首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T G Wensel  L Stryer 《Proteins》1986,1(1):90-99
The switching on of the cGMP phosphodiesterase (PDE) in retinal rod outer segments by activated transducin (T alpha-GTP) is a key step in visual excitation. The finding that trypsin activates PDE (alpha beta gamma) by degrading its gamma subunit and the reversal of this activation by gamma led to the proposal that T alpha-GTP activates PDE by relieving an inhibitory constraint imposed by gamma (Hurley and Stryer: J. Biol. Chem. 257:11094-11099, 1982). We report here studies showing that the addition of gamma subunit also reverses the activation of PDE by T alpha-GTP-gamma S. A procedure for preparing gamma in high yield (50-80%) is presented. Analyses of SDS polyacrylamide gel slices confirmed that inhibitory activity resides in the gamma subunit. Nanomolar gamma blocks the activation of PDE by micromolar T alpha-GTP gamma S. The degree of activation of PDE depends reciprocally on the concentrations of gamma and T alpha-GTP gamma S. gamma remains bound to the disk membrane during the activation of PDE by transducin. The binding of gamma to the alpha beta subunits of native PDE is very tight; the dissociation constant is less than 10 pM, indicating that fewer than 1 in 1,700 PDE molecules in rod outer segments are activated in the absence of T alpha-GTP.  相似文献   

2.
The functional interactions of the retinal G protein, transducin, with the cyclic GMP phosphodiesterase (PDE) have been examined using the different purified subunit components of transducin and the native and trypsin-treated forms of the effector enzyme. The limited trypsin treatment of the PDE removes the low molecular weight gamma subunit (Mr approximately 14,000) of the enzyme, yielding a catalytic moiety comprised of the two larger molecular subunits (alpha, Mr approximately 85,000-90,000; beta, Mr approximately 85,000-90,000), which is insensitive to the addition of either the pure alpha T.GTP gamma S species or the pure beta gamma T subunit complex. However, the addition of the pure alpha T.GDP species to the trypsin-treated PDE (tPDE) results in a significant (90-100%) inhibition of the enzyme activity. This inhibition can be reversed by excess beta gamma T, suggesting that the holotransducin molecule does not (functionally) interact with the tPDE. However, the inhibition by alpha T.GDP is not reversed by the alpha T.GTP gamma S complex, over a range of [alpha T.GTP gamma S] which elicits a marked stimulation of the native enzyme activity, suggesting that the activated alpha T species does not effectively bind to the tPDE. The alpha T.GDP complex also is capable of inhibiting the alpha T.GTP gamma S-stimulated cyclic GMP hydrolysis by the native PDE. This inhibition can be reversed by excess alpha T.GTP gamma S, as well as by beta gamma T, indicating that the binding site for the activated alpha T species is in close proximity and/or overlaps the binding site for the alpha T.GDP complex on the enzyme. Overall, these results are consistent with a scheme where (a) both the small and larger molecular weight subunits of PDE participate in alpha T-PDE interactions, (b) the activation of PDE by the alpha T.GTP gamma S (or alpha T.GTP) species does not result in the complete dissociation of the gamma subunit from the enzyme, and (c) the deactivation of this signal transduction system results from a direct interaction between the alpha T.GDP species and the catalytic moiety of the effector enzyme.  相似文献   

3.
The visual transduction cascade of the retinal rod outer segment responds to light by decreasing membrane current. This ion channel is controlled by cyclic GMP which is, in turn, controlled by its synthesis and degradation by guanylate cyclase and phosphodiesterase, respectively. When light bleaches rhodopsin there is an induced exchange of GTP for GDP bound to the alpha subunit of the retinal G-protein, transducin (T). The T alpha.GTP then removes the inhibitory constraint of a small inhibitory subunit (PDE gamma) on the retinal cGMP phosphodiesterase (PDE). This results in activation of the PDE and in hydrolysis of cGMP. Recently both low and high affinity binding sites have been identified for PDE gamma on the PDE alpha/beta catalytic subunits. The discovery of two PDE gamma subunits, each with different binding affinities, suggests that a tightly regulated shut-off mechanism may be present.  相似文献   

