首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Transmembrane adaptor molecule LAT (linker for activation of T cells) forms a central scaffold for signaling protein complexes that accumulate in the vicinity of activated T cell antigen receptors (TCR). Here we used biochemical analysis of immunoisolated plasma membrane domains and fluorescence imaging of green fluorescence protein-tagged signaling proteins to investigate the contributions of different tyrosine-based signaling protein docking sites of LAT to the formation of LAT signaling protein assemblies in TCR membrane domains. We found that the phospholipase C gamma docking site of LAT and different Grb2/Gads docking sites function in an interdependent fashion and synergize to accumulate LAT, Grb2, and phospholipase C gamma in TCR signaling assemblies. Two-dimensional gels showed that Grb2 is a predominant cytoplasmic adaptor in the isolated LAT signaling complexes, whereas Gads, Crk-1, and Grap are present in lower amounts. Taken together our data suggest a synergistic assembly of multimolecular TCR.LAT signal transduction complexes in T cell plasma membrane domains.  相似文献   

2.
The Src family tyrosine kinase Lck is essential for T cell development and T cell receptor (TCR) signaling. Lck is post-translationally fatty acylated at its N-terminus conferring membrane targeting and concentration in plasma membrane lipid rafts, which are lipid-based organisational platforms. Confocal fluorescence microscopy shows that Lck colocalizes in rafts with GPI-linked proteins, the adaptor protein LAT and Ras, but not with non-raft membrane proteins including the protein tyrosine phosphatase CD45. The TCR also associates with lipid rafts and its cross-linking causes coaggregation of raft-associated proteins including Lck, but not of CD45. Cross-linking of either the TCR or rafts strongly induces specific tyrosine phosphorylation of the TCR in the rafts. Remarkably, raft patching alone induces signalling events analogous to TCR stimulation, with the same dependence on expression of key TCR signalling molecules. Our results indicate a mechanism whereby TCR engagement promotes aggregation of lipid rafts, which facilitates colocalization of signaling proteins including Lck, LAT, and the TCR, while excluding CD45, thereby potentiating protein tyrosine phosphorylation and downstream signaling. We are currently testing this hypothesis as well as using imaging techniques such as fluorescence resonance energy transfer (FRET) microscopy to study the dynamics of proteins and lipids in lipid rafts in living cells undergoing signaling events. Recent data show that the key phosphoinositide PI(4,5)P2 is concentrated in T cell lipid rafts and that on stimulation of the cells it is rapidly converted to PI(3,4,5)P3 and diacylglycerol within rafts. Thus rafts are hotspots for both protein and lipid signalling pathways.  相似文献   

3.
Lipid rafts are known to aggregate in response to various stimuli. By way of raft aggregation after stimulation, signaling molecules in rafts accumulate and interact so that the signal received at a given membrane receptor is amplified efficiently from the site of aggregation. To elucidate the process of lipid raft aggregation during T cell activation, we analyzed the dynamic changes of a raft-associated protein, linker for activation of T cells (LAT), on T cell receptor stimulation using LAT fused to GFP (LAT-GFP). When transfectants expressing LAT-GFP were stimulated with anti-CD3-coated beads, LAT-GFP aggregated and formed patches at the area of bead contact. Photobleaching experiments using live cells revealed that LAT-GFP in patches was markedly less mobile than that in nonpatched regions. The decreased mobility in patches was dependent on raft organization supported by membrane cholesterol and signaling molecule binding sites, especially the phospholipase C gamma 1 binding site in the cytoplasmic domain of LAT. Thus, although LAT normally moves rapidly at the plasma membrane, it loses its mobility and becomes stably associated with aggregated rafts to ensure organized and sustained signal transduction required for T cell activation.  相似文献   

