首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ueng YF  Shyu CC  Lin YL  Park SS  Liao JF  Chen CF 《Life sciences》2000,67(18):2189-2200
Effects of baicalein and wogonin, the major flavonoids of Scutellariae radix, on cytochrome P450 (CYP), UDP-glucuronosyl transferase (UGT), and glutathione S-transferase (GST) were studied in C57BL/6J mice. One-week treatment of mice with a liquid diet containing 5 mM baicalein resulted in 29%, 14%, 36%, 28%, and 46% decreases of hepatic benzo(a)pyrene hydroxylation (AHH), benzphetamine N-demethylation (BDM), N-nitrosodimethylamine N-demethylation (NDM), nifedipine oxidation (NFO), and erythromycin N-demethylation (EMDM) activities, respectively. Treatment with a liquid diet containing 5 mM wogonin resulted in 43%, 22%, 21%, 24%, and 35% decreases of hepatic AHH, BDM, NDM, NFO, and EMDM activities, respectively. However, hepatic 7-methoxyresorufin O-demethylation (MROD) activity was increased and decreased by baicalein- and wogonin-treatments, respectively. Similar modulation was observed with caffeine 3-demethylation (CDM) activity. Immunoblot analysis showed that the levels of hepatic CYP2E1 and CYP3A proteins were decreased by both baicalein- and wogonin-treatments. Hepatic CYP1A2 protein level was increased by baicalein but decreased by wogonin. In extrahepatic tissues, renal AHH activity was decreased by wogonin whereas pulmonary AHH, 7-ethoxyresorufin O-deethylation (EROD), and MROD activities were increased by both flavonoids. Both baicalein and wogonin strongly increased CYP1A protein level in mouse lung. Hepatic and renal UGT activities toward p-nitrophenol were suppressed by baicalein- and wogonin-treatments. However, cytosolic GST activity was not affected by flavonoids. These results suggest that ingestion of baicalein or wogonin can modulate drug-metabolizing enzymes and the modulation shows tissue specificity.  相似文献   

2.
Ueng YF  Kuo YH  Wang SY  Lin YL  Chen CF 《Life sciences》2004,74(7):885-896
Effects of tanshinone IIA, an active diterpene quinone of the herbal medicine Salvia miltiorrhiza (Danshen), on cytochrome P450 (CYP), UDP-glucuronosyl transferase (UGT), and glutathione S-transferase (GST) were studied in the arylhydrocarbon (Ah)-responsive C57BL/6J (B6) and nonresponsive DBA/2J (D2) mice. Oral treatment of tanshinone IIA caused a dose-dependent increase of liver microsomal 7-methoxyresorufin O-demethylation (MROD) activity in B6 but not in D2 mice. In B6 mice, tanshinone IIA increased hepatic benzo(a)pyrene hydroxylation (AHH), 7-ethoxyresorufin O-deethylation, MROD, and 7-ethoxycoumarin O-deethylation activities. The levels of Cyp1A2 protein and mRNA were elevated. On the contrary, in D2 mice, tanshinone IIA decreased hepatic AHH and nifedipine oxidation activities and the CYP3A protein level without affecting other activities determined. Cyp1A2 protein and mRNA levels were not affected by tanshinone IIA in D2 mice. Tanshinone IIA had no effects on UGT and GST activities in both B6 and D2 mice. These results demonstrated that induction of CYP1A2 by tanshinone IIA depended on the Ah-responsiveness and occurred at pre-translational level.  相似文献   

3.
We examined CYP1A (measured using hepatic EROD and MROD activities) and glutathione-S-transferase (GST) activities in juvenile alligators (Alligator mississippiensis) collected from three sites with varying contamination in the Kissimmee-Everglades drainage in south Florida. We hypothesized that contaminants present in areas with intermediate or higher contaminant concentrations would alter hepatic enzyme activities in juvenile alligators from those sites when compared to hepatic enzyme activity in animals from the area with the least contamination. EROD activity was found to be higher in animals from the site with lower reported levels of contamination relative to those from the site with the highest reported contamination suggesting an inhibition of CYP1A expression or activity. No differences among animals from the three sites were observed for hepatic MROD and GST activities. A significant negative relationship between EROD, MROD, and GST activities and body size was exhibited in alligators from the site with the lowest contamination. No relationship between body size and hepatic enzyme activity was found in animals from the sites with intermediate and higher contamination, suggesting that contaminants present at these sites act to alter this relationship. No correlation was observed in this study between plasma steroid concentrations (estradiol-17 beta or testosterone) and hepatic EROD, MROD, or GST activities.  相似文献   