4.
cGMP-specific phosphodiesterase (PDE) of vertebrate retinal rod outer segments (ROS) is composed of two catalytic subunits (PDE alpha and PDE beta) and two identical inhibitory subunits (PDE gamma). Native PDE alpha beta gamma 2 is peripherally bound to the membranes of ROS discs. We studied quantitatively its partition between soluble and membrane-bound fractions in ROS homogenates. In the presence of its activator, the alpha-subunit of transducin loaded with a triphosphate guanine nucleotide (T alpha*), PDE displayed a greatly enhanced membrane binding. Neither the purified PDE gamma.T alpha* complex, nor the PDE alpha beta and PDE alpha beta gamma forms of active PDE, showed a membrane binding comparable to that of PDE alpha beta gamma 2 in the presence of T alpha*. The T alpha*-activated PDE is therefore an undissociated complex tightly bound to the ROS membranes. Using limited proteolysis, we showed that the membrane anchoring of the whole complex implies not only PDE (mainly by the C terminus of PDE beta) but also both termini of T alpha*. The membrane binding of the purified PDE alpha beta species was also enhanced in the presence of T alpha*; a direct link would therefore exist between the activator and the catalytic subunits. From this work emerges a plausible structural model of the T alpha*-activated PDE, with its internal interactions and its sites of anchoring into the ROS membrane.  相似文献   

5.
T G Wensel  L Stryer 《Biochemistry》1990,29(8):2155-2161
The cyclic GMP phosphodiesterase (PDE) of vertebrate retinal rod outer segments (ROS) is kept inactive in the dark by its gamma subunits and is activated following illumination by the GTP form of the alpha subunit of transducin (T alpha-GTP). Recent studies have shown that the stoichiometry of the inhibited holoenzyme is alpha beta gamma 2. T alpha-GTP and gamma act reciprocally. We have investigated the activation mechanism using fluorescein-labeled gamma subunit (gamma F) as a probe. gamma F containing a single covalently attached fluorescein was prepared by reaction of PDE with 5-(iodoacetamido)fluorescein and purification by reversed-phase high-pressure liquid chromatography (HPLC). gamma F, like native gamma, inhibits the catalytic activity of trypsin-activated PDE and transducin-activated PDE. Inhibition by gamma F was overcome by further addition of T alpha-GTP. gamma F binds very weakly to ROS membranes stripped of PDE and other peripheral membrane proteins. gamma F added to ROS membranes became incorporated into a component that could be extracted with a low ionic strength buffer. HPLC gel filtration showed that gamma F became part of the PDE holoenzyme. Incorporation occurred in less than 1 min in the presence of light and GTP, but much more slowly (t1/2 approximately 500 s) in the absence of GTP. This result indicates that transducin activates PDE by binding to the holoenzyme and accelerating the dissociation of gamma from the inhibitory sites. The binding of gamma F to trypsin-activated PDE alpha beta was monitored by steady-state emission anisotropy measurements and compared with PDE activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Transducin (T alpha beta gamma), the heterotrimeric GTP-binding protein that interacts with photoexcited rhodopsin (Rh*) and the cGMP-phosphodiesterase (PDE) in retinal rod cells, is sensitive to cholera (CTx) and pertussis toxins (PTx), which catalyze the binding of an ADP-ribose to the alpha subunit at Arg174 and Cys347, respectively. These two types of ADP-ribosylations are investigated with transducin in vitro or with reconstituted retinal rod outer-segment membranes. Several functional perturbations inflicted on T alpha by the resulting covalent modifications are studied such as: the binding of T alpha to T beta gamma to the membrane and to Rh*; the spontaneous or Rh*-catalysed exchange of GDP for GTP or guanosine 5-[gamma-thio]triphosphate (GTP[gamma S]), the conformational switch and activation undergone by transducin upon this exchange, the activation of T alpha GDP by fluoride complexes and the activation of the PDE by T alpha GTP. ADP-ribosylation of transducin by CTx requires the GTP-dependent activation of ADP-ribosylation factors (ARF), takes place only on the high-affinity, nucleotide-free complex, Rh*-T alpha empty-T beta gamma and does not activate T alpha. Subsequent to CTx-catalyzed ADP-ribosylation the following occurs: (a) addition of GDP induces the release from Rh* of inactive CTxT alpha GDP (CTxT alpha, ADP-ribosylated alpha subunit of transducin) which remains associated to T beta gamma; (b) CTxT alpha GDP-T beta gamma exhibits the usual slow kinetics of spontaneous exchange of GDP for GTP[gamma S] in the absence of Rh*, but the association and dissociation of fluoride complexes, which act as gamma-phosphate analogs, are kinetically modified, suggesting that the ADP-ribose on Arg174 specifically perturbs binding of the gamma-phosphate in the nucleotide site; (c) CTxT alpha GDP-T beta gamma can still couple to Rh* and undergo fast nucleotide exchange; (d) CTxT alpha GTP[gamma S] and CTxT alpha GDP-AlFx (AlFx, Aluminofluoride complex) activate retinal cGMP-phosphodiesterase (PDE) with the same efficiency as their unmodified counterparts, but the kinetics and affinities of fluoride activation are changed; (e) CTxT alpha GTP hydrolyses GTP more slowly than unmodified T alpha GTP, which entirely accounts for the prolonged action of CTxT alpha GTP on the PDE; (f) after GTP hydrolysis, CTxT alpha GDP reassociates to T beta gamma and becomes inactive. Thus, CTx catalyzed ADP-ribosylation only perturbs in T alpha the GTP-binding domain, but not the conformational switch nor the domains of contact with the T beta gamma subunit, with Rh* and with the PDE.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
J W Erickson  R A Cerione 《Biochemistry》1991,30(29):7112-7118
Resonance energy-transfer approaches have been used to directly monitor the interactions of the GTP gamma S-bound alpha subunit of transducin (alpha T GTP gamma S) with the retinal cyclic GMP phosphodiesterase (PDE). The PDE was labeled with 5-(iodoacetamido) fluorescein (IAF-PDE) and served as the fluorescence donor in these experiments while the alpha T GTP gamma S was labeled with eosin-5-isothiocyanate (EITC-alpha T GTP gamma S) and served as the energy acceptor. The EITC-alpha T GTP gamma S species was able to quench a significant percentage of the IAF-PDE fluorescence (typically greater than or equal to 30%) due to resonance energy transfer between the IAF and EITC moieties. The quenching by the EITC-alpha T GTP gamma S species was dose-dependent, saturable (Kd = 21 nM), and specific for the GTP gamma S-bound form of the alpha T subunit. Limited trypsin treatment of the IAF-PDE, which selectively removes a fluorescein-labeled gamma subunit (gamma PDE), completely eliminates the quenching of the IAF fluorescence by the EITC-alpha T GTP gamma S complex. Although the EITC-alpha T GTP gamma S complex competes with the unlabeled alpha T GTP gamma S for a binding site on the IAF-PDE, as well as for a site on the native PDE, it is not able to stimulate PDE activity. Thus, the modification of a single EITC-reactive residue on the alpha T GTP gamma S complex prevents this subunit from eliciting a key activation event within the retinal effector enzyme.  相似文献   

