首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 997 毫秒
1.
Dopamine uptake in rat pheochromocytoma (PC12) cells is a carrier-mediated process which follows Michaelis Menten kinetics. Uptake was saturable with an apparent Km of 0.71 μM for dopamine and a Vmax of 3.2 pmol/2 × 105 cells/min. The rank order of potency for various amines was norepinephrine copamine > epinephrine. Uptake increased with increasing temperature and showed a sharp break in the Arrhenius plot at 27.5 C. The Q10 was 1.39 above and 2.95 below 27.5 C. Cocaine inhibited uptake in a dose-dependent manner with a K1 of 0.97 μM. The presence of cocaine lowered the apparent Km but did not affect the Vmax, indicating competitive inhibition. Tunicamycin inhibited [3H]dopamine accumulation in a dose- and time-dependent fashion suggesting the dopamine uptake site in PC12 cells is an asparagine-linked glycoprotein. Kinetic analysis showed a decrease in Vmax but not in the apparent Km after tunicamycin treatment, consistent with the notion that tunicamycin treatment results in the loss of a substantial amount of active carrier molecules.  相似文献   

2.
A variety of alkyl and aryl glycosides were investigated as substrates for almond β-glucosidase catalysed synthesis of hexyl-β- -glycosides in low aqueous hexanol media. The rate-limiting step in the organic media was determined to be the glycosylation of the enzyme. The kinetic constants Vmax, Km (glycosyl donor) and Vmax/Km were all influenced by the water activity and they all increased in value with increasing water activity. The increase in Vmax/Km was mainly determined by the increase in Vmax and a plot of log(Vmax/Km) versus water activity resulted in a straight line with similar slopes for all glycosides but with different absolute values and thus the most reactive substrate p-nitrophenyl glucoside was the best one in the entire water activity range studied (0.53–0.96). The preference for the two competing acceptors, hexanol and water, was not affected by the aglycon part of the glucoside. Surprisingly, the ratio between trans glycosylation and hydrolysis increased with increasing water activity. A decrease in water activity caused an increase in equilibrium yield of hexyl glycoside, as expected, but was not beneficial for the kinetically controlled yield.  相似文献   

3.
Human type I placental 3β-hydroxy-5-ene-steroid dehydrogenase/steroid 5→4-ene-isomerase (3β-HSD/isomerase) synthesizes androstenedione from fetal dehydroepiandrosterone and progesterone from pregnenolone. The full length cDNA that encodes type I 3β-HSD/isomerase was inserted into the baculovirus, Autographa californica multiple nucleocapsid polyhedrosis virus, and expressed in Spodoptera fungiperda (Sf-9) insect cells. Western blots showed that the baculovirus-infected Sf-9 cells produced an immunoreactive protein that co-migrated with purified placental 3β-HSD/isomerase. Ultracentrifugation localized the expressed enzyme activities in all the membrane-associated organelles of the Sf-9 cell (nuclear, mitochondrial and microsomal). Kinetic studies showed that the expressed enzyme has 3β-HSD and isomerase activities. The Michaelis-Menton constant is very similar for the 3β-HSD substrate, 5-androstan-3β-o1-17-one, in the Sf-9 cell homogenate (Km = 17.9 μM) and placental microsomes (Km = 16.7 μM). The 3β-HSD activity (Vmax = 14.5 nmol/min/mg) is 1.6-fold higher in the Sf-9 cell homogenate compared to placental microsomes (Vmax = 9.1 nmol/min/mg). The Km values are almost identical for the isomerase substrate, 5-androstene-3,17-dione, in the Sf-9 cell homogenate (Km = 14.7 μM) and placental microsomes (Km = 14.4 μM). The specific isomerase activity is 1.5-fold higher in the Sf-9 cells (Vmax = 25.7 nmol/min/mg) relative to placenta (Vmax = 17.2 nmol/min/mg). These studies show that our recombinant baculovirus system over-expresses fully active enzyme that is kinetically identical to native 3β-HSD/isomerase in human placenta.  相似文献   

