首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Shaner L  Sousa R  Morano KA 《Biochemistry》2006,45(50):15075-15084
SSE1 and SSE2 encode the essential yeast members of the Hsp70-related Hsp110 molecular chaperone family. Both mammalian Hsp110 and the Sse proteins functionally interact with cognate cytosolic Hsp70s as nucleotide exchange factors. We demonstrate here that Sse1 forms high-affinity (Kd approximately 10-8 M) heterodimeric complexes with both yeast Ssa and mammalian Hsp70 chaperones and that binding of ATP to Sse1 is required for binding to Hsp70s. Sse1.Hsp70 heterodimerization confers resistance to exogenously added protease, indicative of conformational changes in Sse1 resulting in a more compact structure. The nucleotide binding domains of both Sse1/2 and the Hsp70s dictate interaction specificity and are sufficient for mediating heterodimerization with no discernible contribution from the peptide binding domains. In support of a strongly conserved functional interaction between Hsp110 and Hsp70, Sse1 is shown to associate with and promote nucleotide exchange on human Hsp70. Nucleotide exchange activity by Sse1 is physiologically significant, as deletion of both SSE1 and the Ssa ATPase stimulatory protein YDJ1 is synthetically lethal. The Hsp110 family must therefore be considered an essential component of Hsp70 chaperone biology in the eukaryotic cell.  相似文献   

2.
There is growing evidence that members of the extended Hsp70 family of molecular chaperones, including the Hsp110 and Grp170 subgroups, collaborate in vivo to carry out essential cellular processes. However, relatively little is known regarding the interactions and cellular functions of Sse1, the yeast Hsp110 homolog. Through co-immunoprecipitation analysis, we found that Sse1 forms heterodimeric complexes with the abundant cytosolic Hsp70s Ssa and Ssb in vivo. Furthermore, these complexes can be efficiently reconstituted in vitro using purified proteins. Binding of Ssa or Ssb to Sse1 was mutually exclusive. The ATPase domain of Sse1 was found to be critical for interaction as inactivating point mutations severely reduced interaction with Ssa and Ssb. Sse1 stimulated Ssa1 ATPase activity synergistically with the co-chaperone Ydj1, and stimulation required complex formation. Ssa1 is required for post-translational translocation of the yeast mating pheromone alpha-factor into the endoplasmic reticulum. Like ssa mutants, we demonstrate that sse1delta cells accumulate prepro-alpha-factor, but not the co-translationally imported protein Kar2, indicating that interaction between Sse1 and Ssa is functionally significant in vivo. These data suggest that the Hsp110 chaperone operates in concert with Hsp70 in yeast and that this collaboration is required for cellular Hsp70 functions.  相似文献   

3.
Hsp110s are divergent relatives of Hsp70 chaperones that hydrolyze ATP. Hsp110s serve as Hsp70 nucleotide exchange factors and act directly to maintain polypeptide solubility. To date, the impact of peptide binding on Hsp110 ATPase activity is unknown and an Hsp110/peptide affinity has not been measured. We now report on a peptide that binds to the yeast Hsp110, Sse1p, with a K(D) of approximately 2 nM. Surprisingly, the binding of this peptide fails to stimulate Sse1p ATP hydrolysis. Moreover, an Hsp70-binding peptide is unable to associate with Sse1p, suggesting that Hsp70s and Hsp110s possess partially distinct peptide recognition motifs.  相似文献   

4.
Hsp70 molecular chaperones function in protein folding in a manner dependent on regulation by co-chaperones. Hsp40s increase the low intrinsic ATPase activity of Hsp70, and nucleotide exchange factors (NEFs) remove ADP after ATP hydrolysis, enabling a new Hsp70 interaction cycle with non-native protein substrate. Here, we show that members of the Hsp70-related Hsp110 family cooperate with Hsp70 in protein folding in the eukaryotic cytosol. Mammalian Hsp110 and the yeast homologues Sse1p/2p catalyze efficient nucleotide exchange on Hsp70 and its orthologue in Saccharomyces cerevisiae, Ssa1p, respectively. Moreover, Sse1p has the same effect on Ssb1p, a ribosome-associated isoform of Hsp70 in yeast. Mutational analysis revealed that the N-terminal ATPase domain and the ultimate C-terminus of Sse1p are required for nucleotide exchange activity. The Hsp110 homologues significantly increase the rate and yield of Hsp70-mediated re-folding of thermally denatured firefly luciferase in vitro. Similarly, deletion of SSE1 causes a firefly luciferase folding defect in yeast cells under heat stress in vivo. Our data indicate that Hsp110 proteins are important components of the eukaryotic Hsp70 machinery of protein folding.  相似文献   