4.
T cell membrane receptors and signaling molecules assemble at the immunological synapse (IS) in a supramolecular activation cluster (SMAC), organized into two differentiated subdomains: the central SMAC (cSMAC), with the TCR, Lck, and linker for activation of T cells (LAT), and the peripheral SMAC (pSMAC), with adhesion molecules. The mechanism of protein sorting to the SMAC subdomains is still unknown. MAL forms part of the machinery for protein targeting to the plasma membrane by specialized mechanisms involving condensed membranes or rafts. In this article, we report our investigation of the dynamics of MAL during the formation of the IS and its role in SMAC assembly in the Jurkat T cell line and human primary T cells. We observed that under normal conditions, a pool of MAL rapidly accumulates at the cSMAC, where it colocalized with condensed membranes, as visualized with the membrane fluorescent probe Laurdan. Mislocalization of MAL to the pSMAC greatly reduced membrane condensation at the cSMAC and redistributed machinery involved in docking microtubules or transport vesicles from the cSMAC to the pSMAC. As a consequence of these alterations, the raft-associated molecules Lck and LAT, but not the TCR, were missorted to the pSMAC. MAL, therefore, regulates membrane order and the distribution of microtubule and transport vesicle docking machinery at the IS and, by doing so, ensures correct protein sorting of Lck and LAT to the cSMAC.  相似文献   

5.
Tcell antigen receptor (TCR) ligation initiates tyrosine kinase activation, signaling complex assembly, and immune synapse formation. Here, we studied the kinetics and mechanics of signaling complex formation in live Jurkat leukemic T cells using signaling proteins fluorescently tagged with variants of enhanced GFP (EGFP). Within seconds of contacting coverslips coated with stimulatory antibodies, T cells developed small, dynamically regulated clusters which were enriched in the TCR, phosphotyrosine, ZAP-70, LAT, Grb2, Gads, and SLP-76, excluded the lipid raft marker enhanced yellow fluorescent protein-GPI, and were competent to induce calcium elevations. LAT, Grb2, and Gads were transiently associated with the TCR. Although ZAP-70-containing clusters persisted for more than 20 min, photobleaching studies revealed that ZAP-70 continuously dissociated from and returned to these complexes. Strikingly, SLP-76 translocated to a perinuclear structure after clustering with the TCR. Our results emphasize the dynamically changing composition of signaling complexes and indicate that these complexes can form within seconds of TCR engagement, in the absence of either lipid raft aggregation or the formation of a central TCR-rich cluster.  相似文献   

6.
The role of lipid rafts in T cell antigen receptor (TCR) signaling was investigated using fluorescence microscopy. Lipid rafts labeled with cholera toxin B subunit (CT-B) and cross-linked into patches displayed characteristics of rafts isolated biochemically, including detergent resistance and colocalization with raft-associated proteins. LCK, LAT, and the TCR all colocalized with lipid patches, although TCR association was sensitive to nonionic detergent. Aggregation of the TCR by anti-CD3 mAb cross-linking also caused coaggregation of raft-associated proteins. However, the protein tyrosine phosphatase CD45 did not colocalize to either CT-B or CD3 patches. Cross-linking of either CD3 or CT-B strongly induced tyrosine phosphorylation and recruitment of a ZAP-70(SH2)(2)-green fluorescent protein (GFP) fusion protein to the lipid patches. Also, CT-B patching induced signaling events analagous to TCR stimulation, with the same dependence on expression of key TCR signaling molecules. Targeting of LCK to rafts was necessary for these events, as a nonraft- associated transmembrane LCK chimera, which did not colocalize with TCR patches, could not reconstitute CT-B-induced signaling. Thus, our results indicate a mechanism whereby TCR engagement promotes aggregation of lipid rafts, which facilitates colocalization of LCK, LAT, and the TCR whilst excluding CD45, thereby triggering protein tyrosine phosphorylation.  相似文献   