8.
R L Brown 《Biochemistry》1992,31(25):5918-5925
In the dark, the activity of the cGMP phosphodiesterase (PDE) of retinal rod outer segments is held in check by its two inhibitory gamma subunits. Following illumination, gamma is rapidly removed from its inhibitory site by transducin, the G-protein of the visual system. In order to probe the functional roles of specific regions in the PDE gamma primary sequence, 10 variants of PDE gamma have been produced by site-specific mutagenesis and expression in bacteria and their properties compared to those of protein containing the wild-type bovine PDE gamma amino acid sequence. Three questions were asked about each mutant: What is its affinity for the alpha beta catalytic subunit of PDE? Does it inhibit catalytic activity? If so, can transducin relieve this inhibition? Binding to PDE alpha beta was determined directly using fluorescein-labeled gamma by measuring the increase in emission anisotropy that occurs when gamma binds to alpha beta. Inhibition of PDE alpha beta was measured by reconstitution of the gamma variants with gamma-free PDE generated by limited digestion with trypsin or endoproteinase Arg-C. Unlike trypsin, the latter enzyme did not remove PDE's ability to bind membranes and be activated by transducin, so that transducin activation of PDE containing specific gamma variants could be assayed directly. The results indicate that mutations in many regions of gamma affect its binding to alpha beta. A mutant missing the last five carboxy-terminal residues (83-87) was totally lacking in inhibitory activity. However, it still bound to PDE alpha beta tightly, although with a 100-fold lower dissociation constant (approximately 5 nM) than that of wild-type gamma (approximately 50 pM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
ADP-ribosylation of transducin by pertussis toxin   总被引:8,自引:0,他引:8  
Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is [32P]ADP-ribosylated by pertussis toxin and [32P]NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1 molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and 32 kDa. The amino terminus of both 38- and 32-kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The 32-kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of [32P]ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased [32P]ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed [32P]ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma. The amino terminus of T alpha, while it does not contain the pertussis toxin ADP-ribosylation site, appeared critical to its reactivity.  相似文献   

