首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The origin and evolution of segmentation   总被引:1,自引:0,他引:1  
Arthropods, annelids and chordates all possess segments. It remains unclear, however, whether the segments of these animals evolved independently or instead were derived from a common ancestor. Considering this question involves examining not only the similarities and differences in the process of segmentation between these phyla, but also how this process varies within phyla, where the homology of segments is generally accepted. This article reviews what is known about the segmentation process and considers various proposals to explain its evolution.  相似文献   

2.
The origin and evolution of segmentation   总被引:5,自引:0,他引:5  
Arthropods, annelids and chordates all possess segments. It remains unclear, however, whether the segments of these animals evolved independently or instead were derived from a common ancestor. Considering this question involves examining not only the similarities and differences in the process of segmentation between these phyla, but also how this process varies within phyla, where the homology of segments is generally accepted. This article reviews what is known about the segmentation process and considers various proposals to explain its evolution.  相似文献   

3.
Although in Drosophila pair-rule genes play crucial roles in the genetic hierarchy that subdivides the embryo into segments, the extent to which pair-rule patterning is utilized by different arthropods and other segmented phyla is unknown. Recent data of Dearden et al.1 and Henry et al.,2 however, hint that a pair-rule mechanism might play a role in the segmentation process of basal arthropods and vertebrates.  相似文献   

4.
The origin and diversification of segmented metazoan body plans has fascinated biologists for over a century. The superphylum Panarthropoda includes three phyla of segmented animals—Euarthropoda, Onychophora, and Tardigrada. This superphylum includes representatives with relatively simple and representatives with relatively complex segmented body plans. At one extreme of this continuum, euarthropods exhibit an incredible diversity of serially homologous segments. Furthermore, distinct tagmosis patterns are exhibited by different classes of euarthropods. At the other extreme, all tardigrades share a simple segmented body plan that consists of a head and four leg-bearing segments. The modular body plans of panarthropods make them a tractable model for understanding diversification of animal body plans more generally. Here we review results of recent morphological and developmental studies of tardigrade segmentation. These results complement investigations of segmentation processes in other panarthropods and paleontological studies to illuminate the earliest steps in the evolution of panarthropod body plans.  相似文献   

5.
Segmentation of moving images by the human visual system   总被引:1,自引:0,他引:1  
 New segments appearing in an image sequence or spontaneously accelerated segments are band limited by the visual system due to a nonperfect tracking of these segments by eye movements. In spite of this band limitation and acceleration of segments, a coarse segmentation (initial segmentation phase) can be performed by the visual system. This is interesting for the development of purely automatic segmentation algorithms for multimedia applications. In this paper the segmentation of the visual system is modelled and used in an automatic coarse initial segmentation. A suitable model for motion processing based on a spectral representation is presented and applied to the segmentation of synthetic and real image sequences with band limited and accelerated moving foreground and background segments. Received: 1 August 1995/Accepted in revised form: 25 February 1997  相似文献   

6.
Summary Drosophila embryos, exposed to ether between 1 and 4 h after oviposition, develop defects ranging from the complete lack of segmentation to isolated gaps in single segments. Between these extremes are varying extents of incomplete and abnormal segmentation. On the basis of both their temporal and spatial characteristics, five major phenotype classes may be distinguished: headless — unsegmented or incompletely segmented anteriorly; gap — interruptions of segmentation not obviously periodic; alternating segment gaps — interruptions with double segment periodicities; fused segments; and short segments — truncations with single segment periodicities. Many defects resemble known mutant phenotypes. The disturbances in segmentation are predominantly global and frequently accompanied by alterations in segment specification, such that the segments obtained show no resemblance to the normal homologues. These features, together with the distinctive spatiotemporal characteristics of the defects, all point to segmentation as a dynamic process. The regular spacing of the segments and the fact that the entire range of defects is inducible by ether are further consistent with the hypothesis that at least part of the segmentation process may consist of physicochemical reactions coordinated over the whole body. The relationship between our data and data from genetic and other analyses are briefly discussed.  相似文献   

7.
SUMMARY Annelids and arthropods, despite their distinct classification as Lophotrochozoa and Ecdysozoa, present a morphologically similar, segmented body plan. To elucidate the evolution of segmentation and, ultimately, to align segments across remote phyla, we undertook a refined expression analysis to precisely register the expression of conserved regionalization genes with morphological boundaries and segmental units in the marine annelid Platynereis dumerilii. We find that Pdu-otx defines a brain region anterior to the first discernable segmental entity that is delineated by a stripe of engrailed-expressing cells. The first segment is a "cryptic" segment that lacks chaetae and parapodia. This and the subsequent three chaetigerous larval segments harbor the anterior expression boundary of gbx, hox1, hox4, and lox5 genes, respectively. This molecular segmental topography matches the segmental pattern of otx, gbx, and Hox gene expression in arthropods. Our data thus support the view that an ancestral ground pattern of segmental identities existed in the trunk of the last common protostome ancestor that was lost or modified in protostomes lacking overt segmentation.  相似文献   