5.
Liu Q  Hendrickson WA 《Cell》2007,131(1):106-120
Classic Hsp70 chaperones assist in diverse processes of protein folding and translocation, and Hsp110s had seemed by sequence to be distant relatives within an Hsp70 superfamily. The 2.4 A resolution structure of Sse1 with ATP shows that Hsp110s are indeed Hsp70 relatives, and it provides insight into allosteric coupling between sites for ATP and polypeptide-substrate binding in Hsp70s. Subdomain structures are similar in intact Sse1(ATP) and in the separate Hsp70 domains, but conformational dispositions are radically different. Interfaces between Sse1 domains are extensive, intimate, and conservative in sequence with Hsp70s. We propose that Sse1(ATP) may be an evolutionary vestige of the Hsp70(ATP) state, and an analysis of 64 mutant variants in Sse1 and three Hsp70 homologs supports this hypothesis. An atomic-level understanding of Hsp70 communication between ATP and substrate-binding domains follows. Requirements on Sse1 for yeast viability are in keeping with the distinct function of Hsp110s as nucleotide exchange factors.  相似文献   

6.
The Hsp110 proteins, exclusively found in the eukaryotic cytosol, have significant sequence homology to the Hsp70 molecular chaperone superfamily. Despite this homology and the cellular abundance of these proteins, the precise functional role has remained undefined. Here, we present the intriguing finding that the yeast homologue, Sse1p, acts as an efficient nucleotide exchange factor (NEF) for both yeast cytosolic Hsp70s, Ssa1p and Ssb1p. The mechanism involves formation of a stable nucleotide-sensitive complex, but does not require ATP hydrolysis by Sse1p. The NEF activity of Sse1p stimulates in vitro Ssa1p-mediated refolding of thermally denatured luciferase, and appears to have an essential role in vivo. Overexpression of the only other described cytosolic NEF, Fes1p, can partially compensate for a lethal sse1,2Delta phenotype, however, the cells are sensitive to stress conditions. Furthermore, in the absence of Sse, the in vivo refolding of thermally denatured model proteins is affected. This is the first report of a nucleotide exchange activity for the Hsp110 class of proteins, and provides a key piece in the puzzle of the cellular chaperone network.  相似文献   

7.
Hsp110 is a nucleotide-activated exchange factor for Hsp70   总被引:1,自引:0,他引:1  
Hsp110 proteins constitute a subfamily of the Hsp70 chaperones and are potent nucleotide exchange factors (NEFs) for canonical Hsp70s of the eukaryotic cytosol. Here, we show that the NEF activity of the yeast Hsp110 homologue Sse1 itself is controlled by nucleotide. Nucleotide binding results in formation of a stabilized conformation of Sse1 that is required for association with the yeast Hsp70 Ssa1. The interaction triggers release of bound ADP from Ssa1, but nucleotide persists bound to Sse1 in the complex. Surprisingly, removal of this nucleotide does not affect the integrity of the complex. Instead, rebinding of ATP to the Hsp70 prompts the dissociation of the complex. Our data demonstrate that in contrast to previously characterized NEFs for Hsp70 chaperones, the NEF activity of Sse1 requires nucleotide binding and let us propose a new model for Hsp110 function.  相似文献   

