:3,他引:0  
1. β-d-Galactopyranosyl azide is hydrolysed by the β-galactosidase of Escherichia coli to galactose and azide ion at a mechanistically significant rate. 2. Methyl 1-thio-β-d-galactopyranoside is a competitive inhibitor of the hydrolysis of the azide and of o-nitrophenyl β-d-galactopyranoside with Ki 1.8mm. 3. β-Galactosidase can thus hydrolyse a range of substrates of general structure β-d-galactopyranosyl-X(Y), where the atom X has a lone pair of electrons on which the enzyme may act as a Lewis or Brønsted acid, but in which the length of the bond cleaved varies significantly, which is inconsistent with the orbital steering hypothesis.  相似文献   

13.
Manganese superoxide dismutase (MnSOD), a foremost antioxidant enzyme, plays a key role in angiogenesis. Barley-derived (1.3) β-d-glucan (β-d-glucan) is a natural water-soluble polysaccharide with antioxidant properties. To explore the effects of β-d-glucan on MnSOD-related angiogenesis under oxidative stress, we tested epigenetic mechanisms underlying modulation of MnSOD level in human umbilical vein endothelial cells (HUVECs) and angiogenesis in vitro and in vivo. Long-term treatment of HUVECs with 3% w/v β-d-glucan significantly increased the level of MnSOD by 200% ± 2% compared to control and by 50% ± 4% compared to untreated H2O2-stressed cells. β-d-glucan-treated HUVECs displayed greater angiogenic ability. In vivo, 24 hrs-treatment with 3% w/v β-d-glucan rescued vasculogenesis in Tg (kdrl: EGFP) s843Tg zebrafish embryos exposed to oxidative microenvironment. HUVECs overexpressing MnSOD demonstrated an increased activity of endothelial nitric oxide synthase (eNOS), reduced load of superoxide anion (O2) and an increased survival under oxidative stress. In addition, β-d-glucan prevented the rise of hypoxia inducible factor (HIF)1-α under oxidative stress. The level of histone H4 acetylation was significantly increased by β-d-glucan. Increasing histone acetylation by sodium butyrate, an inhibitor of class I histone deacetylases (HDACs I), did not activate MnSOD-related angiogenesis and did not impair β-d-glucan effects. In conclusion, 3% w/v β-d-glucan activates endothelial expression of MnSOD independent of histone acetylation level, thereby leading to adequate removal of O2, cell survival and angiogenic response to oxidative stress. The identification of dietary β-d-glucan as activator of MnSOD-related angiogenesis might lead to the development of nutritional approaches for the prevention of ischemic remodelling and heart failure.  相似文献   

14.
Previous results (TJ Buckhout, Planta [1989] 178: 393-399) indicated that the structural specificity of the H+-sucrose symporter on the plasma membrane from sugar beet leaves (Beta vulgaris L.) was specific for the sucrose molecule. To better understand the structural features of the sucrose molecule involved in its recognition by the symport carrier, the inhibitory activity of a variety of phenylhexopyranosides on sucrose uptake was tested. Three competitive inhibitors of sucrose uptake were found, phenyl-α-d-glucopyranoside, phenyl-α-d-thioglucopyranoside, and phenyl-α-d-4-deoxythioglucopyranoside (PDTGP; Ki = 67, 180, and 327 micromolar, respectively). The Km for sucrose uptake was approximately 500 micromolar. Like sucrose, phenyl-α-d-thioglucopyranoside and to a lesser extent, PDTGP induced alkalization of the external medium, which indicated that these derivatives bound to and were transported by the sucrose symporter. Phenyl-α-d-3-deoxy-3-fluorothioglucopyranoside, phenyl-α-d-4-deoxy-4-fluorothioglucopyranoside, and phenyl-α-d-thioallopyranoside only weakly but competively inhibited sucrose uptake with Ki values ranging from 600 to 800 micromolar, and phenyl-α-d-thiomannopyranoside, phenyl-β-d-glucopyranoside, and phenylethyl-β-d-thiogalactopyranoside did not inhibit sucrose uptake. Thus, the hydroxyl groups of the fructose portion of sucrose were not involved in a specific interaction with the carrier protein because phenyl and thiophenyl derivatives of glucose inhibited sucrose uptake and, in the case of phenyl-α-d-thioglucopyranoside and PDTGP, were transported.  相似文献   