8.
体节形成是昆虫胚胎发育过程中的关键问题.东亚飞蝗Locusta migratoria manilensis(Meyen)是一种重要的农业害虫,其体节形成的时序过程尚无详细报道.本研究采用免疫组化和品红染色方法研究了室内人工饲养东亚飞蝗的体节形成过程.结果表明:完成受精后,细胞核开始分裂并向卵表面迁移.细胞核到达卵表面的...  相似文献   

9.
The evolution of the Ecdysozoa   总被引:2,自引:0,他引:2  
Ecdysozoa is a clade composed of eight phyla: the arthropods, tardigrades and onychophorans that share segmentation and appendages and the nematodes, nematomorphs, priapulids, kinorhynchs and loriciferans, which are worms with an anterior proboscis or introvert. Ecdysozoa contains the vast majority of animal species and there is a great diversity of body plans among both living and fossil members. The monophyly of the clade has been called into question by some workers based on analyses of whole genome datasets. We review the evidence that now conclusively supports the unique origin of these phyla. Relationships within Ecdysozoa are also controversial and we discuss the molecular and morphological evidence for a number of monophyletic groups within this superphylum.  相似文献   

10.
We describe and analyze naturally occurring anomalies in the segmental structures of the trunk in an isolated population of the geophilomorph centipede Stigmatogaster subterranea. Recorded anomalies include mispaired tergites, shrunk segments, variously deformed sclerites, bifurcated trunk, and defects of spiracles and sternal pore areas. One specimen has a perfect segmentally patterned trunk, but with an even number of leg-bearing segments, representing the first record of such a phenotype in adult centipedes. We interpret these anomalies as the effects of perturbation of specific morphogenetic processes in trunk segmentation, occurring at different embryonic stages. The variety of segmental anomalies found in this population provides insights into the developmental process of segmentation and its evolution in geophilomorph centipedes. Variation in dorsal mispairing anomalies demonstrates that segments, as traditionally defined in arthropod morphology, are not the effective developmental units throughout embryogenesis.  相似文献   

11.
The origin of animal segmentation, the periodic repetition of anatomical structures along the anteroposterior axis, is a long-standing issue that has been recently revived by comparative developmental genetics. In particular, a similar extensive morphological segmentation (or metamerism) is commonly recognized in annelids and arthropods. Mostly based on this supposedly homologous segmentation, these phyla have been united for a long time into the clade Articulata. However, recent phylogenetic analysis dismissed the Articulata and thus challenged the segmentation homology hypothesis. Here, we report the expression patterns of genes orthologous to the arthropod segmentation genes engrailed and wingless in the annelid Platynereis dumerilii. In Platynereis, engrailed and wingless are expressed in continuous ectodermal stripes on either side of the segmental boundary before, during, and after its formation; this expression pattern suggests that these genes are involved in segment formation. The striking similarities of engrailed and wingless expressions in Platynereis and arthropods may be due to evolutionary convergence or common heritage. In agreement with similarities in segment ontogeny and morphological organization in arthropods and annelids, we interpret our results as molecular evidence of a segmented ancestor of protostomes.  相似文献   

12.
Understanding the evolutionary origins of segmented body plans in the metazoa has been a long-standing fascination for scientists. Competing hypotheses explaining the presence of distinct segmented taxa range from the suggestion that all segmentation in the metazoa is homologous to the proposal that segmentation arose independently many times, even within an individual clade or species. A major new source of information regarding the extent of homology vs. homoplasy of segmentation in recent years has been an examination of the extent to which molecular mechanisms underlying the segmentation process are conserved, the rationale being that a shared history will be apparent by the presence of common molecular components of a developmental program that give rise to a segmented body plan. There has been substantial progress recently in understanding the molecular mechanisms underlying the segmentation process in many groups, specifically within the three overtly segmented phyla: Annelida, Arthropoda and Chordata. This review will discuss what we currently know about the segmentation process in each group and how our understanding of the development of segmented structures in distinct taxa have influenced the hypotheses explaining the presence of a segmented body plan in the metazoa.  相似文献   

