首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of barley seeds (Hordeum vulgare L.) with streptomycin, an inhibitor of plastid protein synthesis, resulted in growth of the albino phenotype seedlings with ribosome-deficient undifferentiated plastids and chlorophyll (Chl) level as low as 0.1% of that in control plant leaves. A major effect of the antibiotic was almost complete suppression of the ability of plants to synthesize 5-aminolevulinic acid (ALA) intended for Chl biosynthesis. The activity of synthesis of ALA intended for heme porphyrin biosynthesis in etiolated and greening seedlings and in light-grown albinophenotype plants was insensitive to light and cytokinins. In the upper parts of leaves of streptomycin-treated plants, exhibiting 60% Chl deficit, the cells with three types of chloroplasts could be observed: normally developed chloroplasts, chloroplasts composed of single thylakoids and grana, and completely undifferentiated plastids. In this Chl-deficient tissue, ALA synthesis was found to be stimulated by kinetin but much less than in leaves of the control plants. The endogenous cytokinin content in etiolated and greening seedlings treated with streptomycin was almost the same as it was in untreated control seedlings. The cytokinin level in the white tissue of plants grown in the light was on average twice as high as that in green leaves of the control plants. The capability of kinetin to stimulate the synthesis of ALA used for Chl biosynthesis was found to correlate with the Chl content and organization of the chloroplast internal structure. This correlation confirms the hypothesis that the normally developed internal structure of plastids is essential for the adequate phytohormone response in plants.  相似文献   

2.
Transformation of protochlorophyllide forms in etiolated barley seedlings and biogenesis of photosynthetic apparatus in greening leaves of 7-day-old etiolated barley seedlings (Hordeum vulgare L.) were studied under the inhibition of energy processes during illumination. Repression of electron transport between photosystem 2 and 1 (PS2 and PS1, respectively) with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron) inhibited the photochemical activity of PS2 but did not affect chlorophyll biosynthesis and ATP content in leaves compared to the control. Inhibition of mitochondrial electron transport with sodium azide increased relative content of nonphotoactive protochlorophyllide in etiolated leaves, decreased the content of ATP, chlorophylls, and carotenoids and completely suppressed the functional activity of PS 2. The inhibitor of glycolysis sodium fluoride affected all the parameters even more strongly. We observed synchronism in the accumulation of chlorophylls and carotenoids during greening for all inhibitor variants other than fluoride (correlation coefficient, r, equal to 0.98, 0.97, 0.97, and 0.47 with the significance level of 0.01; 0.015; 0.015, and 0.27 for control, diuron, azide, and sodium fluoride, respectively). The change in chlorophyll content under the influence of inhibitors positively correlated with the amount of ATP in the leaf tissue (for 24 h greening, r = 0.97 with significance level of 0.015). We suggest that sources of ATP involved in the synthesis of chlorophyll during greening of etiolated barley seedlings are mostly of non-plastid origin.  相似文献   

3.
Meller E  Gassman ML 《Plant physiology》1981,67(6):1065-1068
4,6-Dioxoheptanoic acid (DA), an inhibitor of 5-aminolevulinic acid (ALA) dehydratase (EC 4.3.1.24), causes ALA to accumulate at the expense of chlorophyll when applied to greening leaves of Hordeum vulgare L. var. Larker. Preincubating etiolated leaves with DA in darkness eliminates the lag phase in ALA accumulation during a subsequent exposure to illumination. More than 50% of the DA taken up during a 2-hour incubation disappeared during a subsequent 4-hour incubation. These results suggest that barley leaves can metabolize DA, and the products of this metabolism may enhance the capacity for ALA synthesis.  相似文献   