7.
T-cell antigen receptor engagement causes the rapid assembly of signaling complexes. The adapter protein SLP-76, detected as SLP-yellow fluorescent protein, initially clustered with the TCR and other proteins, then translocated medially on microtubules. As shown by total internal reflection fluorescence microscopy and the inhibition of SLP-76 movement at 16 degrees C, this movement required endocytosis. Immunoelectron microscopy showed SLP-76 staining of smooth pits and tubules. Cholesterol depletion decreased the movement of SLP-76 clusters, as did coexpression of the ubiquitin-interacting motif domain from eps15. These data are consistent with the internalization of SLP-76 via a lipid raft-dependent pathway that requires interaction of the endocytic machinery with ubiquitinylated proteins. The endocytosed SLP-76 clusters contained phosphorylated SLP-76 and phosphorylated LAT. The raft-associated, transmembrane protein LAT likely targets SLP-76 to endocytic vesicles. The endocytosis of active SLP-76 and LAT complexes suggests a possible mechanism for downregulation of signaling complexes induced by TCR activation.  相似文献   

8.
We studied the function of lipid rafts in generation and signaling of T-cell receptor microclusters (TCR-MCs) and central supramolecular activation clusters (cSMACs) at immunological synapse (IS). It has been suggested that lipid raft accumulation creates a platform for recruitment of signaling molecules upon T-cell activation. However, several lipid raft probes did not accumulate at TCR-MCs or cSMACs even with costimulation and the fluorescence resonance energy transfer (FRET) between TCR or LAT and lipid raft probes was not induced at TCR-MCs under the condition of positive induction of FRET between CD3ζ and ZAP-70. The analysis of LAT mutants revealed that raft association is essential for the membrane localization but dispensable for TCR-MC formation. Careful analysis of the accumulation of raft probes in the cell interface revealed that their accumulation occurred after cSMAC formation, probably due to membrane ruffling and/or endocytosis. These results suggest that lipid rafts control protein translocation to the membrane but are not involved in the clustering of raft-associated molecules and therefore that the lipid rafts do not serve as a platform for T-cell activation.Lipid rafts are specialized liquid-ordered membrane microdomains that are enriched in cholesterol and sphingolipids. Many studies using various methodologies have shown that lipid rafts exist as leaflets less than 200 nm in size and float on the plasma membrane (6, 10, 24, 28, 32). They have been implied to play a role in protein sorting and cell activation as a platform by recruiting various signaling molecules such as Src family kinases, G proteins, and adaptor molecules. Because of size limitation, all of the raft-associated molecules could not be accommodated on the same lipid raft, and heterogeneity of lipid rafts both in size and in the repertoire of resident molecules has been suggested (22). The functional importance of lipid rafts in signal transduction has been particularly appreciated in T-cell activation through the T-cell receptor (TCR). Some of the initial observations in this area included the findings that cross-linking of the raft-associated ganglioside GM1 induces T-cell activation (12) and that a mutant of LAT, a membrane adaptor protein, that was unable to localize to rafts failed to induce activation signals (33). Since then, increasing data have demonstrated that lipid raft accumulation creates a platform to stabilize the signaling complex for T-cell activation (13, 29).T cells are activated upon recognition of peptide-major histocompatibility complex (MHC) complexes expressed on antigen-presenting cells (APC). An immunological synapse (IS) is formed at the interface between the T cell and the APC where a specialized segregated structure of T-cell surface receptors is generated. This supramolecular activation cluster (SMAC) contains the TCR in the central region (cSMAC) and lymphocyte