4.
The involvement of cytochrome b5 in different cytochrome P450 monooxygenase and palmitoyl CoA desaturase activities in microsomes from insecticide-resistant (LPR) house flies was determined using a specific polyclonal antiserum developed against house fly cytochrome b5. Anti-b5 antiserum inhibited the reduction of cytochrome b5 by NADH-cytochrome b5 reductase. The antiserum also inhibited palmitoyl CoA desaturase, methoxycoumarin-O-demethylase (MCOD), ethoxycoumarin-O-deethylase (ECOD), and benzo[a]pyrene hydroxylase (aromatic hydrocarbon hydroxylase, AHH) activities. However, methoxyresorufin-O-demethylase (MROD) and ethoxyresorufin-O-deethy-lase (EROD) activities were not affected by this antiserum. These results demonstrate that cytochrome b5 is involved in fatty acyl CoA desaturase activities and in certain cytochrome P450 monooxygenase activities (i.e., MCOD, ECOD, and AHH) in LPR house fly microsomes. Other cytochrome P450 monooxygenase activities (i.e., MROD and EROD) may not require cytochrome b5. The results suggest that cytochrome b5 involvement with cytochrome P450 monooxygenase activities is dependent upon the cytochrome P450 isoform involved. © 1994 Wiley-Liss, Inc.  相似文献   

5.
The activities of 7-ethoxyresorufin-O-deethylase (EROD), 7-pentoxyresorufin-O-deethylase (PROD), 7-ethoxycoumarin-O-deethylase (ECOD) and aromatic hydrocarbon hydroxylase (AHH) were measured in hepatic microsomes from male and female Wistar rats and Syrian golden hamsters in order to probe the basal activity and the inducibility by phenobarbital (PB) and 3-methylcholanthrene (MC) of different P-450 isoenzymes. The basal activities of EROD and ECOD, but not PROD and AHH, were higher in male hamsters than in male rats. No sex-related difference in enzyme activities was observed with hamsters, whereas male rats had a higher ECOD and AHH activity than female rats. Induction by PB led to a 450-fold and 250-fold increase in PROD activity in male and female rat liver microsomes, respectively, while MC had a more pronounced inductive effect on EROD activity in this species. In hamsters, EROD activity was induced by MC but not by PB. Unexpectedly PROD activity in male and female hamster liver microsomes was only moderately induced by PB, the extent being lower than on induction by MC. Therefore, the activity of PROD, which is useful as a specific enzymatic assay for P-450 IIB in the rat liver, cannot be used to probe PB-like inducers in the hamster liver.  相似文献   

6.
We previously demonstrated using a bacterial system that the antigenotoxic activity of the anthraquinone compounds purpurin and alizarin was due to the suppression of microsomal enzyme activity involved in the activation of mutagens. In the present study we determined the effect of purpurin and alizarin on (i) MeIQx-DNA-adduct formation in mouse tissues and (ii) the activity of phases I and II enzymes in liver fractions, the liver being the target tissue of MeIQx. The amount of MeIQx-DNA adduct formed was determined using 32P-postlabeling methods. Methoxyresorufin-O-demethylase (MROD) and ethoxyresorufin-O-deethylase (EROD) enzyme activities, which reflect CYP 1A activity, were measured as markers for phase I enzymes, and UDP-glucuronyltransferase (UGT) and glutathione S-transferase (GST) activities were determined as markers for phase II enzymes. Mice fed with a diet containing 0.5% purpurin for 3 days prior to MeIQx administration had 70% fewer MeIQx-DNA adducts in the lung and kidney, and fewer DNA adducts (insignificant, statistically) in the liver compared with mice fed a diet lacking purpurin. MROD and EROD activities in the liver of these mice increased six- and eight-fold, respectively, and were higher than those determined for the control mice within 1 day following commencement of purpurin treatment. These elevated activities were maintained during treatment and declined immediately following removal of purpurin from the diet. GST and UGT activities gradually increased 2.5- and 3-fold, respectively, following purpurin treatment, and were maintained at significantly high levels even after purpurin administration ceased. Alizarin did not significantly affect DNA-adduct formation and enzyme activity, except in the case of UGT. Taken together, our results show that purpurin reduced MeIQx-DNA-adduct formation by maintaining elevated phase II enzyme activities, thereby facilitating accelerated excretion of MeIQx.  相似文献   

