首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alanine and glutamine constitute the two most important nitrogen carriers released from the muscle. We studied the intracellular amino acid transport kinetics and protein turnover in nine end-stage renal disease (ESRD) patients and eight controls by use of stable isotopes of phenylalanine, alanine, and glutamine. The amino acid transport kinetics and protein turnover were calculated with a three-pool model from the amino acid concentrations and enrichment in the artery, vein, and muscle compartments. Muscle protein breakdown was more than synthesis (nmol.min(-1).100 ml leg(-1)) during hemodialysis (HD) (169.8 +/- 20.0 vs. 125.9 +/- 21.8, P < 0.05) and in controls (126.9 +/- 6.9 vs. 98.4 +/- 7.5, P < 0.05), but synthesis and catabolism were comparable pre-HD (100.7 +/- 15.7 vs. 103.4 +/- 14.8). Whole body protein catabolism decreased by 15% during HD. The intracellular appearance of alanine (399.0 +/- 47.1 vs. 243.0 +/- 34.689) and glutamine (369.7 +/- 40.6 vs. 235.6 +/- 27.5) from muscle protein breakdown increased during dialysis (nmol.min(-1).100 ml leg(-1), P < 0.01). However, the de novo synthesis of alanine (3,468.9 +/- 572.2 vs. 3,140.5 +/- 467.7) and glutamine (1,751.4 +/- 82.6 vs. 1,782.2 +/- 86.4) did not change significantly intradialysis (nmol.min(-1).100 ml leg(-1)). Branched-chain amino acid catabolism (191.8 +/- 63.4 vs. -59.1 +/- 42.9) and nonprotein glutamate disposal (347.0 +/- 46.3 vs. 222.3 +/- 43.6) increased intradialysis compared with pre-HD (nmol.min(-1).100 ml leg(-1), P < 0.01). The mRNA levels of glutamine synthase (1.45 +/- 0.14 vs. 0.33 +/- 0.08, P < 0.001) and branched-chain keto acid dehydrogenase-E2 (3.86 +/- 0.48 vs. 2.14 +/- 0.27, P < 0.05) in the muscle increased during HD. Thus intracellular concentrations of alanine and glutamine are maintained during HD by augmented release of the amino acids from muscle protein catabolism. Although muscle protein breakdown increased intradialysis, the whole body protein catabolism decreased, suggesting central utilization of amino acids released from skeletal muscle.  相似文献   

2.
Intraoperative protein sparing with glucose.   总被引:1,自引:0,他引:1  
We examined the hypothesis that glucose infusion inhibits amino acid oxidation during colorectal surgery. We randomly allocated 14 patients to receive intravenous glucose at 2 mg x kg(-1) x min(-1) (glucose group) starting with the surgical incision or an equivalent amount of normal saline 0.9% (control group). The primary endpoint was whole body leucine oxidation; secondary endpoints were leucine rate of appearance and nonoxidative leucine disposal as determined by a stable isotope tracer technique (L-[1-(13)C]leucine). Circulating concentrations of glucose, lactate, insulin, glucagon, and cortisol were measured before and after 2 h of surgery. Leucine rate of appearance, an estimate of protein breakdown, and nonoxidative leucine disposal, an estimate of protein synthesis, decreased in both groups during surgery (P < 0.05). Leucine oxidation intraoperatively decreased from 13 +/- 3 to 4 +/- 3 micromol x kg(-1) x h(-1) in the glucose group (P < 0.05 vs. control group) whereas it remained unchanged in the control group. Hyperglycemia during surgery was more pronounced in patients receiving glucose (9.7 +/- 0.5 mmol/l, P < 0.05 vs. control group) than in patients receiving normal saline (7.1 +/- 1.0 mmol/l). The administration of glucose caused an increase in the circulating concentration of insulin (P < 0.05) resulting in a lower glucagon/insulin quotient than in the control group (P < 0.05). Intraoperative plasma cortisol concentrations increased in both groups (P < 0.05), whereas plasma concentrations of lactate and glucagon did not change. The provision of small amounts of glucose was associated with a decrease in amino acid oxidation during colorectal surgery.  相似文献   