8.
Raviol H  Bukau B  Mayer MP 《FEBS letters》2006,580(1):168-174
Hsp110 proteins constitute a heterogeneous family of abundant molecular chaperones, related to the Hsp70 proteins and exclusively found in the cytosol of eukaryotic organisms. Hsp110 family members are described as efficient holdases, preventing the aggregation and assisting the refolding of heat-denatured model substrates in the presence of Hsp70 chaperones and their co-chaperones. To gain more insights into the mode of action of this protein family we compared two homologues representing two subtypes of Hsp110 proteins, S. cerevisiae Sse1 and H. sapiens Apg-2, in their structural and functional properties in vitro. In contrast to previous publications both proteins exhibited intrinsic ATPase activities, which only in the case of Sse1 could be stimulated by the Hsp40 co-chaperone Sis1. Similar to Hsp70 proteins ATP binding and hydrolysis induced conformational rearrangements in both Hsp110 proteins as detected by tryptophane fluorescence. However, nucleotide induced changes in the proteolytic digestion pattern were detected only for Sse1. Sse1 and Apg-2 thus show significant differences in their biochemical properties, which may relate to differences in their functional roles in vivo.  相似文献   

9.
Hsp110 proteins act as nucleotide exchange factors of the molecular chaperone Hsp70 in eukaryotes. In addition, they have been reported to stabilize unfolded proteins for subsequent refolding. Hsp110 proteins belong to the Hsp70 superfamily and, in analogy to Hsp70, the substrate-binding site was proposed to be located at the interface of the β-sandwich domain and the three-helix-bundle domain. Saccharomyces cerevisiae has two closely related cytosolic isoforms of Hsp110, Sse1p and Sse2p. Under normal growth conditions, Sse1p is the predominant form. Sse2p is induced under stress conditions, such as heat shock. Consistent with these findings, we find that Sse2p has increased temperature stability. Both Sse1p and Sse2p accelerate nucleotide exchange on the yeast Hsp70 Ssa1p. Furthermore, Sse1p and Sse2p effectively compete for binding of unfolded luciferase. In contrast to Sse1p, however, Sse2p fails to stabilize this model substrate under thermal stress for subsequent Hsp70-mediated refolding. Using a domain shuffling approach, we show that both the nucleotide-binding domain and the β-sandwich domain of Sse1p are required to preserve nonnative luciferase in a folding-competent state. Our findings suggest that Sse1p must undergo partial unfolding for efficient protection of luciferase, and that the β-sandwich domain of Sse1p acts as an intramolecular chaperone for refolding of the nucleotide-binding domain. Under extreme stress conditions, Sse2p appears to take over the nucleotide exchange factor function of Sse1p and might promote the controlled aggregation of stress-denatured proteins.  相似文献   

10.
The role of molecular chaperones, among them heat shock proteins (Hsps), in the development of malaria parasites has been well documented. Hsp70s are molecular chaperones that facilitate protein folding. Hsp70 proteins are composed of an N-terminal nucleotide binding domain (NBD), which confers them with ATPase activity and a C-terminal substrate binding domain (SBD). In the ADP-bound state, Hsp70 possesses high affinity for substrate and releases the folded substrate when it is bound to ATP. The two domains are connected by a conserved linker segment. Hsp110 proteins possess an extended lid segment, a feature that distinguishes them from canonical Hsp70s. Plasmodium falciparum Hsp70-z (PfHsp70-z) is a member of the Hsp110 family of Hsp70-like proteins. PfHsp70-z is essential for survival of malaria parasites and is thought to play an important role as a molecular chaperone and nucleotide exchange factor of its cytosolic canonical Hsp70 counterpart, PfHsp70-1. Unlike PfHsp70-1 whose functions are fairly well established, the structure-function features of PfHsp70-z remain to be fully elucidated. In the current study, we established that PfHsp70-z possesses independent chaperone activity. In fact, PfHsp70-z appears to be marginally more effective in suppressing protein aggregation than its cytosol-localized partner, PfHsp70-1. Furthermore, based on coimmunoaffinity chromatography and surface plasmon resonance analyses, PfHsp70-z associated with PfHsp70-1 in a nucleotide-dependent fashion. Our findings suggest that besides serving as a molecular chaperone, PfHsp70-z could facilitate the nucleotide exchange function of PfHsp70-1. These dual functions explain why it is essential for parasite survival.  相似文献   