7.
Hepatic microsomes prepared from 10 fish species from Bermuda were studied to establish features of cytochrome P450 (CYP) systems in tropical marine fish. The majority (7/10) of the species had total P450 content between 0.1 and 0.5 nmol/mg, and cytochrome b5 content between 0.025 and 0.25 nmol/mg. Ethoxycoumarin O-deethylase (ECOD) and aminopyrine N-demethylase (APND) rates in these 7 species were 0.23–2.1 nmol/min/mg and 0.5–11 nmol/min/mg, respectively, similar to rates in many temperate fish species. In contrast to those 7 species, sergeant major (Abudefduf saxatilis) and Bermuda chub (Kyphosus sectatrix) had microsomal P450 contents near 1.7 nmol/mg, among the highest values reported in untreated fish, and had greater rates of ECOD, APND, ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-depentylase than did most of the other species. Freshly caught individuals of all species had detectable levels of EROD and aryl hydrocarbon hydroxylase (AHH) activities. Those individuals with higher rates of EROD activity had greater content of immunodetected CYP1A protein, consistent with Ah-receptor agonists acting to induce CYP1A in many fish in Bermuda waters. Injection of tomtate and blue-striped grunt with β-naphthoflavone (BNF; 50 or 100 mg/kg) induced EROD rates by 25 to 55-fold, suggesting that environmental induction in some fish was slight compared with the capacity to respond. AHH rates were induced only 3-fold in these same fish. The basis for disparity in the degree of EROD and AHH induction is not known. Rates of APND and testosterone 6β- and 16β-hydroxylase were little changed by BNF, indicating that these are not CYP1A activities in these fish. Antibodies to phenobarbital-inducible rat CYP2B1 or to scup P450B, a putative CYP2B, detected one or more proteins in several species, suggesting that CYP2B-like proteins are highly expressed in some tropical fishes. Generally, species with greater amounts of total P450 had greater amounts of proteins related to CYP2B. These species also had appreciable amounts of CYP3A-like proteins. Thus, many fishes in Bermuda appear to have induced levels of CYP1A; some also have unusually high levels of total P450 and of CYP2B-like and CYP3A-like proteins. These species may be good models for examining the structural, functional and regulatory properties of teleost CYP and the environmental or ecological factors contributing to high levels of expression of CYP in some fishes.  相似文献   

8.
Polychlorinated biphenyls (PCBs) elicit a spectrum of biochemical and toxic effects in exposed animals. In the present study, we assessed the effect of PCB structure, using four symmetrically-substituted PCBs, on cytochrome P450 (CYP)-mediated methoxy-, ethoxy- and benzyloxyresorufin O-dealkylase (MROD, EROD and BROD, respectively) activities. We found that 2,2',4,4'-tetrachlorobiphenyl (PCB 47), 2,2',5,5'-tetrachlorobiphenyl (PCB 52), 2,2',6,6'-tetrachlorobiphenyl (PCB 54) and 3,3',4,4'-tetrachlorobiphenyl (PCB 77) inhibited alkoxyresorufin O-dealkylase activities in hepatic microsomes from 3-methylcholanthrene (MC) or phenobarbital (PB)-treated rats. Measurement of the in vitro inhibitory potencies of the tetrachlorobiphenyls revealed that MROD, EROD and BROD activities were differentially inhibited and the degree of inhibition was determined by the chlorination pattern of the PCB. PCB 77 was more potent than PCB 47 or PCB 52 at inhibiting MROD and EROD activities in hepatic microsomes from MC-treated rats, while no inhibition of either activity was observed with PCB 54. In contrast, BROD activity measured in hepatic microsomes from PB-treated rats was inhibited by PCB 47, PCB 52 and PCB 54 but not by PCB 77. The mode of inhibition for each activity was also evaluated statistically. Inhibition of the alkoxyresorufin O-dealkylase activities could not be discerned in hepatic microsomes from corn oil-treated rats because the activities were inherently too low. No evidence for mechanism-based inhibition of MROD, EROD or BROD activities or an effect via CYP reductase was found. The results demonstrate that relatively coplanar PCBs such as PCB 77 preferentially inhibit EROD and MROD activities, whereas noncoplanar PCBs such as PCB 54 preferentially inhibit BROD activity.  相似文献   