3.
This study was designed to evaluate the effects of enriching an essential amino acid (EAA) mixture with leucine on muscle protein metabolism in elderly and young individuals. Four (2 elderly and 2 young) groups were studied before and after ingestion of 6.7 g of EAAs. EAAs were based on the composition of whey protein [26% leucine (26% Leu)] or were enriched in leucine [41% leucine (41% Leu)]. A primed, continuous infusion of L-[ring-2H5]phenylalanine was used together with vastus lateralis muscle biopsies and leg arteriovenous blood samples for the determinations of fractional synthetic rate (FSR) and balance of muscle protein. FSR increased following amino acid ingestion in both the 26% (basal: 0.048 +/- 0.005%/h; post-EAA: 0.063 +/- 0.007%/h) and the 41% (basal: 0.036 +/- 0.004%/h; post-EAA: 0.051 +/- 0.007%/h) Leu young groups (P < 0.05). In contrast, in the elderly, FSR did not increase following ingestion of 26% Leu EAA (basal: 0.044 +/- 0.003%/h; post-EAA: 0.049 +/- 0.006%/h; P > 0.05) but did increase following ingestion of 41% Leu EAA (basal: 0.038 +/- 0.007%/h; post-EAA: 0.056 +/- 0.008%/h; P < 0.05). Similar to the FSR responses, the mean response of muscle phenylalanine net balance, a reflection of muscle protein balance, was improved (P < 0.05) in all groups, with the exception of the 26% Leu elderly group. We conclude that increasing the proportion of leucine in a mixture of EAA can reverse an attenuated response of muscle protein synthesis in elderly but does not result in further stimulation of muscle protein synthesis in young subjects.  相似文献   

4.
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of intramuscular triacylglycerol (IMTG); however, its regulation in skeletal muscle is poorly understood. To examine the effects of reduced free fatty acid (FFA) availability on HSL activity in skeletal muscle during aerobic exercise, 11 trained men exercised at 55% maximal O2 uptake for 40 min after the ingestion of nicotinic acid (NA) or nothing (control). Muscle biopsies were taken at rest and 5, 20, and 40 min of exercise. Plasma FFA were suppressed (P < 0.05) in NA during exercise ( approximately 0.40 +/- 0.04 vs. approximately 0.07 +/- 0.01 mM). The respiratory exchange ratio (RER) was increased throughout exercise (0.020 + 0.008) after NA ingestion. However, the provision of energy from fat oxidation only decreased from 33% of the total in the control trial to 26% in the NA trial, suggesting increased IMTG oxidation in the NA trial. Mean HSL activity was 2.25 + 0.15 mmol x kg dry mass(-1) x min(-1) at rest and increased (P < 0.05) to 2.94 +/- 0.20 mmol x kg dry mass(-1) x min(-1) at 5 min in control. Contrary to the hypothesis, mean HSL was not activated to a greater extent in the NA trial during exercise (2.20 + 0.28 at rest to 2.88 + 0.21 mmol x kg dry mass(-1) x min(-1) at 5 min). No further HSL increases were observed at 20 or 40 min in both trials. There was variability in the response to NA ingestion, as some subjects experienced a large increase in RER and decrease in fat oxidation, whereas other subjects experienced no shift in RER and maintained fat oxidation despite the reduced FFA availability in the NA trial. However, even in these subjects, HSL activity was not further increased during the NA trial. In conclusion, reduced plasma FFA availability accompanied by increased epinephrine concentration did not further activate HSL beyond exercise alone.  相似文献   