10.
The binding of cGMP to the noncatalytic sites on two isoforms of the phosphodiesterase (PDE) from mammalian rod outer segments has been characterized to evaluate their role in regulating PDE during phototransduction. Nonactivated, membrane-associated PDE (PDE-M, alpha beta gamma2) has one exchangeable site for cGMP binding; endogenous cGMP remains nonexchangeable at the second site. Non-activated, soluble PDE (PDE-S, alpha beta gamma2 delta) can release and bind cGMP at both noncatalytic sites; the delta subunit is likely responsible for this difference in cGMP exchange rates. Removal of the delta and/or gamma subunits yields a catalytic alphabeta dimer with identical catalytic and binding properties for both PDE-M and PDE-S as follows: high affinity cGMP binding is abolished at one site (KD >1 microM); cGMP binding affinity at the second site (KD approximately 60 nM) is reduced 3-4-fold compared with the nonactivated enzyme; the kinetics of cGMP exchange to activated PDE-M and PDE-S are accelerated to similar extents. The properties of nonactivated PDE can be restored upon addition of gamma subunit. Occupancy of the noncatalytic sites by cGMP may modulate the interaction of the gamma subunit with the alphabeta dimer and thereby regulate cytoplasmic cGMP concentration and the lifetime of activated PDE during visual transduction in photoreceptor cells.  相似文献   

11.
J A Malinski  T G Wensel 《Biochemistry》1992,31(39):9502-9512
To clarify the role of phospholipids in G protein-effector interactions of vertebrate phototransduction, transducin activation of cGMP phosphodiesterase (PDE) has been reconstituted on the surface of well-defined phosphatidylcholine (PC) vesicles, using purified proteins from bovine rod outer segments (ROS). PC vesicles enhanced PDE stimulation by the GTP-gamma S-bound transducin alpha subunit (T alpha-GTP gamma S) as much as 17-fold over activation in the absence of membranes. In the presence of 3.5 microM accessible PC in the form of large (100 nm) unilamellar vesicles, 500 nM T alpha-GTP gamma S stimulated PDE activity to more than 70% of the maximum activity induced by trypsin. Activation required PC, PDE, and T alpha-GTP gamma S, but did not require prior incubation of any of the components, and occurred within 4 s of mixing. The PC vesicles were somewhat more efficient than urea-washed ROS membranes in enhancing PDE activation. Half-maximal activation occurred at accessible phospholipid concentrations of 3.8 microM for PC vesicles, and 13 microM for ROS membranes. Titrations of PDE with T alpha-GTP gamma S in the presence of membranes indicated a high-affinity (Kact less than 250 pM) activation of PDE by a small fraction (0.5-5%) of active T alpha-GTP gamma S, as did titrations of ROS with GTP gamma S. When activation by PC vesicles was compared to PDE binding to membranes, the results were consistent with activation enhancement resulting from formation of a T alpha-GTP gamma S-dependent PDE-membrane complex with half-maximal binding at phospholipid concentrations in the micromolar range. The value of the apparent dissociation constant, KPL, associated with the activation enhancement was estimated to be in the range of 2.5 nM (assuming an upper limit value of 1600 phospholipids/site) to 80 nM (for a lower limit value of 50 phospholipids/site). Another component of membrane binding was more than 100-fold weaker and was not correlated with activation by T alpha-GTP gamma S. Low ionic strength disrupted the ability of ROS membranes, but not PC vesicles, to bind and activate PDE. Removal of PDE's membrane-binding domain by limited trypsin digestion eliminated both the binding of PDE to vesicles and the ability of PDE to be activated by T alpha-GTP gamma S and membranes. These results suggest that ROS membrane stimulation of PDE activation by T alpha-GTP gamma S is due almost exclusively to the phospholipids in the disk membrane.  相似文献   

