首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Sauvageau S  Thorin E  Villeneuve L  Dupuis J 《Peptides》2008,29(11):2039-2045
Blockade of the endothelin (ET) system is beneficial in pulmonary arterial hypertension (PAH). The contribution of ET-3 and its interactions with ET receptors have never been evaluated in the monocrotaline (MCT)-induced model of PAH. Vasoreactivity of pulmonary arteries was investigated; ET-3 localization was determined by confocal imaging and gene expression of prepro-ET-3 quantified using RT-PCR. ET-3 plasma levels tended to increase in PAH. ET-3 localized in the media of pulmonary arteries, where gene expression of prepro-ET-3 was reduced in PAH. ET-3 induced similar pulmonary vasoconstrictions in sham and PAH rats. In sham rats, the ET(A) antagonist A-147627 (10nmol/l) significantly reduced the maximal response to ET-3 (E(max) 77+/-1 to 46+/-2%, mean+/-S.E.M., P<0.001), while the ET(B) antagonist A-192621 (1mumol/l) reduced the sensitivity (EC(50) 21+/-7 to 59+/-16nmol/l, P<0.05) without affecting E(max). The combination of both antagonists completely abolished ET-3-induced pulmonary vasoconstriction. In PAH, the ET(A) antagonist further reduced the maximal response to ET-3 and shifted the EC(50) (E(max) 23+/-2%, P<0.001, EC(50) 104+/-24nmol/l, P<0.05), while the ET(B) antagonist only shifted the EC(50) (123+/-36nmol/l, P<0.05) without affecting the E(max). In PAH, dual ET receptor inhibition did not further reduce constriction compared to selective ET(A) inhibition. ET-3 significantly contributes to pulmonary vasoconstriction by activating the ET(B) at low concentration, and the ET(A) at high concentration. The increased inhibitory effect of the ET(A) antagonist in PAH suggests that the contribution of ET(B) to ET-3-induced vasoconstriction is reduced. Although ET-3 is a potent pulmonary vasoconstrictor in PAH, its potential pathophysiologic contribution remains uncertain.  相似文献   

2.
To determine the role of endothelin-1 (ET-1) and its receptors in the regulation of calcitonin gene-related peptide (CGRP) release, male Wistar rats were divided into six groups and subjected to the following treatments for 1 wk with or without ABT-627 (an ET(A) receptor antagonist, 5 mg.kg(-1).day(-1) in drinking water) or A-192621 (an ET(B)-receptor antagonist, 30 mg.kg(-1).day(-1) by oral gavage): control (Con), ET-1 (5 ng.kg(-1).min(-1) iv), Con + ABT-627, Con + A-192621, ET-1 + ABT-627, and ET-1 + A-192621. Baseline mean arterial pressure (MAP, mmHg) was higher (P < 0.05) in Con + A-192621 (122 +/- 4) and ET-1 + A-192621 (119 +/- 4) groups compared with Con (104 +/- 6), ET1 (106 +/- 3), Con + ABT-627 (104 +/- 3), and ET1 + ABT-627 (100 +/- 3) groups. Intravenous administration of CGRP(8-37) (a CGRP receptor antagonist, 1 mg/kg) increased MAP (P < 0.05) in ET-1 (13 +/- 1), Con + A-192621 (12 +/- 1), and ET-1 + A-192621 (15 +/- 3) groups compared with Con (4 +/- 1), Con-ABT-627 (4 +/- 1), and ET-1 + ABT-627 (5 +/- 1) groups. Plasma CGRP levels (in pg/ml) were increased (P < 0.05) in ET-1 (57.5 +/- 6.1), Con + A-192621 (53.9 +/- 3.4), and ET-1 + A-192621 (60.4 +/- 3.0) groups compared with Con (40.4 +/- 1.6), Con + ABT-627 (40.0 +/- 2.9), and ET-1 + ABT-627 (42.6 +/- 1.9) groups. Plasma ET-1 levels (in pg/ml) were higher (P < 0.05) in ET-1 (2.8 +/- 0.2), ET-1 + ABT-627 (3.2 +/- 0.4), Con + A-192621 (3.3 +/- 0.4), and ET-1 + A-192621 (4.6 +/- 0.3) groups compared with Con (1.1 +/- 0.2) and Con-ABT-627 (1.3 +/- 0.2) groups. Therefore, our data show that ET-1 infusion leads to increased CGRP release via activation of the ET(A) receptor, which plays a compensatory role in preventing ET-1-induced elevation in blood pressure.  相似文献   