4.
In greening etiolated primary leaves of barley (Hordeum vulgare L.), Mn2+ ions have been shown to inhibit chlorophyll (Chl) accumulation in a dose dependent manner and to lead to an accumulation of protoporphyrin IX (Proto) and Mg-protoporphyrin IX monomethyl ester (MgPE). The amount of MgPE that accumulated, was 2 times higher than Proto. In the dark, Proto and MgPE were observed to have accumulated to high levels in seven-day old green and etiolated leaves in the presence of 5 mmol/L Mn2+, but only if 5 mmol/L δ-aminolevulinic acid (ALA) was present. The 24 hours of irradiation of the green barley leaves treated in this way, resulted in a photodynamic destruction of Proto and MgPE as well as of Chl and carotenoids (Car). The observed porphyrin accumulation caused by the Mn2+ ions was reversed in the presence of active iron (Fe2+). This effect was observed when the iron concentration in incubation solutions was half the Mn2+ concentration, most effective for porphyrin synthesis, i.e. 5 mmol/L. The action of Mn2+ on porphyrin accumulation is also discussed.  相似文献   

5.
Application of levulinic acid (LA), a competitive inhibitor of δ-aminolevulinic acid (ALA) dehydratase, to greening plant tissues causes ALA to accumulate at the expense of chlorophyll. 4,6-Dioxoheptanoic acid (DA), which has been reported to be an effective inhibitor of this enzyme in animal systems, has a similar but more powerful effect on ALA and chlorophyll metabolism in greening leaves of Hordeum vulgare L. var. Larker. Both LA and DA also inhibit the uptake of [14C]amino acids into etiolated and greening barley leaves and reduce their incorporation into protein. Treatment of etiolated and greening leaves with these compounds results in the inhibition of 14CO2 evolution from labeled precursors, including amino and organic acids. Inhibition of 14CO2 evolution by these compounds is more effective in greening leaves than in etiolated leaves when [4-14C]ALA or [1-14C]glutamate are employed as precursors. Both LA and DA also inhibit the uptake and increase the incorporation of 32Pi into organophosphorus by etiolated barley leaves. These results indicate that LA and DA have more far-reaching effects upon plant metabolism than was previously believed.  相似文献   

6.
The content of monogalactosyl diglyceride, digalactosyl diglyceride, sulfoquinovosyl diglyceride and phosphatidyl glycerol of gel-filtrated etio-chloroplasts isolated from greening barley seedlings was determined. The development of photosynthetic electron transport, measured as anthraquinone autooxidation, was simultaneously determined with an oxygen electrode. During the first hour of irradiation of the etiolated seedlings the lipid content of the plastids decreased rapidly. The decrease is interpreted as a chlorophyll sensitized photooxidation of the fatty acids of the diglycerides. With artificial electron donors an oxygen uptake was detected after 10 min of greening. With no donors added, a DCMU sensitive oxygen uptake was detected after 2 h. The level of DCMU inhibition increased as the plastid developed and total inhibition was obtained after 5 h. Between 2 and 6 h of greening the lipid content of the plastids stayed constant. During this greening period there was a correlation between the appearance of a DCMU sensitive electron transport and the accumulation of the trans-3-hexadecenoic acid of phosphatidyl glycerol. The trans-3-hexadecenoic acid was present already in the dark-grown seedlings but an increase in content did not occur until after 3 h. The lipid content increased after 6 h of greening. This increase coincided well in time with the formation of grana. The fatty acid composition of the individual lipids, with the exception of phosphatidyl glycerol, and the monogalactosyl diglyceride to digalactosyl diglyceride ratios did not change fundamentally during the greening.  相似文献   