12.
Transducin, a retinal G-protein, has been shown to exist as heterotrimers of alpha (39,000), beta (36,000), and gamma (approximately 7,000) subunits. Blue Sepharose CL-6B column chromatography of a transducin preparation extracted with a metal-free, low salt buffer containing GTP showed three distinct alpha and two distinct beta gamma activities in frog (Rana catesbeiana) rod outer segment. The binding of a hydrolysis-resistant GTP analog in these alpha fractions was proportional to the amount of the M(r) 39,000 protein. The first alpha was eluted in a complex with an inhibitory subunit of cGMP phosphodiesterase, but alpha subunits in the second and the third fractions were not complexed with any proteins. Two-dimensional gel electrophoresis and characterization with regard to the interaction with the inhibitory subunit of cGMP phosphodiesterase suggested that the first and the second alpha s were the same protein; however, the third alpha showed different characters as follows. We designated alpha in the first two fractions as alpha 1, and alpha in the third fraction as alpha 2. Nonlinear regression analysis for the binding of a hydrolysis-resistant GTP analog to both alpha subunits revealed a single class of GTP binding sites with an apparent stoichiometry of 1 mol of GTP/mol of alpha. Compared with alpha 1, alpha 2 required larger amounts of rhodopsin and beta gamma for the binding of a hydrolysis-resistant GTP analog. alpha 2 also showed less binding with the inhibitory subunit of cGMP phosphodiesterase. Both alpha 1 and alpha 2 complexed with beta gamma or beta delta (described below) were substrates for pertussis toxin-dependent ADP-ribosylation. The protein profiles of two beta gamma fractions revealed that the main fraction was composed of a beta gamma complex; however, the second active fraction was composed of beta complexed with delta (M(r) 12,000). Compared with beta gamma, beta delta stimulated GTP binding to alpha 1 at approximately 10-fold higher concentration. Two-dimensional gel electrophoresis revealed five beta and two gamma isoforms in beta gamma. Only one beta isoform was present in beta delta. The diversity of transducin subunits may reflect different signaling pathways in visual signal transduction.  相似文献   

13.
Transducin, a guanine nucleotide-binding protein consisting of two subunits (T alpha and T beta gamma), mediates the signal coupling between rhodopsin and a membrane-bound cyclic GMP phosphodiesterase in retinal rod outer segments. The T alpha subunit is an activator of the phosphodiesterase, and the function of the T beta gamma subunit is to physically link T alpha with photolyzed rhodopsin. In this study, the mechanism of cholera toxin-catalyzed ADP-ribosylation of T alpha has been examined in a reconstituted system consisting of purified transducin and stripped rod outer segment membranes. Limited proteolysis of the labeled T alpha with trypsin indicated that the inserted ADP-ribose is located exclusively on a single proteolytic fragment with an apparent molecular weight of 23,000. Maximal incorporation of ADP-ribose was achieved when guanosine 5'-(beta, gamma-imido)triphosphate (Gpp(NH)p) and T beta gamma were present at concentrations equal to that of T alpha and when rhodopsin was continuously irradiated with visible light in the 400-500 nm region. The stimulating effect of illumination was related to the direct interaction of the retinal chromophore with opsin. These findings strongly suggest that a transient protein complex consisting of T alpha X Gpp(NH)p, T beta gamma, and a photointermediate of rhodopsin is the required substrate for cholera toxin. Single turnover kinetic measurements demonstrated that the ADP-ribosylation of T alpha coincided with the appearance of a population of transducin molecules having a very slow rate of GTP hydrolysis. The hydrolysis rate of the bound GTP for this population was 1.1 X 10(-3)/s, which was 22-fold slower than the rate for the unmodified transducin.  相似文献   