3.
Vascular dysfunction, which presents either as an increased response to vasoconstrictors or an impaired relaxation to dilator agents, results in worsened cardiovascular outcomes in diabetes. We have established that the mesenteric circulation in Type 2 diabetes is hyperreactive to the potent vasoconstrictor endothelin-1 (ET-1) and displays increased nitric oxide-dependent vasodilation. The current study examined the individual and/or the relative roles of the ET receptors governing vascular function in the Goto-Kakizaki rat, a mildly hyperglycemic, normotensive, and nonobese model of Type 2 diabetes. Diabetic and control rats received an antagonist to either the ET type A (ETA; atrasentan; 5 mg x kg(-1) x day(-1)) or type B (ET(B); A-192621; 15 or 30 mg x kg(-1) x day(-1)) receptors for 4 wk. Third-order mesenteric arteries were isolated, and vascular function was assessed with a wire myograph. Maximum response to ET-1 was increased in diabetes and attenuated by ETA antagonism. ETB blockade with 15 mg/kg A-192621 augmented vasoconstriction in controls, whereas it had no further effect on ET-1 hyperreactivity in diabetes. The higher dose of A-192621 showed an ETA-like effect and decreased vasoconstriction in diabetes. Maximum relaxation to acetylcholine (ACh) was similar across groups and treatments. ETB antagonism at either dose had no effect on vasorelaxation in control rats, whereas in diabetes the dose-response curve to ACh was shifted to the right, indicating a decreased relaxation at 15 mg/kg A-192621. These results suggest that ETA receptor blockade attenuates vascular dysfunction and that ETB receptor antagonism exhibits differential effects depending on the dose of the antagonists and the disease state.  相似文献   

4.
In the vascular system, endothelin (ET) type B (ET(B)) receptors for ET-1 are located on endothelial and on venous and arterial smooth muscle cells. In the present study, we investigated the hemodynamic effects of chronic ET(B) receptor blockade at low and high doses in the Syrian Golden hamster. After 16 days of gavage with A-192621 (0.5 or 30 mg.kg(-1).day(-1)), a selective ET(B) receptor antagonist, hamsters were anesthetized with a mixture of ketamine and xylazine (87 and 13 mg/kg im, respectively), and basal mean arterial blood pressure (MAP) and pressor responses to exogenous ET-1 were evaluated. The lower dose of A-192621 (0.5 mg.kg(-1).day(-1)) did not modify basal MAP, whereas the higher dose (30 mg.kg(-1).day(-1)) increased MAP and plasma ET levels. Radio-telemetry recordings confirmed the increase in MAP induced by the higher dose of A-192621 in conscious hamsters. On the other hand, although the lower dose of A-192621 was devoid of intrinsic pressor effects, it markedly reduced the transient hypotensive phase induced by intravenously injected IRL-1620, a selective ET(B) receptor agonist. Finally, A-192621 (0.5 mg.kg(-1).day(-1)) alone or A-192621 (30 mg.kg(-1).day(-1)) + atrasentan (6 mg.kg(-1).day(-1)), a selective ET(A) receptor antagonist, potentiated the pressor response to exogenous ET-1. Our results suggest that, in the hamster, ET(B) receptors on vascular smooth muscle cells are importantly involved in the clearance of endogenous ET-1, whereas the same receptor type on the endothelium is solely involved in the vasodilatory responses to the pressor peptide. Blockade of endothelial and vascular smooth muscle cell ET(B) receptors triggers a marked potentiation of ET(A)-dependent increases in systemic resistance.  相似文献   