7.
Biogenesis of the photosynthetic apparatus in greening etiolated leaves of barley (Hordeum vulgare L) was investigated by an approach permitting investigation of this process under conditions that minimize differences in plastid development. Distributions of barley leaves greening for 24 h as to chlorophyll content and of chloroplast grana as to number of thylakoids were shown to be of a multimodal character. The shape of time-course curves of chlorophyll accumulation in local sites of greening etiolated leaves was of a stepped or (at the end of greening) undulated character. The stepwise accumulation of chlorophyll was accompanied by wave-like changes in chlorophyll b/a ratio, intensity of low-temperature chlorophyll fluorescence and photosynthetic activity with minima at the time points of transition to accelerated chlorophyll accumulation. It is assumed that (1) development of the photosynthetic apparatus in local sites of greening etiolated leaves occurs stepwise, from one steady level to another, but not as gradually as is generally accepted, and (2) every separate step in development of the photosynthetic apparatus seems to begin with formation of photosystem cores and to end with the synthesis of light-harvesting complexes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Cytokinin promotes morphological and physiological processes including the tetrapyrrole biosynthetic pathway during plant development. Only a few steps of chlorophyll (Chl) biosynthesis, exerting the phytohormonal influence, have been individually examined. We performed a comprehensive survey of cytokinin action on the regulation of tetrapyrrole biosynthesis with etiolated and greening barley seedlings. Protein contents, enzyme activities and tetrapyrrole metabolites were analyzed for highly regulated metabolic steps including those of 5-aminolevulinic acid (ALA) biosynthesis and enzymes at the branch point for protoporphyrin IX distribution to Chl and heme. Although levels of the two enzymes of ALA synthesis, glutamyl-tRNA reductase and glutamate 1-semialdehyde aminotransferase, were elevated in dark grown kinetin-treated barley seedlings, the ALA synthesis rate was only significantly enhanced when plant were exposed to light. While cytokinin do not stimulatorily affect Fe-chelatase activity and heme content, it promotes activities of the first enzymes in the Mg branch, Mg protoporphyrin IX chelatase and Mg protoporphyrin IX methyltransferase, in etiolated seedlings up to the first 5 h of light exposure in comparison to control. This elevated activities result in stimulated Chl biosynthesis, which again parallels with enhanced photosynthetic activities indicated by the photosynthetic parameters F V/F M, J CO2max and J CO2 in the kinetin-treated greening seedlings during the first hours of illumination. Thus, cytokinin-driven acceleration of the tetrapyrrole metabolism supports functioning and assembly of the photosynthetic complexes in developing chloroplasts.  相似文献   

9.
10.
Osmotic stress induced with 1 M sorbitol inhibited δ-aminolevulinic acid dehydratase (ALAD) and aminolevulinic acid (ALA) synthesizing activities in etiolated maize leaf segments during greening; the ALAD activity was inhibited to a greater extent than the ALA synthesis. When the leaves were exposed to light, the ALAD activity increased for the first 8 h, followed by a decrease observed at 16 and 24 h in both sorbitol-treated and untreated leaf tissues. The maximum inhibition of the enzyme activity was observed in the leaf segments incubated with sorbitol for 4 to 8 h. Glutamate increased the ALAD activity in the in vitro enzymatic preparations obtained from the sorbitol-treated leaf segments; sorbitol inhibited the ALAD activity in the preparations from both sorbitol-treated and untreated leaves. It was suggested that sorbitol-induced osmotic stress inhibits the enzyme activity by affecting the ALAD induction during greening and regulating the ALAD steady-state level of ALAD in leaf cells. The protective effect of glutamate on ALAD in the preparations from the sorbitol-treated leaves might be due to its stimulatory effect on the enzyme.  相似文献   

11.
European larch (Larix decidua Mill.) and Norway spruce [Picea abies (L.) Karst.] synthesize chlorophyll (Chl) in darkness. This paper compares Chl accumulation in 14-d-old dark-grown seedlings of L. decidua and P. abies after shortterm (24 h) feeding with 5-aminolevulinic acid (ALA). We used two ALA concentrations (1 and 10 mM) fed to cotyledons of both species in darkness and in continuous light. The dark-grown seedlings of L. decidua accumulated Chl only in trace amounts and the seedlings remained etiolated. In contrast, P. abies seedlings grown in darkness were green and had significantly higher Chl content. After ALA feeding, higher protochlorophyllide (Pchlide) content was observed in L. decidua than in P. abies cotyledons incubated in darkness. Although short-term ALA feeding stimulated the synthesis of Pchlide, Chl content did not change significantly in cotyledons incubated in darkness. The Chl accumulation in cotyledons fed with ALA was similar to the rate of Chl accumulation in the controls. Higher Chl accumulation was reported in control samples after illumination: 86.9% in L. decidua cotyledons and 46.4% in P. abies cotyledons. The Chl content decreased and bleaching occurred in cotyledons incubated with ALA in light due to photooxidation. Analyses of Chlbinding proteins (D1 and LHCIIb) by Western blotting proved differences between Chl biosynthesis in L. decidua and P. abies seedlings in the dark and in the light. No remarkable increase was found in protein accumulation (D1 and LHCIIb) after ALA application. Our results showed interspecific difference in Chl synthesis between two gymnosperms. Shortterm ALA feeding did not stimulate Chl synthesis, thus ALA synthesis was not the rate-limiting step in Chl synthesis in the dark.  相似文献   