14.
The gamma-subunit of retinal rod-outer-segment phosphodiesterase (PDE-gamma) is a multifunctional protein which interacts directly with both of the catalytic subunits of PDE (PDE alpha/beta) and the alpha-subunit of the retinal G (guanine-nucleotide-binding)-protein transducin alpha (T alpha). We have previously reported that the PDE gamma binds to T alpha at residue nos. 24-45 [Morrison. Rider & Takemoto (1987) FEBS Lett. 222, 266-270]. In vitro this results in inhibition of T alpha GTP/GDP exchange [Morrison, Cunnick, Oppert & Takemoto (1989) J. Biol. Chem. 264, 11671-11681]. We now report that the inhibitory region of PDE gamma for PDE alpha/beta occurs at PDE gamma residues 54-87. This binding results in inhibition of either trypsin-solubilized or membrane-bound PDE alpha/beta. PDE gamma which has been treated with carboxypeptidase Y, removing the C-terminus, does not inhibit PDE alpha/beta, but does inhibit T alpha GTP/GDP exchange. Inhibition by PDE gamma can be removed by T alpha-guanosine 5'-[gamma-thio]triphosphate (GTP[S]) addition to membranes. This results in a displacement of PDE gamma, but not in removal of this subunit from the membrane [Whalen, Bitensky & Takemoto (1990) Biochem. J. 265, 655-658]. These results suggest that low levels of T alpha-GTP[S] can result in displacement of PDE gamma from the membrane in vitro as a GTP[S]-T alpha-PDE gamma complex. Further activation by high levels of T alpha-GTP[S] occurs by displacement of PDE gamma from its inhibitory site on PDE alpha/beta, but not in removal from the membrane.  相似文献   

15.
The cGMP-specific phosphodiesterase (PDE) of vertebrate retinal rod outer segments (ROS) is a peripheral enzyme activated in vivo by transducin. In vitro artificial activation can be achieved using trypsin. This was described as resulting from degradation of the inhibitory gamma subunit (2 copies/PDE molecule), leaving intact the alpha beta catalytic core. It was, however, observed that trypsin could induce the release of PDE (or solubilization) from the ROS membranes before its activation [Wensel, T. G. & Stryer, L. (1986) Proteins Struct. Funct. Genet. 1, 90-99]. Studying the time course of this solubilization, we were able to purify a trypsin-solubilized PDE still completely inhibited (i.e. with its two gamma subunits bound). The tryptic solubilization of PDE is therefore complete before any functional degradation of the gamma subunits occurs. It was recently suggested that this solubilization could coincide with the cleavage of a C-terminal fragment of the alpha subunit, which can be labeled by methylation of a terminal cysteine residue [Ong, O. C., Ota, I. M., Clarke, S. & Fung, B. K. K. (1989) Proc. Natl Acad. Sci. USA 86, 9238-9242]. We present the following evidence indicating that the C-terminus of the PDE beta subunit is mainly responsible for PDE anchorage to the ROS membrane. (a) The trypsin-solubilized PDE alpha beta gamma 2 has intact blocked N-termini. (b) It is still methylated on PDE alpha. (c) The C-terminus of PDE beta can also be labeled by methylation and its tryptic cleavage coincides well with the PDE solubilization. (d) Sequential cleavage of the alpha and beta polypeptides can also be detected by high-resolution gel electrophoresis: the first cleavage appears on the beta subunit and is completed when cleavage of the alpha subunit begins. The time course for cleavage of the gamma subunits appears to be slower than for the beta subunit and comparable to that of the alpha subunit. Upon longer trypsinization, a 70-kDa polypeptide appears which seems to be a degradation product of PDE beta. Gel-filtration analysis, however, shows that this 70-kDa fragment does not dissociate from the catalytic core.  相似文献   

16.
Synthetic peptides corresponding to various regions of the light-activated guanosine 3',5'-cyclic monophosphate phosphodiesterase (PDE) gamma-subunit (PDE gamma) from bovine retinal rod outer segments were synthesized and tested for their ability to inhibit PDE activity, and GTPase activity of transducin. One of these peptides, corresponding to PDE gamma residues 31-45, inhibited PDE activity and GTPase activity in a dose-dependent manner. The GTPase activity was inhibited by PDE gamma-3 non-competitively. This region of the PDE gamma subunit may be involved in the direct interaction of transducin and PDE alpha beta with PDE gamma.  相似文献   