function-associated antigen 1 (LFA-1) in the peripheral region (pSMAC). The accumulation of lipid rafts at this interface, particularly in the cSMAC, has been suggested to create a transient structure to mediate signal transduction (13, 17). In addition, CD28-mediated costimulation has been suggested to enhance lipid raft accumulation and TCR activation (29). However, the idea that lipid rafts accumulated in the cSMAC serve as the platform for T-cell activation has been controversial; the accumulation of the lipid raft was only partial in the contact area (3), or the concentration of lipid raft was constant even in the area of T-cell activation (5, 8, 28, 32). These variations could be partly attributed to differences in experimental approaches such as the cell systems being analyzed, stimulation conditions, and detection methods, including imaging and biochemical fractionation. The idea that the cSMAC is the site responsible for inducing signals for T-cell activation has been recently revised based on analysis of the dynamic assembly of signaling complexes upon TCR stimulation. Analysis of T-cell activation using a planar membrane system containing glycosylphosphatidylinositol (GPI)-anchored MHC-peptide complexes and the LFA-1 ligand intercellular adhesion molecule 1 (ICAM-1) revealed that small clusters containing approximately a hundred TCRs, kinases, and adaptors, which we termed TCR microclusters (MCs), were generated at the initial contact sites. This was followed by translocation of the MCs to the center of the interface to generate a cSMAC (31). Since protein phosphorylation, including that of ZAP-70, was induced in the TCR-MCs and Ca2+ mobilization was induced in parallel with the formation of TCR-MCs, these MCs appear to be the very first and minimum unit for generating TCR activation signals (31). Furthermore, a major costimulatory receptor, CD28, forms clusters which are also colocalized in TCR-MCs to regulate costimulatory signals (30).Among these TCR proximal signaling molecules, LAT is a well-studied raft-associated membrane adaptor protein that is indispensable for TCR activation. LAT is phosphorylated by ZAP-70 and then behaves as a signal scaffold, recruiting various signaling adaptors and effector molecules such as phospholipase Cγ (PLCγ), SLP-76, and Grb2/Gads. Because mutation of LAT palmitoylation sites (C26,29A) resulted in its dislocation from lipid rafts and defective signaling, it was concluded that the association with lipid rafts is essential for the function of LAT (33). However, a recent study showed that this mutant LAT has impaired trafficking to the plasma membrane in the Jurkat T-cell line (27), raising the question of whether the impaired signaling resulting from this LAT mutation was due to dislocation from the raft or defective trafficking to the membrane.Here, we analyzed the role of lipid rafts in T-cell activation, particularly their relationship with immunological synapse formation (9). Provided that lipid raft functions as a platform for T-cell activation, the new idea that TCR-MCs serve as the signal unit for activation would predict that lipid raft could be accumulated in or interact with TCR-MCs (29).Utilizing several lipid raft probes, which retain the capability of raft localization but lack signaling capacity, we found that the full-length LAT generated MCs, but none of the raft probes formed visible clusters at TCR-MCs or cSMAC, even in conjunction with CD28-mediated costimulation. Furthermore, no significant interaction between lipid rafts and TCR-MCs was revealed by fluorescence resonance energy transfer (FRET) analysis. Conversely, the non-raft-localizing LAT mutant showed MC formation upon TCR stimulation. These results suggest that lipid rafts do not serve as a platform for TCR signaling but rather regulate the traffic/recruitment of proteins to the plasma membrane. Furthermore, our data indicate that the previous observation of lipid raft accumulation at the cSMAC may reflect membrane ruffling and endocytosis rather than active formation of signal platform.  相似文献   