5.
Muscle protein synthesis requires energy and amino acids to proceed and can be stimulated by insulin under certain circumstances. We hypothesized that short-term provision of insulin and nutritional energy would stimulate muscle protein synthesis in healthy subjects only if amino acid availability did not decrease. Using stable isotope techniques, we compared the effects on muscle phenylalanine kinetics across the leg of an amino acid-lowering, high-energy (HE, n = 6, 162 +/- 20 kcal/h) hyperglycemic hyperlipidemic hyperinsulinemic clamp with systemic insulin infusion to a low-energy (LE, n = 6, 35 +/- 3 kcal/h, P < 0.05 vs. HE) euglycemic hyperinsulinemic clamp with local insulin infusion in the femoral artery. Basal blood phenylalanine concentrations and phenylalanine net balance, muscle protein breakdown, and synthesis (nmol.min(-1).100 g leg muscle(-1)) were not different between groups. During insulin infusion, femoral insulinemia increased to a similar extent between groups and blood phenylalanine concentration decreased 27 +/- 3% in the HE group but only 9 +/- 2% in the LE group (P < 0.01 HE vs. LE). Phenylalanine net balance increased in both groups, but the change was greater (P < 0.05) in the LE group. Muscle protein breakdown decreased in the HE group (58 +/- 12 to 35 +/- 7 nmol.min(-1).100 g leg muscle(-1)) and did not change in the LE group. Muscle protein synthesis was unchanged in the HE group (39 +/- 6 to 30 +/- 7 nmol.min(-1).100 g leg muscle(-1)) and increased (P < 0.05) in the LE group (41 +/- 9 to 114 +/- 26 nmol.min(-1).100 g leg muscle(-1)). We conclude that amino acid availability is an important factor in the regulation of muscle protein synthesis in response to insulin, as decreased blood amino acid concentrations override the positive effect of insulin on muscle protein synthesis even if excess energy is provided.  相似文献   

6.
We recently demonstrated that muscle protein synthesis was stimulated to a similar extent in young and elderly subjects during a 3-h amino acid infusion. We sought to determine if a more practical bolus oral ingestion would also produce a similar response in young (34 +/- 4 yr) and elderly (67 +/- 2 yr) individuals. Arteriovenous blood samples and muscle biopsies were obtained during a primed (2.0 micromol/kg) constant infusion (0.05 micromol.kg(-1).min(-1)) of L-[ring-2H5]phenylalanine. Muscle protein kinetics and mixed muscle fractional synthetic rate (FSR) were calculated before and after the bolus ingestion of 15 g of essential amino acids (EAA) in young (n = 6) and elderly (n = 7) subjects. After EAA ingestion, the rate of increase in femoral artery phenylalanine concentration was slower in elderly subjects but remained elevated for a longer period. EAA ingestion increased FSR in both age groups by approximately 0.04%/h (P < 0.05). However, muscle intracellular (IC) phenylalanine concentration remained significantly higher in elderly subjects at the completion of the study (young: 115.6 +/- 5.4 nmol/ml; elderly: 150.2 +/- 19.4 nmol/ml). Correction for the free phenylalanine retained in the muscle IC pool resulted in similar net phenylalanine uptake values in the young and elderly. EAA ingestion increased plasma insulin levels in young (6.1 +/- 1.2 to 21.3 +/- 3.1 microIU/ml) but not in elderly subjects (3.0 +/- 0.6 to 4.3 +/- 0.4 microIU/ml). Despite differences in the time course of plasma phenylalanine kinetics and a greater residual IC phenylalanine concentration, amino acid supplementation acutely stimulated muscle protein synthesis in both young and elderly individuals.  相似文献   

7.
Insulin promotes muscle anabolism, but it is still unclear whether it stimulates muscle protein synthesis in humans. We hypothesized that insulin can increase muscle protein synthesis only if it increases muscle amino acid availability. We measured muscle protein and amino acid metabolism using stable-isotope methodologies in 19 young healthy subjects at baseline and during insulin infusion in one leg at low (LD, 0.05), intermediate (ID, 0.15), or high (HD, 0.30 mUxmin(-1)x100 ml(-1)) doses. Insulin was infused locally to induce muscle hyperinsulinemia within the physiological range while minimizing the systemic effects. Protein and amino acid kinetics across the leg were assessed using stable isotopes and muscle biopsies. The LD did not affect phenylalanine delivery to the muscle (-9 +/- 18% change over baseline), muscle protein synthesis (16 +/- 26%), breakdown, or net balance. The ID increased (P < 0.05) phenylalanine delivery (+63 +/- 38%), muscle protein synthesis (+157 +/- 54%), and net protein balance, with no change in breakdown. The HD did not change phenylalanine delivery (+12 +/- 11%) or muscle protein synthesis (+9 +/- 19%), and reduced muscle protein breakdown (-17 +/- 15%), thus improving net muscle protein balance but to a lesser degree than the ID. Changes in muscle protein synthesis were strongly associated with changes in muscle blood flow and phenylalanine delivery and availability. In conclusion, physiological hyperinsulinemia promotes muscle protein synthesis as long as it concomitantly increases muscle blood flow, amino acid delivery and availability.  相似文献   