4.
Substrate specificities and the kinetic parameters, Km and Vmax, of the four multiple enzyme forms of extracellular β-mannanase activity purified from Polyporus versicolor were determined. Although Km values were significantly greater than those encountered in other β-mannanase systems Vmax values were equivalent or much greater, rendering the physiological efficiencies of the β-mannanase comparable to those of other β-mannanases. All enzymes preferred glucomannan as substrate, were highly refractory at low concentrations to n-octylglucopyranoside, sodium deoxylcholate, and sodium dodecylsulfate, and were largely insensitive to methanol, ethanol, acetonitrile, and dimethylsulfoxide.  相似文献   

5.
Potential activities of androgen metabolizing enzymes in human prostate   总被引:2,自引:0,他引:2  
The entire androgen metabolism of the human prostate is an integral part of the DHT mediated cellular processes, which eventually give rise to the androgen responsiveness of the prostate. Therefore, the potential activities of various androgen metabolizing enzymes were studied. Moreover, the impact of aging on the androgen metabolism and the inhibition of 5-reductase by finasteride were studied. In epithelium (E) and stroma (S) of normal (NPR) and hyperplastic human prostate (BPH), for each enzyme being involved in the conversion either of testosterone via DHT, 3- and 3β-diol to the C19O3-triols or from testosterone to androstenedione and vice versa, the amount (Vmax) and Michaelis constant (Km) were determined by Lineweaver-Burk plots. Furthermore, Vmax/Km quotients were calculated, which served as an index for the potential enzyme activity. 17 enzymes showed a mean Vmax/Km ≥ 0.10. The top four were the 5-reductases in E and S of NPR and BPH. Among those, the highest activity was found in E of NPR (1.6 ± 0.2). Moreover, in E a significant age-dependent decrease of 5-reductase activity occurred, whereas in stroma rather constant activities were found over the whole age range. Similar age-dependent alterations were found for the cellular DHT levels. Finally, the finasteride inhibition of 5-reductase (IC50;nM) was stronger in E (35 ± 17) than in S (126 ± 15). In conclusion, 5-reductase is: (a) the outstanding androgen metabolizing enzyme in NPR and BPH; (b) dictating the DHT enrichment in the prostate; (c) under the impact of aging; and (d) preferentially inhibited by finasteride in E.  相似文献   

6.
A carbamoylase enzyme was purified from a cell-free extract of Agrobacterium sp. with an overall yield of 81%. It was judged to be homogenous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with a subunit molecular weight of 38,000 daltons. Further studies on the native enzyme suggested that the active enzyme was present as a dimer, with a pI of 5.5. It was able to cleave a variety of N-carbamoyl substrates, but was strictly D(−) specific. It was found to have a Km of 0.82 m and a Vmax of 31 U mg−1 for D(−) N-carbamoyl hydroxyphenylglycine in the presence of 10 m dithiothreitol. It showed no metal ion requirements but was inhibited by iodoacetic acid and iodoacetamide, both thiol reagents. The N-terminal amino acid sequence of the enzyme was elucidated.  相似文献   

7.
Phospholipase A2 selectively hydrolyses the ester linkage at the sn-2 position of phospholipids forming lysocompounds. This bioconversion has importance in biotechnology since lysophospholipids are strong bioemulsifiers. The aim of the present work was to study the kinetic behaviour and properties of immobilized phospholipase A2 from bee venom adsorbed into an ion exchange support. The enzyme had high affinity for CM-Sephadex® support and the non-covalent interaction was optimum at pH 8. The activity of immobilized phospholipase A2 was comparatively evaluated with the soluble enzyme using a phospholipid/Triton X-100 mixed micelle as assay system. The immobilized enzyme showed high retention activity and excellent stability under storage. The activity of the immobilized system remained almost constant after several cycles of hydrolysis. Immobilized phospholipase A2 was less sensitive to pH changes compared to soluble form. The kinetic parameters obtained (Vmax 883.4 μmol mg−1 min−1 and a Km 12.9 mM for soluble form and Vmax = 306 μmol mg−1 min−1 and a Km = 3.9 for immobilized phospholipase A2) were in agreement with the immobilization effect. The results obtained with CM-Sephadex®-phospholipase A2 system give a good framework for the development of a continuous phospholipid bioconversion process.  相似文献   