12.
In etiolated leaves, saturating flash of 200 ms induces phototransformation of protochlorophyllide (Pchlide) F655 into chlorophyllide (Chlide), then into Chl through reactions which do not need light sensibilisation. The synthesis of Chl is known to be slowed down in etiolated leaves exposed to desiccation stress. In order to analyse the intensity and time-course of Chlide transformation into Chl, we used the fluorescence emission of etiolated leaves previously exposed to a 200 ms saturating flash. We used low-temperature fluorescence spectroscopy to reveal the inhibition site of Chl synthesis in etiolated barley leaves exposed to water stress. Shibata shift appears as the main target point of the water deficit. It was found that water deficit inhibits partially active Pchlide F655 regeneration. Also, esterification of Chlide into Chl is impaired. It appears that these inhibitory effects alter the appearance of PSII active reaction centres.  相似文献   

13.
Induction of nitrate reductase EC 1.6.6.1 in etiolated barley (Hordeum vulgare L., var. Proctor) required continuous illumination and showed a lag period of about three hours. During the first 16 h of illumination the ratio NADH/NAD and NADPH/NADP, taken as a measure of internal oxidation reduction potential, declined. The inhibitor DCMU applied to whole leaves at concentrations shown to inhibit the reduction of cytochrome f by Photosystem 2 light did not inhibit the induction of nitrate reductase nor did it diminish the ratio of reduced to oxidised puridine nucleotides in the early hours of greening. It was concluded that light driven electron flow was not necessary for nitrate reductase induction. Chloramphenicol gave a slight inhibition of nitrate reductase induction. Laevulinic acid was added to greening barley leaves to inhibit tetrapyrrole pigment biosynthesis and plastid development. It strongly inhibited chlorophyll synthesis and nitrate reductase induction, with relatively little effect upon Photosystem 1 and 2 activities in isolated plastids. The activities of other inducible enzymes and control enzymes were little affected by laevulinic acid. Laevulinic acid also inhibited nitrate reductase induction by added nitrate in fully-greened illuminated plants grown in nitrate-free medium and so is unlikely to be acting through inhibition of plastid development. This inhibitor lowered the level of protohaem in whole leaves and plastids of greening barley and it is postulated that it may diminish the protohaem available for the assembly of a cytochrome b component of nitrate reductase.Abbreviations DCMU 3-(3:4-Dichlorophenyl)-1:1-dimethylurea - LA laevulinic acid  相似文献   

14.
Toneva  V.  Shalygo  N.  Yaronskaya  E.  Averina  N.  Minkov  I. 《Photosynthetica》1998,34(4):555-560
The influence of 2,2′-dipyridyl (2,2′-DP) on the activity of one of the enzymes at the initial stages of chlorophyll (Chl) biosynthesis, δ-aminolevulinic acid dehydratase (ALAD; δ-aminolevulinate hydro-lyase, EC 4.2.1.24), as well as on δ-aminolevulinic acid (ALA) accumulation was investigated in green barley (Hordeum vulgare L.) leaves. In seven-day-old green leaves treated with 3 mM 2,2′-DP for 17 h in darkness and subsequently irradiated with "white light" (15 W m-2) for 4, 8, and 24 h the ALAD activity was 51 % as compared to that in untreated leaves. At the same time, the ALA forming system was most sensitive to the photodynamic processes caused by 2,2′-DP. After 8 h of irradiation, ALA synthesis was entirely inhibited. After the treatment the leaves accumulated exceptionally high amounts of Chl precursors such as protoporphyrin IX (Proto), Mg-protoporphyrin IX (Mg-Proto), its monomethyl ester, and protochlorophyllide (Pchlide) that are photosensitizers of photodynamic processes in plants. A comparatively low Chl and carotenoid (Car) destruction was registered during the subsequent 4 and 8 h of irradiation. At the same time, the content of Chl precursors was negligible. The low photodestruction of Chl and Car included in pigment-protein complexes, against the background of fast porphyrin disappearance, and fast decrease of enzymatic activities at the initial stages of Chl production could mean that the photodynamic effect induced by porphyrins accumulated in the presence of 2,2′-DP affected first the Chl enzymatic system and did not change the pool of already synthesized photosynthetic pigments.  相似文献   