8.
We sought to determine whether ingestion of a between-meal supplement containing 30 g of carbohydrate and 15 g of essential amino acids (CAA) altered the metabolic response to a nutritionally mixed meal in healthy, recreationally active male volunteers. A control group (CON; n = 6, 38 +/- 8 yr, 86 +/- 10 kg, 179 +/- 3 cm) received a liquid mixed meal [protein, 23.4 +/- 1.0 g (essential amino acids, 14.7 +/- 0.7 g); carbohydrate, 126.6 +/- 4.0 g; fat, 30.3 +/- 2.8 g] every 5 h (0830, 1330, 1830). The experimental group (SUP; n = 7, 36 +/- 10 yr, 87 +/- 12 kg, 180 +/- 3 cm) consumed the same meals but, in addition, were given CAA supplements (1100, 1600, 2100). Net phenylalanine balance (NB) and fractional synthetic rate (FSR) were calculated during a 16-h primed constant infusion of L-[ring-2H5]phenylalanine. Ingestion of a combination of CAA supplements and meals resulted in a greater mixed muscle FSR than ingestion of the meals alone (SUP, 0.099 +/- 0.008; CON, 0.076 +/- 0.005%/h; P < 0.05). Both groups experienced an improvement in NB after the morning (SUP, -2.2 +/- 3.3; CON, -1.5 +/- 3.5 nmol x min(-1) x 100 ml leg volume(-1)) and evening meals (SUP, -9.7 +/- 4.3; CON, -6.7 +/- 4.1 nmol x min(-1) x 100 ml leg volume(-1)). NB after CAA ingestion was significantly greater than after the meals, with values of 40.2 +/- 8.5 nmol x min(-1) x 100 ml leg volume(-1). These data indicate that CAA supplementation produces a greater anabolic effect than ingestion of intact protein but does not interfere with the normal metabolic response to a meal.  相似文献   

9.
Motor center activity and reflexes from contracting muscle have been shown to be important for mobilization of free fatty acids (FFA) during exercise. We studied FFA metabolism in the absence of these mechanisms: during involuntary, electrically induced leg cycling in individuals with complete spinal cord injury (SCI). Healthy subjects performing voluntary cycling served as controls (C). Ten SCI (level of injury: C5-T7) and six C exercised for 30 min at comparable oxygen uptake rates (approximately 1 l/min), and [1-14C]palmitate was infused continuously to estimate FFA turnover. From femoral arteriovenous differences, blood flow, muscle biopsies, and indirect calorimetry, leg substrate balances as well as concentrations of intramuscular substrates were determined. Leg oxygen uptake was similar in the two groups during exercise. In SCI, but not in C, plasma FFA and FFA appearance rate fell during exercise, and plasma glycerol increased less than in C (P < 0.05). Fractional uptake of FFA across the working legs decreased from rest to exercise in all individuals (P < 0.05) but was always lower in SCI than in C (P < 0.05). From rest to exercise, leg FFA uptake increased less in SCI than in C subjects (14 +/- 3 to 57 +/- 20 vs. 41 +/- 13 to 170 +/- 57 micromol x min(-1) x leg(-1); P < 0.05). Muscle glycogen breakdown, leg glucose uptake, carbohydrate oxidation, and lactate release were higher (P < 0.05) in SCI than in C during exercise. Counterregulatory hormonal changes were more pronounced in SCI vs. C, whereas insulin decreased only in C. In conclusion, FFA mobilization, delivery, and fractional uptake are lower and muscle glycogen breakdown and glucose uptake are higher in SCI patients during electrically induced leg exercise compared with healthy subjects performing voluntary exercise. Apparently, blood-borne mechanisms are not sufficient to elicit a normal increase in fatty acid mobilization during exercise. Furthermore, in exercising muscle, FFA delivery enhances FFA uptake and inhibits carbohydrate metabolism, while carbohydrate metabolism inhibits FFA uptake.  相似文献   