8.
3β-hydroxysteroid dehydrogenase 5-ene isomerase (3βHSD/I) activity is necessary for the biosynthesis of hormonally active steroids. A dual distribution of the enzyme was described in toad testes. The present study demonstrates that in testicular tissue of Bufo arenarum H., microsomal 3βHSD/I has more affinity for dehydroepiandrosterone (DHEA) than for pregnenolone (Km=0.17±0.03 and 1.02 μM, respectively). The Hill coefficient for the conversion of DHEA and pregnenolone were 1.04 and 1.01, respectively. The inclusion of DHEA in the kinetic analysis of pregnenolone conversion affected Vmax while Km was not modified, suggesting a non-competitive inhibition of the conversion of pregnenolone. Ki was calculated from replot of Dixon's slope for each substrate concentration. Ki from the intercept and the slope of this replot were similar (0.276±0.01 and 0.263±0.02 μM) and higher than the Km for DHEA. The Km and Ki values suggest the presence of two different binding sites. When pregnenolone was present in the assays with DHEA as substrate, no effect was observed on the Vmax while Km values slightly increased with pregnenolone concentration. Consequently, pregnenolone inhibited the transformation of DHEA in a competitive fashion. These studies suggest that, in this species, the microsomal biosyntheses of androgens and progesterone are catalysed by different active sites.  相似文献   

9.
The effects of in vitro treatment with ammonium chloride and acute hepatic encephalopathy (HE) induced by thioacetamide treatment (TAA), on the 2-oxoglutarate dehydrogenase (OGDH) activity in synaptic and nonsynaptic mitochondria from rat brain were examined. In control conditions, Vmax and Km for 2-oxoglutaric acid (2-OG) were higher in the synaptic than in nonsynaptic mitochondria by about 45 and 55%, respectively. A particularly high sensitivity of OGDH to ammonium ions in vitro was observed in nonsynaptic mitochondria, as manifested by a 30% decrease of Vmax and a 60% decrease of Km for 2-OG. Synaptic mitochondria showed a slight response to HE which was manifested by a 12% increase of Vmax. In nonsynaptic mitochondria a 19% decrease of Km for 2-OG was observed, but Vmax was unaffected. Nonsynaptic mitochondria from HE rats reacted to the addition of ammonium ions in vitro with a 30% inhibition of Vmax but with no alteration of Km for 2-OG. In synaptic mitochondria from HE rats there was a slight inhibition of Vmax, but an about 15% decrease of Km for 2-OG. Based on these results, the different responses of OGDH in two mitochondrial populations to HE and ammonium ions in vitro would appear to be due to intrinsic differences between the properties of the enzyme in the synaptic and nonsynaptic brain compartments.  相似文献   

10.
Muscarinic receptor binding and choline acetyltransferase (EC 2.3.1.6.) activity were assayed in three brain regions of 4-, 12- and 24-month-old Fischer-344 rats. Statistically significant age differences in cholinergic parameters were observed in each region. The affinity for [3H]quinuclidinyl benzilate increased in the cortex (24 vs 12 and 4 months), but Bmax decreased in the cortex (24 vs 12 vs 4 months), striatum (24 vs 12 vs 4 months) and hippocampus (24 vs 12 and 24 vs 4). Assays of carbamylcholine inhibition of [3H]quinuclidinyl benzilate binding in the hippocampus showed that high affinity agonist binding increased with age (24 vs 12 and 4 months), and the percentage of muscarinic binding to high affinity agonist sites decreased (24 vs 12 vs 4 months). In addition, the affinity of the agonist oxotremorine for muscarinic binding sites also increased in the hippocampus (12 and 24 vs 4 months). Although the Km of choline acetyltransferase for choline chloride did not change in any region tested, the Km for acetyl coenzyme A decreased in the hippocampus (24 vs 12 months), but increased (4 vs 12 months) and then decreased (12 vs 24 months) in the striatum. Statistically significant age-related declines in Vmax for choline acetyltransferase were noted in the striatum (24 < 12 < 4 months), but no age differences in this parameter were observed in the cortex or the hippocampus. Statistically significant positive correlations between Vmax for choline acetyltransferase and Bmax for [3H]quinuclidinyl benzilate binding were observed in each of the brain regions of 4-, 12- and 24-month-old rats.