5.
An assay using scintillation proximity bead technology has been developed suitable for the quantitation of endothelin (ET) receptor antagonists in preclinical and clinical samples of plasma. The assay measures the competitive inhibition of radiolabelled ET-1 binding to ET(A) receptor membranes bound to wheat germ agglutinin (WGA)-coated scintillation proximity assay (SPA) beads in the presence of plasma containing A-127722, a potent orally active, ET(A) selective ET antagonist. The assay requires as little as 50 microl plasma and no extraction procedure is needed. The SPA methodology eliminates the need for the separation of bound from free ligand. Using this method, A-127722 could be directly quantified in rat plasma with a detection limit of 1 ng/ml.  相似文献   

6.
Although insulin resistance (IR) is a major risk factor for coronary artery disease, little is known about the regulation of coronary vascular tone in IR by endothelin-1 (ET-1). We examined ET-1 and PGF(2alpha)-induced vasoconstriction in isolated small coronary arteries (SCAs; approximately 250 microM) of Zucker obese (ZO) rats and control Zucker lean (ZL) rats. ET-1 response was assessed in the absence and presence of endothelin type A (ET(A); BQ-123), type B (ET(B); BQ-788), or both receptor inhibitors. ZO arteries displayed reduced contraction to ET-1 compared with ZL arteries. In contrast, PGF(2alpha) elicited similar vasoconstriction in both groups. ET(A) inhibition diminished the ET-1 response in both groups. ET(B) inhibition alone or in combination with ET(A) blockade, however, restored the ET-1 response in ZO arteries to the level of ZL arteries. Similarly, inhibition of endothelial nitric oxide (NO) synthase with N(omega)-nitro-l-arginine methyl ester (l-NAME) enhanced the contraction to ET-1 and abolished the difference between ZO and ZL arteries. In vascular smooth muscle cells from ZO, ET-1-induced elevation of myoplasmic intracellular free calcium concentration ([Ca2+]i) (measured by fluo-4 AM fluorescence), and maximal contractions were diminished compared with ZL, both in the presence and absence of l-NAME. However, increases in [Ca2+]i elicited similar contractions of the vascular smooth muscle cells in both groups. Analysis of protein and total RNA from SCA of ZO and ZL revealed equal expression of ET-1 and the ET(A) and ET(B) receptors. Thus coronary arteries from ZO rats exhibit reduced ET-1-induced vasoconstriction resulting from increased ET(B)-mediated generation of NO and diminished elevation of myoplasmic [Ca2+]i.  相似文献   

7.
The role of endothelin-B (ET(B)) receptors in circulatory homeostasis is ambiguous, reflecting vasodilator and constrictor effects ascribed to the receptor and diuretic and natriuretic responses that could oppose the hypertensive effects of ET excess. With the use of conscious, telemetry-instrumented cynomolgus monkeys, we characterized the hypertension produced by ET(B) blockade and the role of ET(A) receptors in mediating this response. Mean arterial pressure (MAP) and heart rate (HR) were measured 24 h/day for 24 days under control conditions and during administration of the ET(B)-selective antagonist A-192621 (0.1, 1.0, and 10 mg/kg bid, 4 days/dose) followed by coadministration of the ET(A) antagonist atrasentan (5 mg/kg bid) + A-192621 (10 mg/kg bid) for another 4 days. High-dose ET(B) blockade increased MAP from 79 +/- 3 (control) to 87 +/- 3 and 89 +/- 3 mmHg on the first and fourth day, respectively; HR was unchanged, and plasma ET-1 concentration increased from 2.1 +/- 0.3 pg/ml (control) to 7.24 +/- 0.99 and 11.03 +/- 2.37 pg/ml. Atrasentan + A-192621 (10 mg/kg) decreased MAP from hypertensive levels (89 +/- 3) to 75 +/- 2 and 71 +/- 4 mmHg on the first and fourth day, respectively; plasma ET-1 and HR increased to 26.64 +/- 3.72 and 28.65 +/- 2.89 pg/ml and 113 +/- 5 (control) to 132 +/- 5 and 133 +/- 7 beats/min. Thus systemic ET(B) blockade produces a sustained hypertension in conscious nonhuman primates, which is mediated by ET(A) receptors. These data suggest an importance clearance function for ET(B) receptors, one that influences arterial pressure homeostasis indirectly by reducing plasma ET-1 levels and minimizing ET(A) activation.  相似文献   