9.
10.
The TCR signal transduction is initiated by the activation of Src-family kinases (SFK) which phosphorylate Immunoreceptor tyrosine-based activation motifs (ITAM) present in the intracellular parts of the T-cell receptor (TCR) signaling subunits. Numerous data suggest that after stimulation TCR interacts with membrane rafts and thus it gains access to SFK and other important molecules involved in signal transduction. However, the precise mechanism of this process is unclear. One of the key questions is how SFK access TCR and what is the importance of non-raft and membrane raft-associated SFK for the initiation and maintenance of the TCR signaling. To answer this question we targeted a negative regulator of SFK, C-terminal Src kinase (Csk) to membrane rafts, recently described “heavy rafts” or non-raft membrane. Our data show that only Csk targeted into “classical” raft but not to “heavy raft” or non-raft membrane effectively inhibits TCR signaling, demonstrating the critical role of membrane raft-associated SFK in this process.  相似文献   

11.
Engagement of immune receptors by antigen may lead to activation, cell proliferation, differentiation and effector functions. It has recently been proposed that the initiation and propagation of the signaling events taking place in immune cells occur in specialized membrane regions called lipid rafts. These detergent-insoluble glycolipid domains are specialized membrane compartments enriched in cholesterol and glycolipids. They also contain many lipid-modified signaling proteins such as tyrosine kinases of the Src family, GPI (glycosylphosphatidylinositol)-linked proteins as well as adaptor proteins. The confinement of signaling molecules in membrane subdomains suggests that lipid rafts function as platforms for the formation of multicomponent transduction complexes. Indeed, upon receptor binding, immune receptors become raft-associated and additional components of the signaling pathways are recruited to rafts in order to form signaling complexes. It has been speculated that the entry of immune receptors into rafts can regulate cell activation. Accordingly, numerous experiments have provided substantial evidence that raft integrity is crucial for the initiation and maintenance of intracellular signals. Recent studies have also shown that the access and translocation of immune receptors to lipid rafts are developmentally regulated (immature versus mature cells, Th1 versus Th2 lymphocytes) and sensitive to pharmacological agents. The aim of the present review is to summarize the current knowledge of immune receptor signal transduction with particular emphasis on the role of membrane compartments in immune activation. Finally, experimental evidences indicating that these membrane structures may represent clinically relevant potential targets for immune regulation, will be discussed.  相似文献   

12.
The integral membrane protein linker for activation of T cells (LAT) is a central adapter protein in the T-cell receptor (TCR)-mediated signaling pathways. The cellular localization of LAT is extremely sensitive to intracellular redox balance alterations. Reduced intracellular levels of the antioxidant glutathione (GSH), a hallmark of chronic oxidative stress, resulted in the membrane displacement of LAT, abrogated TCR-mediated signaling and consequently hyporesponsiveness of T lymphocytes. The membrane displacement of LAT is accompanied by a considerable difference in the mobility of LAT upon native and nonreducing denaturing polyacrylamide gel electrophoresis analysis, a finding indicative of a conformational change. Targeted mutation of redox-sensitive cysteine residues within LAT created LAT mutants which remain membrane anchored under conditions of chronic oxidative stress. The expression of redox-insensitive LAT mutants allows for restoration of TCR-mediated signal transduction, whereas CD28-mediated signaling pathways remained impaired. These results are indicative that the membrane displacement of LAT as a result of redox balance alterations is a consequence of a conformational change interfering with the insertion of LAT into the plasma membrane. Conclusively, the data suggest a role for LAT as a crucial intermediate in the sensitivity of TCR signaling and hence T lymphocytes toward chronic oxidative stress.  相似文献   

13.
For many types of cells, an increase in cell density leads to characteristic changes in intracellular signalling and cell function. It is unknown, however, whether cell density affects the function of T lymphocytes. It is presented here that aggregation of Jurkat T cells, murine thymocytes or human peripheral blood T cells, results in gradual modification of the Lck tyrosine kinase. Within one hour of aggregation, Lck in the detergent-insoluble lipid raft fraction is dephosphorylated mainly at the carboxy-terminal tyrosine. Further aggregation leads to gradual loss of Lck protein from both lipid raft and non-raft fractions which is accompanied by increased protein ubiquitination, a process that is more evident in the detergent-soluble fraction. In contrast, the expression of LAT, which like Lck distributes to raft and non-raft membrane, or Csk, a kinase with a structure similar to Lck, is not affected by cell aggregation. Dephosphorylation of lipid raft-associated Lck, albeit with reduced kinetics, is observed in aggregated Jurkat CD45-deficient cells as well, suggesting involvement of additional tyrosine phosphatases. Changes in Lck structure and expression correlate with reduced ability of aggregated cells to fully activate protein tyrosine phosphorylation after stimulation of the TCR, and with changes in the activation of down-stream signalling cascades.  相似文献   