The findings have implications for use of the Fischer-344 male rat as an animal model of aging and age-related disorders of the human brain, including dementia of the Alzheimer type.  相似文献   


11.
土壤酶是有机质降解的催化剂,其动力学特征是表征酶催化性能的重要指标,对评价土壤健康质量有重要作用。本研究选择黄土高原3种植被带下人工刺槐林土壤为对象,探讨了土壤酶动力学参数对温度变化的响应及其温度敏感性(Q10)的变化特征。结果表明: 随着培养温度的升高,土壤丙氨酸转氨酶、亮氨酸氨基肽酶和碱性磷酸酶的潜在最大反应速率(Vmax)和半饱和常数(Km)均呈线性增加,且Vmax呈现出森林带>森林草原带>草原带的地带性规律。Vmax的温度敏感性(Q10(Vmax))为1.14~1.62,Km的温度敏感性(Q10(Km))为1.05~1.47,且两者在森林草原带的值均低于其他植被带。在低、高温区,不同土壤酶的Q10在各植被带间的变化也不尽相同。冗余分析显示,Q10与环境变量尤其是土壤养分有显著的相关关系,这表明Q10可能还受到除温度以外其他环境因子的影响。  相似文献   

12.
A new class of inhibitors of juvenile hormone epoxide hydrolase (JHEH) of Manduca sexta and further in vitro characterization of the enzyme are reported. The compounds are based on urea and amide pharmacophores that were previously demonstrated as effective inhibitors of mammalian soluble and microsomal epoxide hydrolases. The best inhibitors against JHEH activity so far within this class are N-[(Z)-9-octadecenyl]-N′-propylurea and N-hexadecyl-N′-propylurea, which inhibited hydrolysis of a surrogate substrate (t-DPPO) with an IC50 around 90 nM. The importance of substitution number and type was investigated and results indicated that N, N′-disubstitution with asymmetric alkyl groups was favored. Potencies of pharmacophores decreased as follows: amide>urea>carbamate>carbodiimide>thiourea and thiocarbamate for N, N′-disubstituted compounds with symmetric substituents, and urea>amide>carbamate for compounds with asymmetric N, N′-substituents. JHEH hydrolyzes t-DPPO with a Km of 65.6 μM and a Vmax of 59 nmol min−1 mg−1 and has a substantially lower Km of 3.6 μM and higher Vmax of 322 nmol min−1 mg−1 for JH III. Although none of these compounds were potent inhibitors of hydrolysis of JH III by JHEH, they are the first leads toward inhibitors of JHEH that are not potentially subject to metabolism through epoxide degradation.  相似文献   

13.
Mechanisms that control the fidelity of DNA replication are discussed. Data are reviewed for 3 steps in a fidelity pathway: nucleotide insertion, exonucleolytic proofreading, and extension from matched and mismatched 3′-primer termini. Fidelity mechanisms that involve predominately Km discrimination, Vmax discrimination, or a combination of the two are analyzed in the context of a simple model for fidelity. Each fidelity step is divided into 2 components, thermodynamics and kinetic. The thermodynamic component, which relates to free-energy differences between right and wrong base pair, is associated with a Km discrimination mechanism for polymerase. The kinetic component, which represents the enzyme's ability to select bases for insertion and excision to achieve fidelity greater than that availablek from base pairing free-energy differences, is associated with a Vmax discrimination mechanism for polymerase. Currently available fidelity data for nucleotide insertion and primer extension in the absence of proofreading appears to have relatively large Km and small Vmax components. An important complication can arise when analyzing data from polymerases containing an associated 3′-exonuclease activity. In the presence of proofreading, a Vmax discrimination mechanisms is likely to occur, but this may be the result of two Km discrimination mechanisms acting serially, one for nucleotide insertion and other for excision. Possible relationships between base pairing free energy differences measured in aqueous solution and those defined within the polymerase active cleft are considered in the context of the enzyme's ability to exclude water, at least partially, from the vicinity of its active site.  相似文献   