8.
Diabetes increases the risk of stroke and contributes to poor clinical outcomes in this patient population. Myogenic tone of the cerebral vasculature, including basilar arteries, plays a key role in controlling cerebral blood flow. Increased myogenic tone is ameliorated with ET receptor antagonism in Type 1 diabetes. However, the role of endothelin-1 (ET-1) and its receptors in cerebrovascular dysfunction in Type 2 diabetes, a common comorbidity in stroke patients, remains poorly elucidated. Therefore, we hypothesized that 1) cerebrovascular dysfunction occurs in the Goto-Kakizaki (GK) model of Type 2 diabetes, and 2) pharmacological antagonism of ETA receptors ameliorates, while ETB receptor blockade augments vascular dysfunction. GK or control rats were treated with antagonists to either ETA (atrasentan, 5 mg.kg(-1).day(-1)) or ETB (A-192621, 15 or 30 mg.kg(-1).day(-1)) receptors for 4 wk and vascular function of basilar arteries was assessed using a wire myograph. GK rats exhibited increased sensitivity to ET-1. ET(A) receptor antagonism caused a rightward shift, indicating decreased sensitivity in diabetes, while it increased sensitivity to ET-1 in control rats. Endothelium-dependent relaxation was impaired in diabetes. ETA receptor blockade restored relaxation to control values in the GK animals with no significant effect in Wistar rats and ETB blockade with 30 mg.kg(-1).day(-1) A-192621 caused paradoxical constriction in diabetes. These studies demonstrate that cerebrovascular dysfunction occurs and may contribute to altered regulation of myogenic tone and cerebral blood flow in diabetes. While ETA receptors mediate vascular dysfunction, ETB receptors display differential effects. These results underscore the importance of ETA/ETB receptor balance and interactions in cerebrovascular dysfunction in diabetes.  相似文献   

9.
Endothelin (ET)-1 evokes a burning pruritus sensation when injected intradermally in humans and nocifensive behavior when injected into the hind paw of rodents. Because pain and pruritus are clearly distinct nociceptive sensory modalities in humans, the current study evaluates the potential of ET-1 to elicit scratching behavior in mice. Mice received an intradermal injection of 1-30 pmol ET-1; 10 microg of the mast cell degranulator compound, 48/80; 100 nmol histamine; or vehicle into the scruff, and the number of scratching bouts displayed during the first 40 mins was recorded. ET-1 caused dose-dependent scratching bouts, which, like the responses to histamine and compound 48/80, occurred mainly during the first 5 to 10 mins of injection, but fewer episodes were also seen up to 35 mins. The effect of ET-1 was maximal at 10 pmol (total 40 +/- 7 bouts), a value similar to that caused by histamine (52 +/- 5 bouts) and compound 48/80 (53 +/- 6 bouts). The selective ET(B) receptor agonist, IRL-1620 (10 pmol), was not pruritic per se, and actually inhibited responses to histamine and ET-1. Pruritus induced by ET-1 was inhibited by the ET(A) receptor antagonists, 10 nmol BQ-123 (co-injected; net inhibition, 87%) and 10 mg/kg atrasentan (intraperitoneal administration; net inhibition, 83%), or the ET(B) receptor antagonist, 20 mg/kg A-192621 (intraperitoneal administration; net inhibition, 64%), but the response was augmented by co-injection of the ET(B) receptor antagonist, 3 nmol BQ-788 (net potentiation, 234%). Responses to compound 48/80 or responsiveness of vehicle-treated mice were unaffected by these antagonists. Thus, ET-1 displays potent pruritic actions in the mouse mediated to a substantial extent via local ET(A) receptors. The findings with IRL-1620 and BQ-788 suggest that local ET(B) receptors exert an antipruritic role, but, for reasons still unknown, the results obtained using systemic A-192621 injection are at variance with this view.  相似文献   