14.
The linker for activation of T cells (LAT) is essential for signaling through the T cell receptor (TCR). Following TCR stimulation, LAT becomes tyrosine-phosphorylated, creating docking sites for other signaling proteins such as phospholipase C-gamma(1) (PLC-gamma(1)), Grb2, and Gads. In this study, we have attempted to identify the critical tyrosine residues in LAT that mediate TCR activation-induced mobilization of intracellular Ca(2+) and activation of the MAP kinase Erk2. By using the LAT-deficient Jurkat derivative, J.CaM2, stable cell lines were established expressing various tyrosine mutants of LAT. We show that three specific tyrosine residues (Tyr(132), Tyr(171), and Tyr(191)) are necessary and sufficient to achieve a Ca(2+) flux following TCR stimulation. These tyrosine residues function by reconstituting PLC-gamma(1) phosphorylation and recruitment to LAT. However, these same tyrosines can only partially reconstitute Erk activation. Full reconstitution of Erk requires two additional tyrosine residues (Tyr(110) and Tyr(226)), both of which have the Grb2-binding motif YXN. This reconstitution of Erk activation requires that the critical tyrosine residues be on the same molecule of LAT, suggesting that a single LAT molecule nucleates multiple protein-protein interactions required for optimal signal transduction.  相似文献   

15.
For many types of cells, an increase in cell density leads to characteristic changes in intracellular signalling and cell function. It is unknown, however, whether cell density affects the function of T lymphocytes. It is presented here that aggregation of Jurkat T cells, murine thymocytes or human peripheral blood T cells, results in gradual modification of the Lck tyrosine kinase. Within one hour of aggregation, Lck in the detergent-insoluble lipid raft fraction is dephosphorylated mainly at the carboxy-terminal tyrosine. Further aggregation leads to gradual loss of Lck protein from both lipid raft and non-raft fractions which is accompanied by increased protein ubiquitination, a process that is more evident in the detergent-soluble fraction. In contrast, the expression of LAT, which like Lck distributes to raft and non-raft membrane, or Csk, a kinase with a structure similar to Lck, is not affected by cell aggregation. Dephosphorylation of lipid raft-associated Lck, albeit with reduced kinetics, is observed in aggregated Jurkat CD45-deficient cells as well, suggesting involvement of additional tyrosine phosphatases. Changes in Lck structure and expression correlate with reduced ability of aggregated cells to fully activate protein tyrosine phosphorylation after stimulation of the TCR, and with changes in the activation of down-stream signalling cascades.  相似文献   

16.
Douglass AD  Vale RD 《Cell》2005,121(6):937-950
Membrane subdomains have been implicated in T cell signaling, although their properties and mechanisms of formation remain controversial. Here, we have used single-molecule and scanning confocal imaging to characterize the behavior of GFP-tagged signaling proteins in Jurkat T cells. We show that the coreceptor CD2, the adaptor protein LAT, and tyrosine kinase Lck cocluster in discrete microdomains in the plasma membrane of signaling T cells. These microdomains require protein-protein interactions mediated through phosphorylation of LAT and are not maintained by interactions with actin or lipid rafts. Using a two color imaging approach that allows tracking of single molecules relative to the CD2/LAT/Lck clusters, we demonstrate that these microdomains exclude and limit the free diffusion of molecules in the membrane but also can trap and immobilize specific proteins. Our data suggest that diffusional trapping through protein-protein interactions creates microdomains that concentrate or exclude cell surface proteins to facilitate T cell signaling.  相似文献   

17.
The protein tyrosine phosphatase Src homology 2 domain-containing phosphatase 1 (SHP-1) has previously been shown to be a negative regulator of signaling mediated via the TCR. A growing body of evidence indicates that the regulated localization of proteins within certain membrane subdomains, referred to as lipid rafts, is important for the successful transduction of signaling events downstream of the TCR. However, considerably less is known about the localization of negative regulators during these lipid raft-dependent signaling events. In this study we have investigated the subcellular localization of SHP-1 and its role in regulation of TCR-mediated signaling. Our studies demonstrate that in a murine T cell hybridoma as well as in primary murine thymocytes, a fraction of SHP-1 localizes to the lipid rafts, both basally and after TCR stimulation. Interestingly, although SHP-1 localized in the nonraft fractions is tyrosine phosphorylated, the SHP-1 isolated from the lipid rafts lacks the TCR-induced tyrosine phosphorylation, suggesting physical and/or functional differences between these two subpopulations. We identify a requirement for the C-terminal residues of SHP-1 in optimal localization to the lipid rafts. Although expression of SHP-1 that localizes to lipid rafts potently inhibits TCR-mediated early signaling events and IL-2 production, the expression of lipid raft-excluded SHP-1 mutants fails to elicit any of the inhibitory effects. Taken together these studies reveal a key role for lipid raft localization of SHP-1 in mediating the inhibitory effects on T cell signaling events.  相似文献   