14.
Rhodococcus rhodochrous NCIMB 11216 grows on propionitrile or benzonitrile as the sole source of carbon and nitrogen. The possibility that different nitrile-hydrolyzing enzymes were produced under these two growth conditions was investigated. Nitrilase activity in whole cell suspensions from either bacteria grown on propionitrile or benzonitrile were capable of biotransforming a wide range of nitriles. The propionitrile-induced nitrile degrading activity hydrolyzed 3-cyanobenzoate and both the nitrile groups in 1,3-dicyanobenzoate. In contrast, the benzonitrile-induced activity hydrolyzed only one of the nitrile groups in 1,3-dicyanobenzoate, but did not affect 3-cyanobenzoate. Both nitrilases biotransformed -cyano-o-tolunitrile to produce 2-cyanophenylacetic acid. The nitrilases were purified by fast protein liquid chromatography and the -terminus of each enzyme sequenced. SDS-PAGE analysis identified a subunit molecular weight of 45.8 kDa for each nitrilase. The -terminal sequences showed significant similarity with other sequenced nitrilases and with the exception of a single amino acid were identical with each other. Both nitrilases had temperature and pH optima of 30°C and 8.0, respectively. The propionitrile-induced nitrilase had a Km for benzonitrile of 20.7 m and a Vmax of 12.4 μmol min−1 mg−1 protein whereas the benzonitrile-induced nitrilase had a Km for benzonitrile of 8.83 m and a Vmax of 0.57 μmol min−1 mg−1 protein.  相似文献   

15.
The uptake of the neuroactive sulphur amino acids -cysteine sulphinate, -cysteate, -homocysteine sulphinate and -homocysteate was investigated in astrocytes cultured from the prefrontal cortex; in neurons, cultured from cerebral cortex; and, in granule cells, cultured from cerebellum. It was shown that each amino acid acted as a substrate for a plasma membrane transporter in both neurons and astrocytes. Astrocytes and neurons exhibited a high-affinity uptake for -cysteine sulphinate and -cysteate with Km values ranging from 14–100 μM, and a low-affinity uptake for -homocysteine sulphinate and -homocysteate, with Km values ranging from 225–1210 μM. The uptake of all transmitter candidates studied was partially sodium-dependent. This sodium-dependency was most evident at low (< 100 μM) concentrations of each substrate. The apparent uptake measured in the absence of sodium was included as a component in corrections made for non-saturable influx. With the exception of -cysteine sulphinate, uptake of each sulphur amino acid was greatest in astrocytes, with Vmax values ranging between 15–32 nmol min−1 mg−1 cell protein. Moreover, the uptake of each sulphur amino acid in cerebellar granule cells (Vmax values ranging between 10–25 nmol min−1 mg−1 cell protein) was consistently greater than that in cerebral cortex neurons (Vmax values ranging between 1.5–6 nmol min−1 mg−1 cell protein).  相似文献   

16.
The kinetics of the high affinity uptake system for L-tryptophan (L-Try)have been measured over 24 hr in cortical synaptosome preparations of rat brain. Both the Km and Vmax, of the uptake process showed a statistically significant 24 hr variation. The highest Km value, 6.71 ± 10-5 M, was measured at the beginning of the light phase and the lowest value, 4.23 ± 10-5 M, 6 hr into the dark phase. Vmax was highest at the end of the dark phase (10.43 nmol/mg/5 min) and lowest (4.80 nmol/mg/5 min) 3 hr into the dark phase. In contrast, there was no variation over 24 hr in the Vmax/Km ratio. These results suggest that the high affinity uptake process serves to ensure a constant rate of L-tryptophan entry into the neuron in the face of circadian or ultradian variations in extracellular concentration of tryptophan.  相似文献   

17.
The effects of N-ethylmaleimide (NEM) on mouse platelet serotonin (5-HT) and 86Rb+ uptake were studied. The 5-HT transport system showed a biphasic response to increasing concentrations of NEM, with low concentrations (25–50 μM) stimulating and high concentrations (200–400 μM) inhibiting 5-HT transport. Fluoxetine, an inhibitor of the platelet 5-HT transporter, blocked NEM-induced stimulation of 5-HT transport. The kinetics of 5-HT uptake indicated that NEM (50 μM) markedly increased the maximal rate of 5-HT transport (Vmax control = 28.4±1.4 pmol/108 platelets/4 min vs Vmax NEM = 64.5±9.5 pmol/108 platelets/4 min but had no significant effect on the Km value. Platelet Na+ K+ ATPase activity was determined by measuring 86Rb+ uptake. Platelet 86Rb+ uptake showed a biphasic response to NEM, with low concentrations (25–100 μM) significantly stimulating and high concentrations (400 μM) inhibiting uptake. These changes in platelet 86Rb+ uptake paralleled the biphasic changes in 5-HT transport. In the presence of fluoxetine, 5-HT transport was markedly inhibited but no change in the ability of NEM to stimulate 86Rb+ uptake was observed. These data suggest that low concentrations of NEM activate plasma membrane Na+ K+ ATPase which results in a marked stimulation of platelet 5-HT transport.  相似文献   