10.
Trigeminal neuropathic pain, which is associated with marked orofacial mechanical allodynia, is frequently refractory to currently available drugs. Because endothelins (ETs) can contribute to nociceptive changes in animal models of inflammatory, cancer, and diabetic neuropathic pain, the present study evaluated the influence of ET(A) and ET(B) receptor antagonists on orofacial mechanical allodynia in a rat model of trigeminal neuropathic pain. Unilateral constriction (C) of the infraorbital nerve (ION) caused pronounced and sustained bilateral mechanical allodynia, evaluated by application of von Frey hairs to the vibrissal pad. Mechanical allodynia on postoperative days 12-15 after nerve injury was abolished for up to 90 mins by subcutaneous administration of 2.5 mg/kg morphine, but was fully refractory to intravenous (iv) administration of 10 mg/kg of the dual ET(A) plus ET(B) or selective ET(A) receptor antagonists, bosentan and atrasentan, respectively. In sharp contrast, iv administration of 20 mg/kg of the selective ET(B) receptor antagonist, A-192621, caused a net 61 +/- 15% reduction of mechanical threshold, lasting 2 hrs. Co-injection of atrasentan plus A-192621 did not modify ION injury-induced mechanical allodynia. Injection of 10 pmol ET-1 into the upper lip of naive rats caused ipsilateral mechanical allodynia lasting up to 5 hrs. Thus, ET(B) receptor-mediated mechanisms contribute to orofacial mechanical allodynia induced by CION injury, but, some-how, functional ET(A) receptors are required for expression of the antiallodynic effect of ET(B) receptor blockade.  相似文献   

11.
We aimed to characterize endothelin (ET) receptors in the swine intestinal vasculature and to determine ischemia-reperfusion (I/R) effects on these receptors. Saturation and competitive binding assays were performed on mesenteric artery protein membranes from 1- and 40-day-old animals, both control and those subjected to 1 h of partial ischemia followed by 6 h of reperfusion in vivo. Scatchard analysis of saturation binding with (125)I-labeled ET-1 in membranes from endothelium-denuded (E(-)) vessels revealed that the maximum number of binding sites was greater in younger animals. Competitive (125)I-ET-1 binding was significant for a one-site model with ET-1, ET-3, and sarafotoxin S6c (S6c) in membranes from endothelium-intact (E(+)) and E(-) vessels in both age groups. The maximum number of ET-1 binding sites was significantly greater in younger animals. In the presence of the ET(A) receptor antagonist BQ-123, competitive (125)I-ET-1 binding was significant for a one-site model with ET-1 and S6c in membranes from E(+) vessels in both age groups. The maximum number of ET-1 binding sites was significantly greater in younger animals. After I/R, the maximum number of ET-1 binding sites was unchanged. In the presence of BQ-123, specific binding by ET-1 and S6c was eliminated in both age groups after I/R. These results suggest that both ET receptor populations are expressed to a greater degree in younger animals and I/R significantly affects the ET(B) receptor.  相似文献   

12.
Endothelin receptors ET(A)R and ET(B)R form tight receptor-ligand complexes that complicate our understanding of the physiological, pharmacological, and biochemical properties of these receptors. Although radioligand-binding studies have demonstrated the binding of endothelin-1 (ET-1) to ET(A)R to be essentially irreversible, ET(A)R internalize in a ligand-dependent manner, release ET-1, and then recycle to the cell surface. Salicylic acid (SA) reduces ET-1 binding (IC(50) = 10 mmol/L) to recombinant ET(A)R in isolated membranes by promoting dissociation of [(125)I]ET-1. In the present study, SA (5 mmol SA/L) did not alter [(125I)]ET-1 binding to intact adult rat ventricular myocytes. The lack of effect was not due to internalization of receptor-ligand complexes. However, 100 mmol SA/L significantly reduced [(125)I]ET-1 binding to both intact myocytes and isolated membranes. SA induced the phosphorylation p42/44 extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase and an unidentified 40-kDa protein on the activating threonine-glutamic acid-tyrosine (T-E-Y) motif. ERK phosphorylation was reduced by a MAP kinase kinase (MEK) inhibitor, PD98059. Phosphorylation of p40 was reduced by the p38 MAP kinase inhibitor SB203580, but not PD98059. However, inhibition of ERK or p38 MAP kinases did not alter the ability of 100 mmol SA/L to induce dissociation of [125I]ET-1. These results suggest that, in the ventricular myocyte, salicylic acid alters the kinetics of ET-1 binding. The results also suggest an allosteric binding site may be present that modulates the dissociation of ET-1 receptor-ligand complexes in response to an as-of-yet unidentified mediator.  相似文献   