15.
A low-specificity l-threonine aldolase (l-TA) gene from Pseudomonas sp. strain NCIMB 10558 was cloned and sequenced. The gene contains an open reading frame consisting of 1,041 nucleotides corresponding to 346 amino acid residues. The gene was overexpressed in Escherichia coli cells, and the recombinant enzyme was purified and characterized. The enzyme, requiring pyridoxal 5′-phosphate as a coenzyme, is strictly l specific at the α position, whereas it cannot distinguish between threo and erythro forms at the β position. In addition to threonine, the enzyme also acts on various other l-β-hydroxy-α-amino acids, including l-β-3,4-dihydroxyphenylserine, l-β-3,4-methylenedioxyphenylserine, and l-β-phenylserine. The predicted amino acid sequence displayed less than 20% identity with those of low-specificity l-TA from Saccharomyces cerevisiae, l-allo-threonine aldolase from Aeromonas jandaei, and four relevant hypothetical proteins from other microorganisms. However, lysine 207 of low-specificity l-TA from Pseudomonas sp. strain NCIMB 10558 was found to be completely conserved in these proteins. Site-directed mutagenesis experiments showed that substitution of Lys207 with Ala or Arg resulted in a significant loss of enzyme activity, with the corresponding disappearance of the absorption maximum at 420 nm. Thus, Lys207 of the l-TA probably functions as an essential catalytic residue, forming an internal Schiff base with the pyridoxal 5′-phosphate of the enzyme to catalyze the reversible aldol reaction.β-Hydroxy-α-amino acids constitute an important class of compounds. They are natural products in their own right and are components of a range of antibiotics, for example, cyclosporin A, lysobactin, and vancomycin (30) and bouvardin and deoxybouvardin (6). 4-Hydroxy-l-threonine is a precursor of rizobitoxine, a potent inhibitor of pyridoxal 5′-phosphate (PLP)-dependent enzymes (32). 3,4,5-Trihydroxyl-l-aminopentanoic acid is a key component of polyoxins (32). l-threo-3,4-Dihydroxyphenylserine is a new drug for Parkinson’s disease therapy (13). However, the industrial production of β-hydroxy-α-amino acids has been limited to chemical synthesis processes, which need multiple steps to isolate the four isomers (l-threo form, d-threo form, l-erythro form, and d-erythro form). Threonine aldolase (EC 4.1.2.5), which stereospecifically catalyzes the retro-aldol cleavage of threonine, is a potentially useful catalyst for the synthesis of substituted amino acids from aldehyde and glycine (27, 31, 32).Two different types of threonine aldolases are known so far. l-allo-Threonine aldolase (l-allo-TA), isolated and purified from Aeromonas jandaei DK-39 (8), stereospecifically catalyzes the reversible interconversion of l-allo-threonine and glycine. Low-specificity l-threonine aldolase (l-TA) catalyzes the cleavage of both l-threonine and l-allo-threonine to glycine and acetaldehyde, as well as the reverse reaction, aldol condensation. The enzymes have been purified and characterized from Candida humicola (9, 34) and Saccharomyces cerevisiae (12). Low-specificity l-TA activity has also been shown to exist in mammals (7, 23, 26) and a variety of other microbial species (2, 4, 17, 35). The enzyme is physiologically important for the synthesis of cellular glycine in yeast (12, 15, 16). Threonine aldolases with distinct stereospecificities are ideal targets for enzymology studies on structural and functional relationships. However, information on the primary structures of threonine aldolases was limited to our recent studies (11, 12). The construction of an overproduction system for threonine aldolase will be indispensable for the industrial biosyntheses of β-hydroxy-α-amino acids.The present work focuses on the cloning, sequencing, and overexpression in Escherichia coli cells of the low-specificity l-TA gene from Pseudomonas sp. strain NCIMB 10558, the purification and characterization of the recombinant enzyme, and the identification of the active-site lysine residue of the enzyme by site-directed mutagenesis. Evidence is presented that Lys207 of low-specificity l-TA probably functions as a catalytic residue, forming an internal Schiff base with the PLP of the enzyme to catalyze the reversible aldol reaction. This is the first report showing a purified enzyme with l-β-3,4-dihydroxyphenylserine aldolase and l-β-3,4-methylenedioxyphenylserine aldolase activities, providing a new route for the industrial production of these important unnatural amino acids.  相似文献   