10.
L-5-oxoproline (L-5-OP) is an intermediate in glutathione synthesis, possibly limited by cysteine availability. Urinary 5-OP excretion has been proposed as a measure of glycine availability. We investigated whether 5 days of dietary sulfur amino acid (SAA-free) or glycine (Gly-free) restriction affects plasma kinetics of 5-OP and urinary excretion of L- and D-5-OP in 6 healthy men. On day 6, L-5-[1-(13)C]oxoproline and [3,3-(2)H(2)]cysteine were infused intravenously for 8 h (3 h fast/5 h fed). In a control study (adequate amino acid mixture), plasma oxoproline fluxes were 37.8 +/- 13.8 (SD) and 38.4 +/- 14.8 micromol x kg(-1) x h(-1); oxidation accounted for 85% of flux. Cysteine flux was 47.9 +/- 8.5 and 43.2 +/- 8.5 micromol x kg(-1) x h(-1) for fast and fed phases, respectively. Urinary excretion of L- and D-5-OP was 70 +/- 34 and 31.1 +/- 13.3 micromol/mmol creatinine, respectively, during days 3-5, and 46.4 +/- 13.9 and 22.4 +/- 8.3 micromol/mmol over the 8-h tracer study. The 5-OP flux for the Gly-free diet was higher (P = 0. 018) and tended to be higher for the SAA-free diet (P = 0.057) when compared with the control diet. Oxidation rates were higher on the Gly-free (P = 0.005) and SAA-free (P = 0.03) diets. Cysteine fluxes were lower on the the Gly-free (P = 0.01) and the SAA-free diets (P = 0.001) compared with the control diet. Rates of L-5-OP excretion were unchanged by withdrawal of SAA or Gly for 5 days but increased on day 6 (P = 0.005 and P = 0.019, respectively). Thus acute changes in the dietary availability of SAA and Gly alter oxoproline kinetics and urinary 5-OP excretion.  相似文献   

11.
We have examined the effect of a hemodialysis-induced 40% reduction in plasma amino acid concentrations on rates of muscle protein synthesis and breakdown in normal swine. Muscle protein kinetics were measured by tracer methodology using [(2)H(5)]phenylalanine and [1-(13)C]leucine and analysis of femoral arterial and venous samples and tissue biopsies. Net amino acid release by muscle was accelerated during dialysis. Phenylalanine utilization for muscle protein synthesis was reduced from the basal value of 45 +/- 8 to 25 +/- 6 nmol x min(-1) x 100 ml leg(-1) between 30 and 60 min after start of dialysis and was stimulated when amino acids were replaced while dialysis continued. Muscle protein breakdown was unchanged. The signal for changes in synthesis appeared to be changes in plasma amino acid concentrations, as intramuscular concentrations remained constant throughout. The changes in muscle protein synthesis were accompanied by a reduction or stimulation, respectively, in the guanine nucleotide exchange activity of eukaryotic initiation factor (eIF)2B following hypoaminoacidemia vs. amino acid replacement. We conclude that a reduction in plasma amino acid concentrations below the normal basal value signals an inhibition of muscle protein synthesis and that corresponding changes in eIF2B activity suggest a possible role in mediating the response.  相似文献   

12.
Ingestion of carbohydrate during exercise may blunt the stimulation of fat oxidative pathways by raising plasma insulin and glucose concentrations and lowering plasma free fatty acid (FFA) levels, thereby causing a marked shift in substrate oxidation. We investigated the effects of a single 2-h bout of moderate-intensity exercise on the expression of key genes involved in fat and carbohydrate metabolism with or without glucose ingestion in seven healthy untrained men (22.7 +/- 0.6 yr; body mass index: 23.8 +/- 1.0 kg/m(2); maximal O(2) consumption: 3.85 +/- 0.21 l/min). Plasma FFA concentration increased during exercise (P < 0.01) in the fasted state but remained unchanged after glucose ingestion, whereas fat oxidation (indirect calorimetry) was higher in the fasted state vs. glucose feeding (P < 0.05). Except for a significant decrease in the expression of pyruvate dehydrogenase kinase-4 (P < 0.05), glucose ingestion during exercise produced minimal effects on the expression of genes involved in carbohydrate utilization. However, glucose ingestion resulted in a decrease in the expression of genes involved in fatty acid transport and oxidation (CD36, carnitine palmitoyltransferase-1, uncoupling protein 3, and 5'-AMP-activated protein kinase-alpha(2); P < 0.05). In conclusion, glucose ingestion during exercise decreases the expression of genes involved in lipid metabolism rather than increasing genes involved in carbohydrate metabolism.  相似文献   