11.
Molecular chaperones such as Hsp70 use ATP binding and hydrolysis to prevent aggregation and ensure the efficient folding of newly translated and stress-denatured polypeptides. Eukaryotic cells contain several cytosolic Hsp70 subfamilies. In yeast, these include the Hsp70s SSB and SSA as well as the Hsp110-like Sse1/2p. The cellular functions and interplay between these different Hsp70 systems remain ill-defined. Here we show that the different cytosolic Hsp70 systems functionally interact with Hsp110 to form a chaperone network that interacts with newly translated polypeptides during their biogenesis. Both SSB and SSA Hsp70s form stable complexes with the Hsp110 Sse1p. Pulse-chase analysis indicates that these Hsp70/Hsp110 teams, SSB/SSE and SSA/SSE, transiently associate with newly synthesized polypeptides with different kinetics. SSB Hsp70s bind cotranslationally to a large fraction of nascent chains, suggesting an early role in the stabilization of nascent chains. SSA Hsp70s bind mostly post-translationally to a more restricted subset of newly translated polypeptides, suggesting a downstream function in the folding pathway. Notably, loss of SSB dramatically enhances the cotranslational association of SSA with nascent chains, suggesting SSA can partially fulfill an SSB-like function. On the other hand, the absence of SSE1 enhances polypeptide binding to both SSB and SSA and impairs cell growth. It, thus, appears that Hsp110 is an important regulator of Hsp70-substrate interactions. Based on our data, we propose that Hsp110 cooperates with the SSB and SSA Hsp70 subfamilies, which act sequentially during de novo folding.  相似文献   

12.
Protein aggregate reactivation in metazoans is accomplished by the combined activity of Hsp70, Hsp40 and Hsp110 chaperones. Hsp110s support the refolding of aggregated polypeptides acting as specialized nucleotide exchange factors of Hsp70. We have studied how Apg2, one of the three human Hsp110s, regulates the activity of Hsc70 (HspA8), the constitutive Hsp70 in our cells. Apg2 shows a biphasic behavior: at low concentration, it stimulates the ATPase cycle of Hsc70, binding of the chaperone to protein aggregates and the refolding activity of the system, while it inhibits these three processes at high concentration. When the acidic subdomain of Apg2, a characteristic sequence present in the substrate binding domain of all Hsp110s, is deleted, the detrimental effects occur at lower concentration and are more pronounced, which concurs with an increase in the affinity of the Apg2 mutant for Hsc70. Our data support a mechanism in which Apg2 arrests the chaperone cycle through an interaction with Hsc70(ATP) that might lead to premature ATP dissociation before hydrolysis. In this line, the acidic subdomain might serve as a conformational switch to support dissociation of the Hsc70:Apg2 complex.  相似文献   

13.
Polier S  Dragovic Z  Hartl FU  Bracher A 《Cell》2008,133(6):1068-1079
Protein folding by Hsp70 is tightly controlled by cochaperones, including J-domain proteins that trigger ATP hydrolysis and nucleotide exchange factors (NEFs) that remove ADP from Hsp70. Here we present the crystal structure of the yeast NEF Sse1p (Hsp110) in complex with the nucleotide-binding domain (NBD) of Hsp70. Hsp110 proteins are homologous to Hsp70s and consist of an NBD, a beta sandwich domain, and a three helix bundle domain (3HBD). In the complex, the NBD of Sse1p is ATP bound, and together with the 3HBD it embraces the NBD of Hsp70, inducing opening and the release of bound ADP from Hsp70. Mutations that abolish NEF activity are lethal, thus defining nucleotide exchange on Hsp70 as an essential function of Sse1p. Our data suggest that Sse1p does not employ the nucleotide-dependent allostery and peptide-binding mode of canonical Hsp70s, and that direct interactions of substrate with Sse1p may support Hsp70-assisted protein folding in a cooperative process.  相似文献   