13.
The substantial role of endothelin-1 (ET-1) in the development of cerebral vasospasm (CVS) after subarachnoidal hemorrhage (SAH) has been demonstrated by numerous experimental and, recently, clinical investigations. Whether the expression or function of the ET(B) receptor is altered in CVS is still unclear, however. The aim of the present study was, therefore, to characterize the cerebroarterial ET(B) receptor function during CVS. Experimental CVS was induced by the rat double-hemorrhage model. Reduction of the cerebral blood flow (CBF) was confirmed by magnetic resonance perfusion-weighted imaging. Animals were sacrificed on days 3 (d3) and 5 (d5) after CVS induction. The basilar arteries (BA) were dissected, cut into ring segments, and prepared for measurement of isometric force in an organ bath. Concentration-effect curves (CECs) were constructed by cumulative application of ET-1, acetylcholine (Ach), or sarafotoxin S6c (S6c). Segments with (E+) endothelial function were used. CECs were compared by the maximum effect (E(max)), the pD2, and the shift calculated on the pD2 level. The pD2 is the negative decadic logarithm of the concentration producing the half maximal effect (-log10EC50). After SAH, the relative regional CBF in the d3 and d5 groups was reduced to 63% and 32%, respectively, of the CBF in controls. ET-1 induced a dose-dependent contraction of segments with and segments without CVS. In E+ segments, the E(max) for ET-1 was not significantly changed after SAH (mean values [ +/- SEM] of 104% +/- 4% for the control group, 106% +/- 4% for the d3 group, and 104% +/- 3% for the d5 group). The CECs, however, were significantly shifted to the left versus the control by factors of 2.4 in the d3 group and 3.6 in the d5 group. Relaxation by S6c was significantly reduced after SAH (E(max:) 73% +/- 11% in the control group, 21% +/- 13% in the d3 group, and 13% +/- 8% in the d5 group), whereas relaxation associated with Ach was not significantly changed (E(max): 45% +/- 7% in the control group, 56% +/- 6% in the d3 group, and 43% +/- 6% in the d5 group). Significant contraction by S6c was not observed in E+ and E - segments in any of the study groups. The present data indicate the loss of the ET(B) receptor-mediated relaxation of the cerebral arteries in cases of CVS, which is independent of the endothelial nitric oxide synthase level.  相似文献   

14.
Modulation of endothelin (ET-1)-induced [Ca(2+)](i)transients and receptor expression by parathyroid hormone (PTH) was studied in UMR-106 osteoblastic osteosarcoma cells. Ca(2+)signaling was assessed with Fura-2, and ET receptor mRNA expression was determined using ET(A)- and ET(B)-specific primers and RT-PCR amplification. ET-1 binding in UMR-106 cell membranes was also measured. PTH pretreatment for 8 h decreased the [Ca(2+)](i)transients elicited by ET-1 and by the ET(B)-selective agonist sarafotoxin 6c (S6c). When ET(B)receptors were desensitized by pretreatment with S6c or blocked with the ET(B)-selective antagonist BQ-788, the remaining ET(A)component of the signal was also decreased by PTH pretreatment. In contrast, [Ca(2+)](i)transients elicited by PGF(2alpha)and ionomycin were increased following PTH pretreatment, indicating that the effect of PTH to decrease ET-1-stimulated transients was selective. PTH pretreatment also decreased [(125)I]ET-1 binding and ET(A)and ET(B)mRNA, with maximal effects at approximately 8 h. ET-1 was not detectable in medium from either control or PTH treated UMR-106 cultures, suggesting that the decreased expression of ET receptors was not due to enhanced ET production and subsequent homologous desensitization. The downregulation of ET receptors in osteoblasts by PTH pretreatment may serve as a homeostatic mechanism in bone.  相似文献   