15.
Protochlorophyllide 650 (PChld 650) regeneration following asingle brief illumination of the cotyledons of Pharbitis nilwas studied by monitoring the in vivo absorbance at 650 nm. The lag period for PChld regeneration, the regeneration rate,the final concentration of regenerated PChld, and PChld accumulatedin darkness in etiolated cotyledons were affected by age. ThePChld content in etiolated leaves and the content of PChld regeneratedafter brief illumination similarly increased up to age 2 (2days after the appearance of cotyledons on vermiculite), thendecreased with age. The duration of the Shibata shift was also influenced by age,becoming longer with age. PChld regeneration began about 4 minbefore the end of the Shibata shift regardless of age. (Received April 18, 1977; )  相似文献   

16.
The incorporation of radioactive aminolevulinic acid (ALA) into chlorophyll (Chl) a and b , as well as protochlorophyllide (Pchlide) in light-grown barley seedlings ( Hordeum vulgare L. cv. Clipper) transferred to darkness is demonstrated.
In the experiments described, 6-day-old, glasshouse-grown seedlings were transferred to darkness and incubated in [14C]- or [3H]- ALA for 18 h.
Chl a and b were extracted and purified to constant specific radioactivity by HPLC and TLC of their magnesium-free derivatives, pheophytin a and b . The presence of label in the tetrapyrrole ring of the Chls was established by removal of the phytol chain by alkaline hydrolysis and determination of the specific radioactivity of the chlorin e 6 and rhodin g 7 derivatives.
Barley seedlings that had been grown in darkness for 5 days, transferred to light for 20 h, and then returned to darkness in the presence of radioactive ALA also incorporated label into Chl. However, this was only apparent in intact seedlings. Excised leaves from greened etiolated plants did not incorporate ALA into Chl in darkness. This was consistent with the finding of Apel et al. (K. Apel, M. Motzkus and K. Dehesh, 1984. Planta 161: 550–554) and may account for their failure to obtain evidence for a light-independent protochlorophyllide reductase in greening barley.
Although the incorporation of ALA into Chl compared to Pchlide was slight (5%), the presence of label in the tetrapyrrole nucleus of Chl a and b is unequivocal evidence of a light-independent pathway of Chl biosynthesis in barley that has been exposed to light during development. Limited entry of exogenous labelled ALA into the precursor pools leading to the dark reduction of Pchlide is postulated.  相似文献   

17.
Extracts of soybean (Glycine max) root nodules and greening etiolated leaves catalyzed radiolabeled delta-aminolevulinic acid (ALA) formation from 3,4-[3H]glutamate but not from 1-[14C]glutamate. Nevertheless, those tissue extracts expressed the activity of glutamate 1-semialdehyde (GSA) aminotransferase, the C5 pathway enzyme that catalyzes ALA synthesis from GSA for tetrapyrrole formation. A soybean nodule cDNA clone that conferred ALA prototrophy, GSA aminotransferase activity, and glutamate-dependent ALA formation activity on an Escherichia coli GSA aminotransferase mutant was isolated. The deduced product of the nodule cDNA shared 79% identity with the GSA aminotransferase expressed in barley leaves, providing, along with the complementation data, strong evidence that the cDNA encodes GSA aminotransferase. GSA aminotransferase mRNA and enzyme activity were expressed in nodules but not in uninfected roots, indicating that the Gsa gene is induced in the symbiotic tissue. The Gsa gene was strongly expressed in leaves of etiolated plantlets independently of light treatment and, to a much lesser extent, in leaves of mature plants. We conclude that GSA aminotransferase, and possibly the C5 pathway, is expressed in a nonphotosynthetic plant organ for nodule heme synthesis and that Gsa is a regulated gene in soybean.  相似文献   