13.
Arthropods and vertebrates display a segmental body organisation along all or part of the anterior-posterior axis. Whether this reflects a shared, ancestral developmental genetic mechanism for segmentation is uncertain. In vertebrates, segments are formed sequentially by a segmentation 'clock' of oscillating gene expression involving Notch pathway components. Recent studies in spiders and basal insects have suggested that segmentation in these arthropods also involves Notch-based signalling. These observations have been interpreted as evidence for a shared, ancestral gene network for insect, arthropod and bilaterian segmentation. However, because this pathway can play multiple roles in development, elucidating the specific requirements for Notch signalling is important for understanding the ancestry of segmentation. Here we show that Delta, a ligand of the Notch pathway, is not required for segment formation in the cricket Gryllus bimaculatus, which retains ancestral characteristics of arthropod embryogenesis. Segment patterning genes are expressed before Delta in abdominal segments, and Delta expression does not oscillate in the pre-segmental region or in formed segments. Instead, Delta is required for neuroectoderm and mesectoderm formation; embryos missing these tissues are developmentally delayed and show defects in segment morphology but normal segment number. Thus, what initially appear to be 'segmentation phenotypes' can in fact be due to developmental delays and cell specification errors. Our data do not support an essential or ancestral role of Notch signalling in segment generation across the arthropods, and show that the pleiotropy of the Notch pathway can confound speculation on possible segmentation mechanisms in the last common bilaterian ancestor.  相似文献   

14.
Segmentation is well understood in Drosophila, where all segments are determined at the blastoderm stage. In the flour beetle Tribolium castaneum, as in most insects, the posterior segments are added at later stages from a posteriorly located growth zone, suggesting that formation of these segments may rely on a different mechanism. Nevertheless, the expression and function of many segmentation genes seem conserved between Tribolium and Drosophila. We have cloned the Tribolium ortholog of the abdominal gap gene giant. As in Drosophila, Tribolium giant is expressed in two primary domains, one each in the head and trunk. Although the position of the anterior domain is conserved, the posterior domain is located at least four segments anterior to that of Drosophila. Knockdown phenotypes generated with morpholino oligonucleotides, as well as embryonic and parental RNA interference, indicate that giant is required for segment formation and identity also in Tribolium. In giant-depleted embryos, the maxillary and labial segment primordia are normally formed but assume thoracic identity. The segmentation process is disrupted only in postgnathal metamers. Unlike Drosophila, segmentation defects are not restricted to a limited domain but extend to all thoracic and abdominal segments, many of which are specified long after giant expression has ceased. These data show that giant in Tribolium does not function as in Drosophila, and suggest that posterior gap genes underwent major regulatory and functional changes during the evolution from short to long germ embryogenesis.  相似文献   

15.
The insect body plan is very well conserved, yet the developmental mechanisms of segmentation are surprisingly varied. Less evolutionarily derived insects undergo short germ segmentation where only the anterior segments are specified before gastrulation whereas the remaining posterior segments are formed during a later secondary growth phase. In contrast, derived long germ insects such as Drosophila specify their entire bodies essentially simultaneously. These fundamental embryological differences imply potentially divergent molecular patterning events. Numerous studies have focused on comparing the expression and function of the homologs of Drosophila segmentation genes between Drosophila and different short and long germ insects. Here we review these comparative data with special emphasis on understanding how short germ insects generate segments and how this ancestral mechanism may have been modified in derived long germ insects such as Drosophila. We break down the larger issue of short versus long germ segmentation into its component developmental problems and structure our discussion in order to highlight the unanswered questions in the evolution of insect segmentation.  相似文献   

16.
The body axis of vertebrates is composed of a serial repetition of similar anatomical modules that are called segments or metameres. This particular mode of organization is especially conspicuous at the level of the periodic arrangement of vertebrae in the spine. The segmental pattern is established during embryogenesis when the somites--the embryonic segments of vertebrates--are rhythmically produced from the paraxial mesoderm. This process involves the segmentation clock, which is a travelling oscillator that interacts with a maturation wave called the wavefront to produce the periodic series of somites. Here, we review our current understanding of the segmentation process in vertebrates.  相似文献   