13.
Glutamate is central to several transamination reactions that affect the production of ammonia, alanine, glutamine, as well as TCA cycle intermediates during exercise. To further study glutamate metabolism, we administered 150 mg/kg body wt of monosodium glutamate (MSG) and placebo to seven male subjects who then either rested or exercised (15-min cycling at approximately 85% maximal oxygen consumption). MSG ingestion resulted in elevated plasma glutamate, aspartate, and taurine, both at rest and during exercise (P < 0.05), whereas most other amino acids were unchanged. Neither plasma alanine nor ammonia was altered at rest. During exercise and after glutamate ingestion, alanine was increased (P < 0.05) and ammonia was attenuated (P < 0.05). Glutamine was also elevated after glutamate ingestion during rest and exercise trials. MSG administration also resulted in elevated insulin levels (P < 0.05), which were parallel to the trend in C-peptide levels. Thus MSG can successfully elevate plasma glutamate, both at rest and during exercise. The plasma amino acid responses suggest that increased glutamate availability during exercise alters its distribution in transamination reactions within active muscle, which results in elevated alanine and decreased ammonia levels.  相似文献   

14.
The purpose of this study was to determine the efficacy of glutamine in promoting whole body carbohydrate storage and muscle glycogen resynthesis during recovery from exhaustive exercise. Postabsorptive subjects completed a glycogen-depleting exercise protocol, then consumed 330 ml of one of three drinks, 18.5% (wt/vol) glucose polymer solution, 8 g glutamine in 330 ml glucose polymer solution, or 8 g glutamine in 330 ml placebo, and also received a primed constant infusion of [1-13C]glucose for 2 h. Plasma glutamine concentration was increased after consumption of the glutamine drinks (0.7-1.1 mM, P < 0.05). In the second hour of recovery, whole body nonoxidative glucose disposal was increased by 25% after consumption of glutamine in addition to the glucose polymer (4.48 +/- 0.61 vs. 3.59 +/- 0.18 mmol/kg, P < 0.05). Oral glutamine alone promoted storage of muscle glycogen to an extent similar to oral glucose polymer. Ingestion of glutamine and glucose polymer together promoted the storage of carbohydrate outside of skeletal muscle, the most feasible site being the liver.  相似文献   

15.
Protein and amino acid metabolism is abnormal in end-stage renal disease (ESRD). Protein turnover is influenced by transmembrane amino acid transport. The effect of ESRD and hemodialysis (HD) on intracellular amino acid transport kinetics is unknown. We studied intracellular amino acid transport kinetics and protein turnover by use of stable isotopes of phenylalanine, leucine, lysine, alanine, and glutamine before and during HD in six ESRD patients. Data obtained from amino acid concentrations and enrichment in the artery, vein, and muscle compartments were used to calculate intracellular amino acid transport and muscle protein synthesis and catabolism. Fractional muscle protein synthesis (FSR) was estimated by the precursor product approach. Despite a significant decrease in the plasma concentrations of amino acids in the artery and vein during HD, the intracellular concentrations remained stable. Outward transport of the amino acids was significantly higher than the inward transport during HD. FSR increased during HD (0.0521 +/- 0.0043 vs. 0.0772 +/- 0.0055%/h, P < 0.01). Results derived from compartmental modeling indicated that both protein synthesis (118.3 +/- 20.6 vs. 146.5 +/- 20.6 nmol.min-1.100 ml leg-1, P < 0.01) and catabolism (119.8 +/- 18.0 vs. 174.0 +/- 14.2 nmol.min-1.100 ml leg-1, P < 0.01) increased during HD. However, the intradialytic increase in catabolism exceeded that of synthesis (57.8 +/- 13.8 vs. 28.0 +/- 8.5%, P < 0.05). Thus HD alters amino acid transport kinetics and increases protein turnover, with net increase in protein catabolism.  相似文献   