18.
We examined changes in the protein composition of cytoplasmic ribosomes in etiolated barley leaves following illumination. Cytoplasmic ribosomes were isolated from greening barley leaves by sucrose density gradient centrifugation, and were analyzed by radical-free highly reducing polyacrylamide gel electrophoresis (RFHR-PAGE). Eighty-nine proteins were resolved from the ribosomal fraction; among them, 8 proteins changed their copy numbers depending on the stage of greening. We designated these as phase dependent ribosomal proteins (PD1–PD8). Two of the proteins (PD1 and 5) present in the ribosomes of etiolated leaves showed a decrease in level during greening. In contrast, the levels of 6 ribosomal proteins (PD2, 3, 4, 6, 7 and 8) increased as greening proceeded. N-terminal amino acid sequence of PD8 showed high homology to rat ribosomal protein L34. The ribosomal proteins that appeared after illumination were not found in any fraction of the etiolated leaves, suggesting that they were synthesized after the onset of illumination. Copy numbers of other ribosomal proteins did not change during greening.  相似文献   

19.
In order to study the coordinate accumulation of chlorophyll (Chl) and apoproteins of Chl-protein complexes (CPs) during chloroplast development, we examined changes in the accumulation of the apoproteins in barley (Hordeum vulgare L.) leaves when the rate of Chl synthesis was altered by feeding 5-aminolevulinic acid (ALA), a precursor of Chl biosynthesis. Pretreatment with ALA increased the accumulation of Chl a and Chl b 1.5- and 2.3-fold, respectively, after 12 cycles of intermittent light (2 min light followed by 28 min darkness). Apoproteins of the light-harvesting Chl a/b-protein complex of photosystem II (LHCII) were increased 2.4-fold with ALA treatment. However, apoproteins of the P700-Chl a-protein complex (CP1) and the 43-kDa apoprotein of a Chl a-protein complex of photosystem II (CPa) were not increased by ALA application. With respect to CPs themselves, LHCII was increased when Chl synthesis was raised by ALA feeding, whereas CP1 exhibited no remarkable increase. These results indicate that LHCII serves a role in maintaining the stoichiometry of Chl to apoproteins by acting as a temporary pool for Chl molecules.Abbreviations ALA 5-aminolevulinic acid - Chl chlorophyll - CP chlorophyll-protein complex - CPa chlorophyll a-protein complex of PSII - CP1 P700-chlorophyll a-protein complex - LDS lithium dodecyl sulfate - LHCII light-harvesting chlorophyll a/b-protein complex of PSII This work was supported by the Grants-in-Aid for Scientific Research (04304004) from the Ministry of Education, Science and Culture, Japan.  相似文献   

20.
The effect of horizontal clinorotation on the dynamics of the accumulation of the main photosynthetic pigments in the greening of 6-day-old etiolated barley seedlings has been studied. The content of protochlorophillide, the direct precursor of chlorophyll a, in clinorotated seedlings in the dark was 9–20% lower than in the control group. After exposure of barley seedlings to light for 12 h under clinorotation, chlorophyll accumulation lagged behind the control by 45% and reached the control value after 48–72 h. The total content of carotenoids increased many fold during greening; at the first stage the carotenoid level in clinorotated seedlings was less than in the control. The synthesis rates of δ-aminolevulinic acid and δ-aminolevulinate dehydratase activity in clinorotated seedlings were slower than in the control after 24 h of greening and after 72 h of greening reaching the control values. The activity of Mg-protoporphyrin IX chelatase catalyzing the incorporation of Mg ions in the structure of chlorophyll a, did not change when exposed to clinorotation. The results we obtained show inhibition of the initial stages of chlorophyll biosynthesis in the conditions of simulated microgravity. The light, to a certain extent, decreases the negative effect of microgravity on the formation of the photosynthetic apparatus in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号