18.
Stimulation of the T cell antigen receptor (TCR) induces formation of a phosphorylation-dependent signaling network via multiprotein complexes, whose compositions and dynamics are incompletely understood. Using stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics, we investigated the kinetics of signal propagation after TCR-induced protein tyrosine phosphorylation. We confidently assigned 77 proteins (of 758 identified) as a direct or indirect consequence of tyrosine phosphorylation that proceeds in successive "signaling waves" revealing the temporal pace at which tyrosine kinases activate cellular functions. The first wave includes thymocyte-expressed molecule involved in selection (THEMIS), a protein recently implicated in thymocyte development but whose signaling role is unclear. We found that tyrosine phosphorylation of THEMIS depends on the presence of the scaffold proteins Linker for activation of T cells (LAT) and SH2 domain-containing lymphocyte protein of 76 kDa (SLP-76). THEMIS associates with LAT, presumably via the adapter growth factor receptor-bound protein 2 (Grb2) and with phospholipase Cγ1 (PLC-γ1). RNAi-mediated THEMIS knock-down inhibited TCR-induced IL-2 gene expression due to reduced ERK and nuclear factor of activated T cells (NFAT)/activator protein 1 (AP-1) signaling, whereas JNK, p38, or nuclear factor κB (NF-κB) activation were unaffected. Our study reveals the dynamics of TCR-dependent signaling networks and suggests a specific role for THEMIS in early TCR signalosome function.  相似文献   

19.
To maintain various T cell responses and immune equilibrium, activation signals triggered by T cell antigen receptor (TCR) must be regulated by inhibitory signals. Gab2, an adaptor protein of the insulin receptor substrate-1 family, has been shown to be involved in the downstream signaling from cytokine receptors. We investigated the functional role of Gab2 in TCR-mediated signal transduction. Gab2 was phosphorylated by ZAP-70 and co-precipitated with phosphoproteins, such as ZAP-70, LAT, and CD3zeta, upon TCR stimulation. Overexpression of Gab2 in Jurkat cells or antigen-specific T cell hybridomas resulted in the inhibition of NF-AT activation, interleukin-2 production, and tyrosine phosphorylation. The structure-function relationship of Gab2 was analyzed by mutants of Gab2. The Gab2 mutants lacking SHP-2-binding sites mostly abrogated the inhibitory activity of Gab2, but its inhibitory function was restored by fusing to active SHP-2 as a chimeric protein. A mutant with defective phosphatidylinositol 3-kinase binding capacity also impaired the inhibitory activity, and the pleckstrin homology domain-deletion mutant revealed a crucial function of the pleckstrin homology domain for localization to the plasma membrane. These results suggest that Gab2 is a substrate of ZAP-70 and functions as a switch molecule toward inhibition of TCR signal transduction by mediating the recruitment of inhibitory molecules to the TCR signaling complex.  相似文献   

20.
Physically distinct cholesterol/sphingolipid-rich plasma membrane microdomains, so-called lipid rafts, have been recognized to play an important regulatory role in various cellular processes, from membrane trafficking to signal transduction, in a number of cell types. We report here that the ability of TCR on activated, functional CD8+ T lymphocytes to efficiently bind MHC class I tetramer complexes is dependent on the integrity of lipid rafts on the T lymphocyte membrane. We further provide evidence that TCR interact (associate) with lipid raft elements on the T cell surface before receptor engagement and that the topological arrangement of TCR on the cell surface is likewise influenced by lipid raft integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号