16.
1. In barley, β-glucosidase and β-galactosidase are separate enzymes. The former also displays β-d-fucosidase activity. 2. In the limpet, Patella vulgata, β-glucosidase activity is associated with the β-d-fucosidase, previously shown to be a separate entity from the β-galactosidase also present. 3. Almond emulsin presents all three activities as a single enzyme. Each is equally inhibited by glucono-, galactono- and d-fucono-lactone. 4. In rat epididymis, there is no significant β-glucosidase activity, nor is there appreciable inhibition of the β-galactosidase and β-d-fucosidase activities of the preparation by gluconolactone.  相似文献   

17.
α-l-Arabinofuranosidases I and II were purified from the culture filtrate of Aspergillus awamori IFO 4033 and had molecular weights of 81,000 and 62,000 and pIs of 3.3 and 3.6, respectively. Both enzymes had an optimum pH of 4.0 and an optimum temperature of 60°C and exhibited stability at pH values from 3 to 7 and at temperatures up to 60°C. The enzymes released arabinose from p-nitrophenyl-α-l-arabinofuranoside, O-α-l-arabinofuranosyl-(1→3)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose, and arabinose-containing polysaccharides but not from O-β-d-xylopyranosyl-(1→2)-O-α-l-arabinofuranosyl-(1→3)-O-β-d-xylopyranosyl-(1→4)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose. α-l-Arabinofuranosidase I also released arabinose from O-β-d-xylopy-ranosyl-(1→4)-[O-α-l-arabinofuranosyl-(1→3)]-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose. However, α-l-arabinofuranosidase II did not readily catalyze this hydrolysis reaction. α-l-Arabinofuranosidase I hydrolyzed all linkages that can occur between two α-l-arabinofuranosyl residues in the following order: (1→5) linkage > (1→3) linkage > (1→2) linkage. α-l-Arabinofuranosidase II hydrolyzed the linkages in the following order: (1→5) linkage > (1→2) linkage > (1→3) linkage. α-l-Arabinofuranosidase I preferentially hydrolyzed the (1→5) linkage of branched arabinotrisaccharide. On the other hand, α-l-arabinofuranosidase II preferentially hydrolyzed the (1→3) linkage in the same substrate. α-l-Arabinofuranosidase I released arabinose from the nonreducing terminus of arabinan, whereas α-l-arabinofuranosidase II preferentially hydrolyzed the arabinosyl side chain linkage of arabinan.Recently, it has been proven that l-arabinose selectively inhibits intestinal sucrase in a noncompetitive manner and reduces the glycemic response after sucrose ingestion in animals (33). Based on this observation, l-arabinose can be used as a physiologically functional sugar that inhibits sucrose digestion. Effective l-arabinose production is therefore important in the food industry. l-Arabinosyl residues are widely distributed in hemicelluloses, such as arabinan, arabinoxylan, gum arabic, and arabinogalactan, and the α-l-arabinofuranosidases (α-l-AFases) (EC 3.2.1.55) have proven to be essential tools for enzymatic degradation of hemicelluloses and structural studies of these compounds.α-l-AFases have been classified into two families of glycanases (families 51 and 54) on the basis of amino acid sequence similarities (11). The two families of α-l-AFases also differ in substrate specificity for arabinose-containing polysaccharides. Beldman et al. summarized the α-l-AFase classification based on substrate specificities (3). One group contains the Arafur A (family 51) enzymes, which exhibit very little or no activity with arabinose-containing polysaccharides. The other group contains the Arafur B (family 54) enzymes, which cleave arabinosyl side chains from polymers. However, this classification is too broad to define the substrate specificities of α-l-AFases. There have been many studies of the α-l-AFases (3, 12), especially the α-l-AFases of Aspergillus species (28, 1215, 17, 22, 23, 2832, 3639, 4143, 46). However, there have been only a few studies of the precise specificities of these α-l-AFases. In previous work, we elucidated the substrate specificities of α-l-AFases from Aspergillus niger 5-16 (17) and Bacillus subtilis 3-6 (16, 18), which should be classified in the Arafur A group and exhibit activity with arabinoxylooligosaccharides, synthetic methyl 2-O-, 3-O-, and 5-O-arabinofuranosyl-α-l-arabinofuranosides (arabinofuranobiosides) (20), and methyl 3,5-di-O-α-l-arabinofuranosyl-α-l-arabinofuranoside (arabinofuranotrioside) (19).In the present work, we purified two α-l-AFases from a culture filtrate of Aspergillus awamori IFO 4033 and determined the substrate specificities of these α-l-AFases by using arabinose-containing polysaccharides and the core oligosaccharides of arabinoxylan and arabinan.  相似文献   