14.
Hsp110 is required for spindle length control   总被引:1,自引:0,他引:1  
Systematic affinity purification combined with mass spectrometry analysis of N- and C-tagged cytoplasmic Hsp70/Hsp110 chaperones was used to identify new roles of Hsp70/Hsp110 in the cell. This allowed the mapping of a chaperone-protein network consisting of 1,227 unique interactions between the 9 chaperones and 473 proteins and highlighted roles for Hsp70/Hsp110 in 14 broad biological processes. Using this information, we uncovered an essential role for Hsp110 in spindle assembly and, more specifically, in modulating the activity of the widely conserved kinesin-5 motor Cin8. The role of Hsp110 Sse1 as a nucleotide exchange factor for the Hsp70 chaperones Ssa1/Ssa2 was found to be required for maintaining the proper distribution of kinesin-5 motors within the spindle, which was subsequently required for bipolar spindle assembly in S phase. These data suggest a model whereby the Hsp70-Hsp110 chaperone complex antagonizes Cin8 plus-end motility and prevents premature spindle elongation in S phase.  相似文献   

15.
Hsp110s are unique and essential molecular chaperones in the eukaryotic cytosol. They play important roles in maintaining cellular protein homeostasis. Candida albicans is the most prevalent yeast opportunistic pathogen that causes fungal infections in humans. As the only Hsp110 in Candida albicans, Msi3 is essential for the growth and infection of Candida albicans. In this study, we have expressed and purified Msi3 in nucleotide-free state and carried out biochemical analyses. Sse1 is the major Hsp110 in budding yeast S. cerevisiae and the best characterized Hsp110. Msi3 can substitute Sse1 in complementing the temperature-sensitive phenotype of S. cerevisiae carrying a deletion of SSE1 gene although Msi3 shares only 63.4% sequence identity with Sse1. Consistent with this functional similarity, the purified Msi3 protein shares many similar biochemical activities with Sse1 including binding ATP with high affinity, changing conformation upon ATP binding, stimulating the nucleotide-exchange for Hsp70, preventing protein aggregation, and assisting Hsp70 in refolding denatured luciferase. These biochemical characterizations suggested that Msi3 can be used as a model for studying the molecular mechanisms of Hsp110s.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-021-01213-5.  相似文献   

16.
J Hhfeld  S Jentsch 《The EMBO journal》1997,16(20):6209-6216
The BAG-1 protein appears to inhibit cell death by binding to Bcl-2, the Raf-1 protein kinase, and certain growth factor receptors, but the mechanism of inhibition remains enigmatic. BAG-1 also interacts with several steroid hormone receptors which require the molecular chaperones Hsc70 and Hsp90 for activation. Here we show that BAG-1 is a regulator of the Hsc70 chaperone. BAG-1 binds to the ATPase domain of Hsc70 and, in cooperation with Hsp40, stimulates Hsc70's steady-state ATP hydrolysis activity approximately 40-fold. Similar to the action of the GrpE protein on bacterial Hsp70, BAG-1 accelerates the release of ADP from Hsc70. Thus, BAG-1 regulates the Hsc70 ATPase in a manner contrary to the Hsc70-interacting protein Hip, which stabilizes the ADP-bound state. Intriguingly, BAG-1 and Hip compete in binding to the ATPase domain of Hsc70. Our results reveal an unexpected diversity in the regulation of Hsc70 and raise the possibility that the observed anti-apoptotic function of BAG-1 may be exerted through a modulation of the chaperone activity of Hsc70 on specific protein folding and maturation pathways.  相似文献   

17.
Hsp90 is an abundant molecular chaperone that functions in an ATP-dependent manner in vivo. The ATP-binding site is located in the N-terminal domain of Hsp90. Here, we dissect the ATPase cycle of Hsp90 kinetically. We find that Hsp90 binds ATP with a two-step mechanism. The rate-limiting step of the ATPase cycle is the hydrolysis of ATP. Importantly, ATP becomes trapped and committed to hydrolyze during the cycle. In the isolated ATP-binding domain of Hsp90, however, the bound ATP was not committed and the turnover numbers were markedly reduced. Analysis of a series of truncation mutants of Hsp90 showed that C-terminal regions far apart in sequence from the ATP-binding domain are essential for trapping the bound ATP and for maximum hydrolysis rates. Our results suggest that ATP binding and hydrolysis drive conformational changes that involve the entire molecule and lead to repositioning of the N and C-terminal domains of Hsp90.  相似文献   