18.
3β-Hydroxysteroid dehydrogenase/steroid Δ5 → 4-isomerase (3β-HSD/isomerase) was expressed by baculovirus in Spodoptera fungiperda (Sf9) insect cells from cDNA sequences encoding human wild-type I (placental) and the human type I mutants - H261R, Y253F and Y253,254F. Western blots of SDS-polyacrylamide gels showed that the baculovirus-infected Sf9 cells expressed the immunoreactive wild-type, H261R, Y253F or Y253,254F protein that co-migrated with purified placental 3β-HSD/isomerase (monomeric Mr=42,000 Da). The wild-type, H261R and Y253F enzymes were each purified as a single, homogeneous protein from a suspension of the Sf9 cells (5.01). In kinetic studies with purified enzyme, the H261R mutant enzyme had no 3β-HSD activity, whereas the Km and Vmax values of the isomerase substrate were similar to the values obtained with the wild-type and native enzymes. The Vmax (88 nmol/min/mg) for the conversion of 5-androstene-3,17-dione to androstenedione by the Y253F isomerase activity was 7.0-fold less than the mean Vmax (620 nmol/min/mg) measured for the isomerase activity of the wild-type and native placental enzymes. In microsomal preparations, isomerase activity was completely abolished in the Y253,254F mutant enzyme, but Y253,254F had 45% of the 3β-HSD activity of the wild-type enzyme. In contrast, the purified Y253F, wild-type and native enzymes had similar Vmax values for substrate oxidation by the 3β-HSD activity. The 3β-HSD activities of the Y253F, Y253,254F and wild-type enzymes reduced NAD+ with similar kinetic values. Although NADH activated the isomerase activities of the H261R and wild-type enzymes with similar kinetics, the activation of the isomerase activity of H261R by NAD+ was dramatically decreased. Based on these kinetic measurements, His261 appears to be a critical amino acid residue for the 3β-HSD activity, and Tyr253 or Tyr254 participates in the isomerase activity of human type I (placental) enzyme.  相似文献   

19.
Bovine tryptophanyl-tRNA synthetase (TrpRS, E.C. 6.1.1.2) is unable to catalyze in vitro formation of Ap4A in contrast to some other aminoacyl-tRNA synthetases. However, in the presence of -tryptophan, ATP-Mg2+ and ADP the enzyme catalyzes the Ap3A synthesis via adenylate intermediate. Ap3A (not Ap4A) may serve as a substrate for TrpRS in the reaction of E·(Trp AMP) formation and in the tRNATrp charging. The Km value for Ap3A was higher than the Km for ATP (approx. 1.00 vs. 0.22 mM) and Vmax was 3 times lower than for ATP. The Zn2+-deficient enzyme catalyzes Ap3A synthesis in the absence of exogenous ADP due to ATPase activity of Zn2+-deprived TrpRS. The inability of mammalian TrpRS to synthesize Ap4A, might be considered as a molecular tool preventing the removal of Zn2+ due to chelation by Ap4A and therefore preserving the enzyme activity.  相似文献   

20.
The epoxy group containing poly(glycidyl methacrylate-co-methylmethacrylate) poly(GMA–MMA) beads were prepared by suspension polymerisation and the beads surface were grafted with polyethylenimine (PEI). The PEI-grafted beads were then used for invertase immobilization via adsorption. The immobilization of enzyme onto the poly(GMA–MMA)–PEI beads from aqueous solutions containing different amounts of invertase at different pH was investigated in a batch system. The maximum invertase immobilization capacity of the poly(GMA–MMA)–PEI beads was about 52 mg/g. It was shown that the relative activity of immobilized invertase was higher then that of the free enzyme over broader pH and temperature ranges. The Michaelis constant (Km) and the maximum rate of reaction (Vmax) were calculated from the Lineweaver–Burk plot. The Km and Vmax values of the immobilized invertase were larger than those of the free enzyme. The immobilized enzyme had a long-storage stability (only 6% activity decrease in 2 months) when the immobilized enzyme preparation was dried and stored at 4 °C while under wet condition 43% activity decrease was observed in the same period. After inactivation of enzyme, the poly(GMA–MMA)–PEI beads can be easily regenerated and reloaded with the enzyme for repeated use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号