18.
Tsai CM  Hassid WZ 《Plant physiology》1973,51(6):998-1001
UDP-d-glucose, at a micromolar level in the presence of MgCl2 and oat (Avena sativa) coleoptile particulate enzyme which contains both β-(1 → 3) and β-(1 → 4) glucan synthetases, produces glucan with mainly β-(1 → 4) glucosyl linkages. An activation of β-(1 → 3) glucan synthetase by UDP-d-glucose and a decrease in the formation of β-(1 → 3) glucan in the presence of MgCl2 have been observed. However, at high substrate concentration (≥ 10−4m), the activation of β-(1 → 3) glucan synthetase is so pronounced that the formation of β-(1 → 3) glucosyl linkage predominates in synthesized glucan regardless of the presence of MgCl2. These observations may explain the striking shift in the composition of glucan of particulate enzyme from a β-(1 → 4) to β-(1 → 3) glucosyl linkage when UDP-d-glucose concentration is raised from a low concentration (≤ 10−5m) to a higher concentration (≥ 10−4m).  相似文献   

19.
Ruminococcus albus is a typical ruminal bacterium digesting cellulose and hemicellulose. Cellobiose 2-epimerase (CE; EC 5.1.3.11), which converts cellobiose to 4-O-β-d-glucosyl-d-mannose, is a particularly unique enzyme in R. albus, but its physiological function is unclear. Recently, a new metabolic pathway of mannan involving CE was postulated for another CE-producing bacterium, Bacteroides fragilis. In this pathway, β-1,4-mannobiose is epimerized to 4-O-β-d-mannosyl-d-glucose (Man-Glc) by CE, and Man-Glc is phosphorolyzed to α-d-mannosyl 1-phosphate (Man1P) and d-glucose by Man-Glc phosphorylase (MP; EC 2.4.1.281). Ruminococcus albus NE1 showed intracellular MP activity, and two MP isozymes, RaMP1 and RaMP2, were obtained from the cell-free extract. These enzymes were highly specific for the mannosyl residue at the non-reducing end of the substrate and catalyzed the phosphorolysis and synthesis of Man-Glc through a sequential Bi Bi mechanism. In a synthetic reaction, RaMP1 showed high activity only toward d-glucose and 6-deoxy-d-glucose in the presence of Man1P, whereas RaMP2 showed acceptor specificity significantly different from RaMP1. RaMP2 acted on d-glucose derivatives at the C2- and C3-positions, including deoxy- and deoxyfluoro-analogues and epimers, but not on those substituted at the C6-position. Furthermore, RaMP2 had high synthetic activity toward the following oligosaccharides: β-linked glucobioses, maltose, N,N′-diacetylchitobiose, and β-1,4-mannooligosaccharides. Particularly, β-1,4-mannooligosaccharides served as significantly better acceptor substrates for RaMP2 than d-glucose. In the phosphorolytic reactions, RaMP2 had weak activity toward β-1,4-mannobiose but efficiently degraded β-1,4-mannooligosaccharides longer than β-1,4-mannobiose. Consequently, RaMP2 is thought to catalyze the phosphorolysis of β-1,4-mannooligosaccharides longer than β-1,4-mannobiose to produce Man1P and β-1,4-mannobiose.  相似文献   

20.
Particulate enzyme preparations from Phaseolus aureus hypocotyls catalyze the formation of an alkali insoluble β, 1 → 4 linked [14C]-glucan using UDP-α-d [14C]-glucose as substrate. Particulate enzymes prepared from root tissue also catalyzed the production of β, 1 → 4 glucan. UDP-β-d-[14C]-glucose would not serve as a substrate for these enzymes. The presence or absence of β, 1 → 4 glucan synthetase activity was independent of tissue source, substrate concentration, or homogenization method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号