15.
Endothelin (ET) levels are elevated in congestive heart failure secondary to myocardial infarction (MI) and correlate well with the severity of pulmonary hypertension (PH), suggesting that the ET peptide could contribute to the pathophysiology of venous PH. Alterations of pulmonary vasoreactivity to ET after MI and the respective roles of the ET(A) and ET(B) receptors (ET(A)-R and ET(B)-R) have never been evaluated, to our knowledge. MI was induced in rats. Three weeks later, small pulmonary resistance arteries were mounted on a microvascular myograph. Cumulative concentration-response curves to ET-1 and sarafotoxin 6c (S6c) were performed. Response to ET was also assessed in the presence of ET-R antagonists. Heterodimerization of receptors was evaluated by immunoprecipitation of the ET(B)-R, followed by western blotting for the expression of the ET(A)-R. Maximal vasoconstriction and sensitivity to ET-1 were similar in sham and MI with values of 88 +/- 3.9% and 80 +/- 3.8%, respectively. The response to S6c was similarly less in both sham (67 +/- 5.7%) and MI groups (60 +/- 6.6%). When administered alone, the ET(A)-R antagonist (10 nM A-147627.1) and the ET(B)-R antagonist (1 microM A-192621.1) had no significant effect. However, their combination markedly reduced vaso-constriction (52 +/- 5.3%; P < 0.001). The endothelial and medial distribution of ET-Rs was similar in sham and MI groups. In vitro studies demonstrated co-immunoprecipitation of the ET(A)-R and ET(B)-R. Vasoconstriction of isolated resistance pulmonary arteries to ET agonists is not altered after MI. Dual antagonism results in optimal blockade of vasoconstriction, possibly because the ET(A)-R and ET(B)-R can form functional heterodimers.  相似文献   

16.
Endothelins, ET-1, ET-2, and ET-3 are potent vasoconstricting and mitogenic 21-amino acid bicyclic peptides, which exert their effects upon binding to the ETA and ETB receptors. The ETA receptor mediates vasoconstriction and smooth muscle cell proliferation, and the ETB receptor mediates different effects in different tissues, including nitric oxide release from endothelial cells, and vasoconstriction in certain vascular cell types. Selective antagonists of endothelin receptor subtypes may prove useful in determining the role of endothelin in various tissue types and disease states, and hence as therapeutic agents for such diseases. The pyrrolidine carboxylic acid A-127722 has been disclosed as a potent and ETA-selective antagonist, and is currently undergoing clinical trials. In our efforts to find antagonists with altered selectivity (ETA-selective, ETB-selective, or nonselective), we investigated the SAR of the 2-substituent on the pyrrolidine. Compounds with alkyl groups at the 2-position possessed ETA selectivity improved over A-127722 (1400-fold selective), with the best of these compounds showing nearly 19,000-fold selectivity.  相似文献   