17.
Rod-outer-segment cyclic GMP phosphodiesterase (PDE) (subunit composition alpha beta gamma 2) contains catalytic activity in alpha beta. The gamma-subunits are inhibitors. Removal of the gamma-subunits increases Vmax. without affecting the Km. The inhibitory effect of a single gamma-subunit (alpha beta gamma) on the Vmax. of alpha beta is much greater in bovine than in frog (Rana catesbiana) PDE. Bovine PDE in the alpha beta gamma 2 state has a Vmax. that is 2.6 +/- 0.4% of the Vmax. of alpha beta. The removal of one gamma-subunit to give alpha beta gamma results in a Vmax. 5.2 +/- 1% of that for maximal activity. Frog alpha beta gamma 2 has a Vmax. 10.8 +/- 2%, and alpha beta gamma has a Vmax. 50 +/- 18%, of the Vmax. of alpha beta. These data suggest that a single gamma-subunit can inhibit the catalytic activity of active sites on both alpha- and beta-subunits in bovine, but not in frog, rod-outer-segment PDE.  相似文献   

18.
The first stage of amplification in the cyclic GMP cascade in bovine retinal rod is carried out by transducin, a guanine nucleotide regulatory protein consisting of two functional subunits, T alpha (Mr approximately 39,000) and T beta gamma (Mr approximately 36,000 and approximately 10,000). Limited trypsin digestion of the T beta gamma subunit converted the beta polypeptide to two stable fragments (Mr approximately 26,000 and approximately 14,000). The GTPase and Gpp(NH)p binding activities were not significantly affected by the cleavage. Trypsin digestion of the T alpha subunit initially removed a small segment from the polypeptide terminus and resulted in the formation of a single 38,000-Da fragment. When this fragment was recombined with the intact T beta gamma subunit in the presence of membranes containing photolyzed rhodopsin, the reconstituted transducin exhibited greatly reduced GTPase and Gpp(NH)p binding activities. The loss in activities was due to the inability of the cleaved T alpha to bind to the photolyzed rhodopsin. Prolonged digestion converted the 38,000-Da fragment to a transient 32,000-Da fragment and then to two stable 23,000-Da and 12,000-Da fragments. The cleavage of the 32,000-Da fragment, however, can be blocked by bound Gpp(NH)p. The 32,000-Da fragment contains the Gpp(NH)p binding site and retains the ability to activate phosphodiesterase. These results indicate that the guanine nucleotide binding and rhodopsin binding sites are located in topologically distinct regions of the T alpha subunit and proved evidence that a large conformational transition of the molecule occurs upon the conversion of the bound GDP to GTP.  相似文献   

19.
A substantial fraction (20-30%) of the bovine rod outer segment phosphodiesterase (PDE) activity is not associated with outer segment membranes prepared with buffers of moderate ionic strength; this PDE activity appears to represent a distinct, soluble isozyme. Although this PDE isozyme can be demonstrated to be present in sealed rod outer segments, it is discarded from most standard rod outer segment preparations. A method was developed that allowed the rapid purification of the soluble rod PDE by 2600-fold, to apparent homogeneity, using a monoclonal antibody column (ROS-1a). The soluble rod PDE isozyme has a novel Mr = 15,000 subunit (delta) in addition to subunits of Mr = 88,000 (alpha sol), 84,000 (beta sol), and 11,000 (gamma sol). The delta subunit comigrates with and may be identical to the cone PDE 15-kDa subunit. The small subunits of the soluble rod PDE and the membrane-associated rod PDE were isolated by reverse-phase chromatography. The gamma sol subunit was a potent inhibitor of trypsin-activated rod PDE, inhibiting 50% of 1 pM PDE activity at a concentration of 11 pM. This concentration was similar to that observed for the gamma subunit of the membrane-associated rod PDE. The purified delta subunit did not appear to affect PDE activity; this subunit was, however, unusually difficult to keep in solution. All of the kinetic and physical properties of the soluble rod PDE tested thus far are similar to those of the membrane-associated form, except for the presence of the delta subunit, suggesting that this unique subunit could mediate the solubility of the soluble rod PDE and the cone PDE in the intact photoreceptor.  相似文献   

20.
CNBr treatment of rod outer segments was performed in dark and in light conditions. With the subsequent modified rhodopsin and opsin the cGMP phosphodiesterase activation system was reconstituted. The recombination systems exhibited greatly reduced G-protein binding, GTP gamma S binding and cGMP phosphodiesterase activation. The reduction in activity of these three steps of the PDE activation cascade is most significant with modified opsin and is shown to be due to its inability to bind the G alpha subunit. The correlation between the localization of CNBr cleavage in dark and light conditions and these results is strongly indicative that a light-induced conformational change occurs in two extradiscal regions of rhodopsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号