17.
Notch signaling has been implicated in the segmentation of vertebrates but is not involved in segmentation in Drosophila. Recent evidence, however, implies that Notch signaling regulates segmentation in some Arthropods, including an insect, and that Notch signaling regulated segmentation in the common ancestor of Vertebrates and Arthropods. Notch signaling regulates clock-like formation of segments in both groups, a phenomenon not seen in Drosophila. We present evidence that Notch signaling components are expressed in a pattern implying a role in segmentation in honeybees, where the expression of genes involved in segmentation are modulated in a temporal way. Despite this, pharmacological investigation and RNA interference experiments indicate that Notch signaling does not regulate segmentation in honeybees, but instead regulates patterning within segments after segmentation itself has occurred. Notch signaling thus does not regulate segmentation in holometabolous insects, even when segments appear to form in anterior-posterior sequence.  相似文献   

18.
A three-phase model of arthropod segmentation   总被引:3,自引:0,他引:3  
Molecular and morphological evidence (expression patterns of pair-rule genes and segmental position of the genital openings and other segmental markers) suggest that the segmental units of the arthropod body are specified, in early ontogeny, by three spatially and/or temporally distinct mechanisms and do not appear in a strict antero-posterior sequence. A first anterior set of indivisible segments (naupliar segments, possibly three in all arthropods) is followed by a set of more caudal (post-naupliar) primary units (eosegments, possibly ten in all arthropods) which then undergo a process of secondary segmentation, thus giving rise to a higher number of definitive segments (merosegments). The number of merosegments deriving from each eosegment is characteristic of the different arthropod clades and is mostly stable at the level of the traditional arthropodan classes or subclasses. All their segmentation patterns, however, including those found in the segmental organisation of highly segmented forms (such as centipedes and millipedes, notostracan, lipostracan and anostracan crustaceans, and trilobites) are reducible to the basic groundplan with three naupliar and ten postnaupliar segments. These basic units of arthropod segmentation may also have an equivalent in other Ecdysozoa, despite the lack of any segmentation (nematodes) or, at least, of an overt segmentation (kinorhynchs).  相似文献   

19.
Repeated body segments are a key feature of arthropods. The formation of body segments occurs via distinct developmental pathways within different arthropod clades. Although some species form their segments simultaneously without any accompanying measurable growth, most arthropods add segments sequentially from the posterior of the growing embryo or larva. The use of Notch signaling is increasingly emerging as a common feature of sequential segmentation throughout the Bilateria, as inferred from both the expression of proteins required for Notch signaling and the genetic or pharmacological disruption of Notch signaling. In this study, we demonstrate that blocking Notch signaling by blocking γ‐secretase activity causes a specific, repeatable effect on segmentation in two different anostracan crustaceans, Artemia franciscana and Thamnocephalus platyurus. We observe that segmentation posterior to the third or fourth trunk segment is arrested. Despite this marked effect on segment addition, other aspects of segmentation are unaffected. In the segments that develop, segment size and boundaries between segments appear normal, engrailed stripes are normal in size and alignment, and overall growth is unaffected. By demonstrating Notch involvement in crustacean segmentation, our findings expand the evidence that Notch plays a crucial role in sequential segmentation in arthropods. At the same time, our observations contribute to an emerging picture that loss‐of‐function Notch phenotypes differ significantly between arthropods suggesting variability in the role of Notch in the regulation of sequential segmentation. This variability in the function of Notch in arthropod segmentation confounds inferences of homology with vertebrates and lophotrochozoans.  相似文献   

20.
SUMMARY Explaining the origin and evolution of segmentation is central to understanding the body plan of major animal groups such as arthropods, annelids, and vertebrates. One major shortcoming of current views on segmentation is the failure to recognize the existence of two layers of segmentation. I distinguish here holomeric segmentation, involving the whole body axis (or the whole axis of an appendage) and producing " true" segments (eosegments); and meromeric segmentation, producing merosegments within one or more eosegment(s). In terms of developmental mechanisms, meromeric segmentation is probably the same as compartmentalization. This process follows two rules: (1) merosegments are formed from a stereotyped pattern of subdivisions, where only the merosegments in contact to the anterior or posterior boundary of the eosegment are allowed to divide; (2) contiguous eosegments undergoing meromeric segmentation generate merosegments according to identical lineage patterns apart from possible lineage truncation in one or a few terminal eosegments. The segmentation model proposed in this paper is mainly supported by evidence from comparative morphology, but it is compatible with known cellular and developmental mechanisms. The development of vertebrate rhombomeres, the annulation of leeches, the subdivision of the distal part of insect antenna into flagellomeres and the segmentation of centipedes are interpreted here in terms of meromeric segmentation. Some of these phenomena, like centipede segmentation, have thus far defied all attempts at an explanation, both in mechanistic (developmental) and phylogenetic terms. The model presented in this paper suggests a rich research agenda at all levels, from molecular and genetic to morphological and phylogenetic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号