17.
Increased vasoconstrictor response to norepinephrine (NE) and endothelin (ET)-1 in arteries from diabetic animals is ameliorated by chronic endothelin receptor blockade with bosentan and was absent in endothelium-denuded arteries, suggesting the involvement of ET-1 and an endothelium-derived contracting factor such as thromboxane A2 (TxA2). To examine this possibility, we determined the effects of acute blockade of ET receptors or inhibition of TxA2 synthesis on the vascular function of superior mesenteric arteries (SMA) and renal arteries (RA) isolated from nondiabetic and 11-week streptozotocin (STZ) diabetic rats chronically treated with either bosentan or vehicle. Both in vitro incubation with bosentan and a selective ETA receptor blocker, BQ123, eradicated the increase in NE contractile responses in diabetic SMA. Additionally, in vitro incubation with the thromboxane synthase inhibitor, dazmegrel, abrogated the exaggerated NE and ET-1 contractile responses in diabetic SMA. Conversely, in RA, no significant acute effect of bosentan, BQ123, nor dazmegrel on vascular responses to NE was observed. Dazmegrel incubation attenuated the maximum contractile responses to ET-1 in diabetic RA; however, these responses in diabetic RA remained significantly greater than those of other groups. Diabetic RA but not SMA exhibited an enhanced contractile response to the TxA2 analogue U46619, which was corrected by chronic bosentan treatment. Immunohistochemical analyses in diabetic SMA revealed an increase in ETA receptor level that was normalized by chronic bosentan treatment. These data indicate that an interaction between ET-1 and TxA2 may be involved in mediating the exaggerated vasoconstrictor responses in diabetic arteries. Furthermore, the underlying mechanisms appear to be vessel specific.  相似文献   

18.
We showed recently that endothelin (ET)A receptors are involved in the salt sensitivity of ANG II-induced hypertension. The objective of this current study was to characterize the role of endothelin ETB receptor activation in the same model. Male rats on fixed normal (2 meq/day) or high (6 meq/day) salt intake received a continuous intravenous infusion of ANG II or salt only for 15 days. During the middle 5 days of the infusion period, rats were given either the selective ETB receptor antagonist A-192621 or the nonselective endothelin receptor antagonist A-182086 (both at 24 mg x kg(-1) x day(-1) intra-arterially). Infusion of ANG II caused a greater rise in arterial pressure in rats on high-salt intake. The administration of A-192621 increased arterial pressure further in all rats. The chronic hypertensive effect of A-192621 was not significantly affected by salt intake or ANG II. The administration of A-182086 lowered arterial pressure chronically only in rats on normal salt intake receiving ANG II. Thus the salt sensitivity of ANG II-induced hypertension is not caused by changes in ETB receptor function.  相似文献   

19.
S Mihara  M Fujimoto 《Life sciences》1992,50(3):219-226
We characterized the endothelin (ET) receptor in Girardi heart (GH) cells derived from human atrium. The ET isopeptides ET-1, ET-2 and ET-3 induced the monotonous and long-lasting rise in cytosolic free Ca2+ concentration [( Ca2+]i) with almost the same potency in GH cells. Scatchard analysis of [125I]ET-1 and [125I]ET-3 binding revealed that GH cells have almost the same number of binding sites for either labeled ligand. All ET isopeptides displaced either [125I]ET-1 or [125I]ET-3 binding in GH cells almost equipotently. These results reveal that the functional ET receptors in GH cells are of the ETB-type. GH cells are the first cell line to be found to express the functional ETB-receptor.  相似文献   

20.
We investigated the effect of long-term in vivo blockade of the ET-1 receptor subtype B (ET(B)) with A-192621, a selective ET(B) antagonist, on atrial and ventricular natriuretic peptide (NP) gene expression in deoxycorticosterone acetate (DOCA)-salt hypertension. In this model, stimulation of the cardiac natriuretic peptide (NP) and the endothelin system and suppression of the renin-angiotensin system is observed. DOCA-salt induced significant hypertension, cardiac hypertrophy and increased NP plasma and left atrial and right and left ventricular NP gene expression. ET(B) blockade per se produced hypertension and left ventricular hypertrophy but induced little change on the levels of ventricular NP and only increased left atrial natriuretic factor (ANF) mRNA levels. Combined ET(B) blockade/DOCA-salt treatment worsened hypertension, increased left ventricular hypertrophy and induced right ventricular hypertrophy. All animals so treated had increased ventricular NP gene expression. Collagen III and beta-myosin heavy chain gene expression were enhanced in both the right and the left ventricle of DOCA-salt hypertensive rats. The results of this study suggest that the ET(B) receptor does not participate directly in the modulation of atrial or ventricular NP gene expression and that this receptor mediates a protective cardiovascular function. ET(B) blockade can induce significant ventricular hypertrophy without an increase in ANF or brain NP gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号