16.
Sepsis is a severe catabolic condition. The loss of skeletal muscle protein mass is characterized by enhanced release of the amino acids glutamine and arginine, which (in)directly affects interorgan arginine and the related nitric oxide (NO) synthesis. To establish whether changes in muscle amino acid and protein kinetics are regulated by NO synthesized by nitric oxide synthase-2 or -3 (NOS2 or NOS3), we studied C57BL6/J wild-type (WT), NOS2-deficient (NOS2-/-), and NOS3-deficient (NOS3-/-) mice under control (unstimulated) and lipopolysaccharide (LPS)-treated conditions. Muscle amino acid metabolism was studied across the hindquarter by infusing the stable isotopes L-[ring-2H5]phenylalanine, L-[ring-2H2]tyrosine, L-[guanidino-15N2]arginine, and L-[ureido-13C,2H2]citrulline. Muscle blood flow was measured using radioactive p-aminohippuric acid dilution. Under baseline conditions, muscle blood flow was halved in NOS2-/- mice (P < 0.1), with simultaneous reductions in muscle glutamine, glycine, alanine, arginine release and glutamic acid, citrulline, valine, and leucine uptake (P < 0.1). After LPS treatment, (net) muscle protein synthesis increased in WT and NOS2-/- mice [LPS vs. control: 13 +/- 3 vs. 8 +/- 1 (SE) nmol.10 g(-1).min(-1) (WT), 18 +/- 5 vs. 7 +/- 2 nmol.10 g(-1).min(-1) (NOS2-/-); P < 0.05 for LPS vs. control]. This response was absent in NOS3-/- mice (LPS vs. control: 11 +/- 4 vs. 10 +/- 2 nmol.10 g(-1).min(-1)). In agreement, the increase in muscle arginine turnover after LPS was also absent in NOS3-/- mice. In conclusion, disruption of the NOS2 gene compromises muscle glutamine release and muscle blood flow in control mice, but had only minor effects after LPS. NOS3 activity is crucial for the increase in muscle arginine and protein turnover during early endotoxemia.  相似文献   

17.
To evaluate the effect of passive muscle shortening and lengthening (PSL) on the transcapillary exchange of glucose, lactate, and insulin in the insulin-stimulated state, microdialysis was performed in rat quadriceps muscle. Electrical pulsatile stimulation (0.1 ms, 0.3-0.6 V, 1 Hz) was performed on the sciatic nerve in one leg to induce passive tension on the quadriceps during a hyperinsulinemic-euglycemic clamp (10 mU x kg(-1) x min(-1)). In the non-insulin-stimulated (basal) state, the muscle arterial-interstitial (A-I) concentration difference of glucose was 1.6 +/- 0.3 mM (P < 0.01). During insulin infusion, it remained unaltered in resting muscle (1.3 +/- 0.3 mM) but diminished during PSL. In the basal state there was no A-I concentration difference of lactate, whereas in the insulin infusion state it increased significantly and was significantly greater in moving (2.8 +/- 0.5 mM, P < 0.01) than in resting muscle (0.7 +/- 0.4 mM). The A-I concentration difference of insulin was equal in resting and moving muscle: 86 +/- 7 and 100 +/- 8 microU/ml, respectively. Muscle blood flow estimated by use of radiolabeled microspheres increased during PSL from 17 +/- 4 to 34 +/- 6 ml x 100 g(-1) x min(-1) (P < 0.05). These results confirm that diffusion over the capillary wall is partly rate limiting for the exchange of insulin and glucose and lactate in resting muscle. PSL, in addition to insulin stimulation, increases blood flow and capillary permeability and, as a result, diminishes the A-I concentration gradient of glucose but not that of insulin or lactate.  相似文献   

18.
The purpose of this study was to determine the effect of ingestion of 100 g of carbohydrates on net muscle protein balance (protein synthesis minus protein breakdown) after resistance exercise. Two groups of eight subjects performed a resistance exercise bout (10 sets of 8 repetitions of leg presses at 80% of 1-repetition maximum) before they rested in bed for 4 h. One group (CHO) received a drink consisting of 100 g of carbohydrates 1 h postexercise. The other group (Pla) received a noncaloric placebo drink. Leg amino acid metabolism was determined by infusion of 2H5- or 13C6-labeled phenylalanine, sampling from femoral artery and vein, and muscle biopsies from vastus lateralis. Drink intake did not affect arterial insulin concentration in Pla, whereas insulin increased several times after the drink in CHO (P < 0.05 vs. Pla). Arterial phenylalanine concentration fell slightly after the drink in CHO. Net muscle protein balance between synthesis and breakdown did not change in Pla, whereas it improved in CHO from -17 +/- 3 nmol.ml(-1).100 ml leg(-1) before drink to an average of -4 +/- 4 and 0 +/- 3 nmol.ml(-1).100 ml leg(-1) during the second and third hour after the drink, respectively (P < 0.05 vs. Pla during last hour). The improved net balance in CHO was due primarily to a progressive decrease in muscle protein breakdown. We conclude that ingestion of carbohydrates improved net leg protein balance after resistance exercise. However, the effect was minor and delayed compared with the previously reported effect of ingestion of amino acids.  相似文献   