18.
The molecular co-chaperone BAG1 and other members of the BAG family bind to Hsp70/Hsc70 heat shock proteins through a conserved BAG domain that interacts with the ATPase domain of the chaperone. BAG1 and other accessory proteins stimulate ATP hydrolysis and regulate the ATP-driven activity of the chaperone complexes. Contacts are made through residues in helices alpha2 and alpha3 of the BAG domain and predominantly residues in the C-terminal lobe of the bi-lobed Hsc70 ATPase domain. Within the C-terminal lobe, a subdomain exists that contains all the contacts shown by mutagenesis to be required for BAG1 recognition. In this study, the subdomain, representing Hsc70 residues 229-309, was cloned and expressed as a separately folded unit. The results of in vitro binding assays demonstrate that this subdomain is sufficient for binding to BAG1. Binding analyses with surface plasmon resonance indicated that the subdomain binds to BAG1 with a 10-fold decrease in equilibrium dissociation constant (K(D) = 22 nM) relative to the intact ATPase domain. This result suggests that the stabilizing contacts for docking of BAG1 to Hsc70 are located in the C-terminal lobe of the ATPase domain. These findings provide new insights into the role of co-chaperones as nucleotide exchange factors.  相似文献   

19.
BAG-1 modulates the chaperone activity of Hsp70/Hsc70.   总被引:29,自引:3,他引:26  
The 70 kDa heat shock family of molecular chaperones is essential to a variety of cellular processes, yet it is unclear how these proteins are regulated in vivo. We present evidence that the protein BAG-1 is a potential modulator of the molecular chaperones, Hsp70 and Hsc70. BAG-1 binds to the ATPase domain of Hsp70 and Hsc70, without requirement for their carboxy-terminal peptide-binding domain, and can be co-immunoprecipitated with Hsp/Hsc70 from cell lysates. Purified BAG-1 and Hsp/Hsc70 efficiently form heteromeric complexes in vitro. BAG-1 inhibits Hsp/Hsc70-mediated in vitro refolding of an unfolded protein substrate, whereas BAG-1 mutants that fail to bind Hsp/Hsc70 do not affect chaperone activity. The binding of BAG-1 to one of its known cellular targets, Bcl-2, in cell lysates was found to be dependent on ATP, consistent with the possible involvement of Hsp/Hsc70 in complex formation. Overexpression of BAG-1 also protected certain cell lines from heat shock-induced cell death. The identification of Hsp/Hsc70 as a partner protein for BAG-1 may explain the diverse interactions observed between BAG-1 and several other proteins, including Raf-1, steroid hormone receptors and certain tyrosine kinase growth factor receptors. The inhibitory effects of BAG-1 on Hsp/Hsc70 chaperone activity suggest that BAG-1 represents a novel type of chaperone regulatory proteins and thus suggest a link between cell signaling, cell death and the stress response.  相似文献   

20.
The molecular chaperone Hsp104 is an AAA+ ATPase (ATPase associated with a variety of cellular activities) from yeast that catalyzes protein disaggregation. Using mutagenesis, we impaired nucleotide binding or hydrolysis in the two nucleotide-binding domains (NBD) of Hsp104 and analyzed the consequences for chaperone function by monitoring ATP hydrolysis, polypeptide binding, polypeptide processing, and disaggregation. Our results reveal that ATP binding to NBD1 serves as a central regulatory switch for the chaperone; it triggers binding of polypeptides, and stimulates ATP hydrolysis in the C-terminal NBD2 by more than two orders of magnitude, implying that ATP hydrolysis in this domain is important for disaggregation. Moreover, we show that Hsp104 actively unfolds its polypeptide substrates during processing, demonstrating that AAA+ proteins involved in disaggregation share a common threading mechanism with AAA+ proteins mediating protein unfolding/degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号