9.
We previously demonstrated using a bacterial system that the antigenotoxic activity of the anthraquinone compounds purpurin and alizarin was due to the suppression of microsomal enzyme activity involved in the activation of mutagens. In the present study we determined the effect of purpurin and alizarin on (i) MeIQx–DNA-adduct formation in mouse tissues and (ii) the activity of phases I and II enzymes in liver fractions, the liver being the target tissue of MeIQx. The amount of MeIQx–DNA adduct formed was determined using 32P-postlabeling methods. Methoxyresorufin-O-demethylase (MROD) and ethoxyresorufin-O-deethylase (EROD) enzyme activities, which reflect CYP 1A activity, were measured as markers for phase I enzymes, and UDP–glucuronyltransferase (UGT) and glutathione S-transferase (GST) activities were determined as markers for phase II enzymes. Mice fed with a diet containing 0.5% purpurin for 3 days prior to MeIQx administration had 70% fewer MeIQx–DNA adducts in the lung and kidney, and fewer DNA adducts (insignificant, statistically) in the liver compared with mice fed a diet lacking purpurin. MROD and EROD activities in the liver of these mice increased six- and eight-fold, respectively, and were higher than those determined for the control mice within 1 day following commencement of purpurin treatment. These elevated activities were maintained during treatment and declined immediately following removal of purpurin from the diet. GST and UGT activities gradually increased 2.5- and 3-fold, respectively, following purpurin treatment, and were maintained at significantly high levels even after purpurin administration ceased. Alizarin did not significantly affect DNA-adduct formation and enzyme activity, except in the case of UGT. Taken together, our results show that purpurin reduced MeIQx–DNA-adduct formation by maintaining elevated phase II enzyme activities, thereby facilitating accelerated excretion of MeIQx.  相似文献   

10.
The objective of this study was to investigate the effects of iodine (I(2)) and/or selenium (Se) deficiency on thyroid hormones and hepatic xenobiotic metabolizing enzyme systems using a triple animal model. Three-week-old male Wistar rats were fed for seven weeks. Se deficiency was introduced by a diet containing <0.005 mg/kg Se, and I(2) deficiency was produced by sodium perchlorate containing drinking water. The levels of plasma thyroid hormones [total T(4) (TT(4)), total T(3) (TT(3))], thyroid stimulating hormone (TSH); total microsomal cytochrome P450 (CYP450) and cytochrome b5 (CYP b5) levels; activities of microsomal NADPH-cytochrome P450 reductase (P450R), microsomal aniline hydroxylase (CYP2E1), microsomal 7-ethoxyresorufin O-deethylase (EROD), microsomal 7-pentoxyresorufin O-depentylase (PROD) and cytosolic glutathione S-transferase (GST) were determined. In I(2) deficiency total CYP450 levels, activities of CYP2E1, EROD and GST decreased, and CYP b5 content increased significantly. In Se-deficient rats, total CYP450 level and CYP2E1 activity increased, and EROD and GST activities and CYP b5 level decreased significantly. In combined I(2) and Se deficiency, except for CYP450 content and CYP2E1 activity, all enzyme activities and CYP b5 content decreased significantly compared to control group. Overall results of this study have suggested that metabolism of xenobiotics as well as endogenous compounds is affected by Se and I(2) status.  相似文献   

11.
12.
Distribution of the mixed function oxidases (MFO's) catalyzed by presence of multiple forms of cytochrome P-450 (P-450) was investigated in the neuronal and glial cells of the brain. The neuronal cells exhibited 2-3 fold higher activity of P-450 dependent arylhydrocarbon hydroxylase (AHH), 7-ethoxycoumarin-o-deethylase (ECOD) and 7-ethoxy-resorufn-o-deethylase (EROD) than the glial cells. Pretreatment with phenobarbital (PB) significantly increased (60-85%) the activity of ECOD in neuronal and glial cells, while a 140% increase was observed in neuronal AHH activity. Exposure to 3-methylcholanthrene (MC) resulted in a significant induction of the activity of AHH (102-345%), ECOD (115-150%) and EROD (75-120%) in the neuronal and glial cell preparations. The neurons, in general, exhibited greater sensitivity towards PB and MC induction. The present data indicate the differential sensitivity of these enzymes in neuronal and glial cells which could be used as a model to understand the selective action of certain neurotoxic agents.  相似文献   