19.
We determined the effect of an acute bout of swimming (8 x 30 min) followed by either carbohydrate administration (0.5 mg/g glucose ip and ad libitum access to chow; CHO) or fasting (Fast) on postexercise glycogen resynthesis in soleus muscle and liver from female lean (ZL) and obese insulin-resistant (ZO) Zucker rats. Resting soleus muscle glycogen concentration ([glycogen]) was similar between genotypes and was reduced by 73 (ZL) and 63% (ZO) after exercise (P < 0.05). Liver [glycogen] at rest was greater in ZO than ZL (334 +/- 31 vs. 247 +/- 16 micromol/g wet wt; P < 0.01) and fell by 44 and 94% after exercise (P < 0.05). The fractional activity of glycogen synthase (active/total) increased immediately after exercise (from 0.22 +/- 0.05 and 0.32 +/- 0.04 to 0.63 +/- 0.08 vs. 0.57 +/- 0.05; P < 0.01 for ZL and ZO rats, respectively) and remained elevated above resting values after 30 min of recovery. During this time, muscle [glycogen] in ZO increased 68% with CHO (P < 0.05) but did not change in Fast. Muscle [glycogen] was unchanged in ZL from postexercise values after both treatments. After 6 h recovery, GLUT-4 protein concentration was increased above resting levels by a similar extent for both genotypes in both fasted (approximately 45%) and CHO-supplemented (approximately 115%) rats. Accordingly, during this time CHO refeeding resulted in supercompensation in both genotypes (68% vs. 44% for ZL and ZO). With CHO, liver [glycogen] was restored to resting levels in ZL but remained at postexercise values for ZO after both treatments. We conclude that the increased glucose availability with carbohydrate refeeding after glycogen-depleting exercise resulted in glycogen supercompensation, even in the face of muscle insulin-resistance.  相似文献   

20.
Insulin and muscle contractions are major stimuli for glucose uptake in skeletal muscle and have in young healthy people been shown to be additive. We studied the effect of superimposed exercise during a maximal insulin stimulus on glucose uptake and clearance in trained (T) (1-legged bicycle training, 30 min/day, 6 days/wk for 10 wk at approximately 70% of maximal O(2) uptake) and untrained (UT) legs of healthy men (H) [n = 6, age 60 +/- 2 (SE) yr] and patients with Type 2 diabetes mellitus (DM) (n = 4, age 56 +/- 3 yr) during a hyperinsulinemic ( approximately 16,000 pmol/l), isoglycemic clamp with a final 30 min of superimposed two-legged exercise at 70% of individual maximal heart rate. With superimposed exercise, leg glucose extraction decreased (P < 0.05), and leg blood flow and leg glucose clearance increased (P < 0.05), compared with hyperinsulinemia alone. During exercise, leg blood flow was similar in both groups of subjects and between T and UT legs, whereas glucose extraction was always higher (P < 0.05) in T compared with UT legs (15.8 +/- 1.2 vs. 14.6 +/- 1.8 and 11.9 +/- 0.8 vs. 8.8 +/- 1.8% for H and DM, respectively) and leg glucose clearance was higher in T (H: 73 +/- 8, DM: 70 +/- 10 ml. min(-1). kg leg(-1)) compared with UT (H: 63 +/- 8, DM: 45 +/- 7 ml. min(-1). kg leg(-1)) but not different between groups (P > 0.05). From these results it can be concluded that, in both diabetic and healthy aged muscle, exercise adds to a maximally insulin-stimulated glucose clearance and that glucose extraction and clearance are both enhanced by training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号