13.
14.
Y459H and V492E mutations of cytochrome P450 reductase (CYPOR) cause Antley-Bixler syndrome due to diminished binding of the FAD cofactor. To address whether these mutations impaired the interaction with drug-metabolizing CYPs, a bacterial model of human liver expression of CYP1A2 and CYPOR was implemented. Four models were generated: PORnull, PORwt, PORYH, and PORVE, for which equivalent CYP1A2 and CYPOR levels were confirmed, except for PORnull, not containing any CYPOR. The mutant CYPORs were unable to catalyze cytochrome c and MTT reduction, and were unable to support EROD and MROD activities. Activity was restored by the addition of FAD, with V492E having a higher apparent FAD affinity than Y459H. The CYP1A2-activated procarcinogens, 2-aminoanthracene, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, and 2-amino-3-methylimidazo(4,5-f)quinoline, were significantly less mutagenic in PORYH and PORVE models than in PORwt, indicating that CYP1A2, and likely other drug-metabolizing CYPs, are impaired by ABS-related POR mutations as observed in the steroidogenic CYPs.  相似文献   

15.
A sensitive method for the determination of cytochrome P450 (P450 or CYP) 1A activities such as ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) in liver microsomes from human, monkey, rat and mouse by high-performance liquid chromatography with fluorescence detection is reported. The newly developed method was found to be more sensitive than previous methods using a spectrofluorimeter and fluorescence plate reader. The detection limit for resorufin (signal-to-noise ratio of 3) was 0.80 pmol/assay. Intra-day and inter-day precisions (expressed as relative standard deviation) were less than 6% for both enzyme activities. With this improved sensitivity, the kinetics of EROD and MROD activities in mammalian liver microsomes could be determined more precisely. EROD activities in human and monkey liver microsomes, and MROD activities in liver microsomes from all animal species exhibited a monophasic kinetic pattern, whereas the pattern of EROD activities in rat and mouse liver microsomes was biphasic. In addition, the method could determine the non-inducible and 3-methylcholanthrene-inducible activities of EROD and MROD in rat and mouse liver microsomes under the same assay conditions. Therefore, this method is applicable to in vivo and in vitro studies on the interaction of xenobiotic chemicals with cytochrome CYP1A isoforms in mammals.  相似文献   

16.
17.
Recently, researchers have focused on the use of bioartificial liver devices to support patients with fulminant hepatic failure. Our team developed a cell-based flat membrane bioreactor (FMB). In this, porcine liver cells were maintained in 3D-coculture between two gel layers in a sandwich configuration for 3 weeks to study the influence of this bioreactor technique on the preservation of basic, not induced activities of phase I and phase II enzymes. First, the time and substrate dependencies of the following enzymes were measured: ethoxyresorufin-O-deethylase (EROD, CYP 1A1/1A2) and ethoxycoumarin-O-deethylase (ECOD, CYP 2B6) as phase I enzymes, and glutathione-S-transferase (GST), UDP-glucuronosyltransferase (UGT) and sulfotransferase (ST) as phase II enzymes. To find optimal test conditions Michaelis-Menten kinetics were calculated. Next, different potential inducers were tested to find out the most effective compounds. Based on these results, the basic, not induced levels of the different enzymes were determined in the flat membrane bioreactor. Furthermore, the response of these enzyme activities to the chosen inducers was investigated to examine whether the cells keep their ability for drug-drug interactions. Basic, not induced activities of both phase I enzymes and the phase II enzymes GST and UGT were maintained at nearly the initial levels during the complete period of study. In addition, it was possible to induce these enzymes twice or three times in a weekly interval. In contrast, the basic, not induced activity of ST increased during the first 10 days of culture. It stabilized then and was maintained steady. As in short-term investigations, no reaction of the ST-activity towards any inducer could be obtained. These results prove that porcine liver cells preserve their phase I and phase II activities and respond to inducing drugs over 3 weeks in culture. Therefore, the flat membrane bioreactor is not only suitable for investigating drug metabolism, drug-drug interactions, and enzyme induction but also for supporting liver functions.  相似文献   

18.
SD 大鼠自由饮用绞股蓝汁(绞股蓝汁每天新鲜配制,浓度为每100 g 水2 g 茶叶,100℃的水温浸泡30 min,取上清液),连续给药60 d,取出肝脏,用差速离心法制备肝脏胞浆液及肝脏微粒体,采用双光束紫外分光光度法测定 CYP3A、CYP2E1、NADPH-细胞色素 C 还原酶、UGT、GST 的活性及细胞色素 b5的含量,结果显示绞股蓝可显著升高细胞色素 b5的含量,显著诱导 CYP3A、UGT、GST、NADPH-细胞色素 C 还原酶的活性,但对 CYP2E1没有影响。提示绞股蓝与药物合用时,在体内可能会发生代谢性药物相互作用。  相似文献   

19.
Little is known about the correlations between biotransformation enzymes in juvenile birds after exposure to environmental toxicants like PCBs. In this study eggs of domestic chicken (Gallus domesticus) were dosed with PCB126 in concentrations of 0.175-0.325 ng/g egg weight. Liver subcellular fractions were analyzed for activities of Phase 1 and Phase 2 biotransformation enzymes 2 and 5 weeks post-hatch. Ethoxyresorufin O-deethylase (EROD) activity was increased in both the 2-week and 5-week samples. Glutathione-S-transferase (GST) activity was increased in the 2-week samples only, but the 5-week samples showed an overall much higher GST activity, probably as a result of a still developing enzyme expression in maturing chickens. The same pattern was seen in the phenol-type UDP-glucuronosyltransferase (UGT) activity of the control animals. The week two samples showed a positive dose-response relationship for the UGT activity, but after 5 weeks this was reversed, possibly caused by inhibition of hydroxylated PCB metabolites. Phenol-type sulfotransferase (SULT) activities were not significantly correlated with time or dose. There was a strong positive regression between the Ah-receptor mediated EROD and UGT activities. The EROD activities were also positively correlated to the GST activities. Most interesting was a negative correlation between the UGT and SULT activities: an inhibited UGT activity appeared to be compensated by an increased SULT activity.  相似文献   

20.
CYP1A is known to play important roles in the metabolism, detoxification and bioactivation of carcinogens and other xenobiotics in animals including fish. In our laboratory, CYP1A1 was obtained in a highly purified form with a specific content of 15-17 nmol P450 per mg protein from liver microsomes of feral fish, leaping mullet (Liza saliens). Purified mullet CYP1A1 showed a very high substrate specificities for 7-ethoxyresorufin and 7-methoxyresorufin in a reconstituted system containing purified fish P450 reductase and lipid. In addition, effects of each individual components of the reconstituted system, i.e., CYP1A1 and P450 reductase on 7-methoxyresorufin O-demethylase (MROD) activity were studied. 7-ethoxyresorufin O-deethylase (EROD) activity was strongly inhibited by alpha-naphthoflavone (ANF). At 0.5 and 2.5 microM. ANF inhibited EROD activity by 90 and 98%, respectively. Mullet CYP1A1 did not catalyze monooxygenations of other substrates such as aniline, ethylmorphine, N-nitrosodimethylamine and p-nitrophenol. Antibodies produced against CYP1A1 orthologues in fish such as trout and scup showed strong cross-reactivity with the purified mullet CYP1A1. In addition, anti-L. saliens liver CYP1A1 produced in our laboratory inhibited both the EROD and MROD activities catalyzed by L. saliens liver microsomes but stronger inhibition was observed with EROD activity. On the other hand, anti-mullet CYP1A1 antibodies showed very weak cross-reactivity with two proteins (presumably CYP1A1 and CYP1A2) in 3MC-treated rat liver microsomes. Moreover, 3MC-treated rat liver microsomal EROD activity was weakly inhibited by the anti-L. saliens liver CYP1A1. These results strongly suggested that the purified mullet CYP1A1 is structurally, functionally and immunochemically similar to the CYP1A1 homologues purified from other teleost species but functionally and immunochemically distinct from mammalian CYP1A1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号