首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 535 毫秒
1.
The present study investigated the effect of ebselen (EB) against hyperglycemia induced by the organophosphate (OPI) diazinon (DI) in rats. The insulin-mimetic properties of EB were investigated in vitro with the aim of better understanding the hypoglycemic effect of this compound. The protective effect of EB against pancreatic and hepatic damage caused by DI in rats was also appraised. In the in vivo experiments, rats were pre-treated with a single injection of EB (50mg/kg, intraperitoneal, i.p.). Afterward, animals were treated with a single injection of DI (200 mg/kg, i.p.). The parameters indicative of pancreatic and hepatic damage such as, serum amylase, lipase, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) activities as well as serum glucose levels, hepatic glycogen content and glucose-6-phosphatase (G6Pase) activity were determined. EB pre-treatment was effective in reducing serum amylase, lipase, AST, ALT, ALP, and LDH activities, protecting against pancreatic and hepatic damage. EB reduced hyperglycemia and increased hepatic glycogen content in animals exposed to DI. In the in vitro assays, EB (150 μM) or insulin (IN 10 μM, positive control) was incubated with either skeletal muscle or hepatic tissue with the aim of measuring glucose uptake, glycogen synthesis and glycogen breakdown. EB increased the glucose uptake in skeletal muscle, stimulated hepatic glycogen synthesis and inhibited glycogen breakdown in a similar way to IN. In conclusion, EB, possibly through its insulin-mimetic action, protected against pancreatic and hepatic damage caused by DI in rats.  相似文献   

2.
This work investigated zinc (Zn) and mercury (Hg) effects on oxidative parameters, markers of toxicity and metal levels in different tissues from non-lactating rats (NLR) and lactating rats (LR). Adult NLR and LR received ZnCl2 (27 mg/kg) or saline (0.9%) subcutaneously and after 24 h they received HgCl2 (5 mg/kg) or saline (0.9%). Twenty four hours later, they were sacrificed and the preparation of biological material and biochemical analyses were performed. With respect to oxidative parameters, Hg exposure decreased kidney total SH levels from NLR and LR and hepatic catalase activity (not statistically significant) in NLR. Zinc pre-treatment partly prevented the decrease of kidney total SH levels in LR. Zinc per se increased hepatic non-protein SH levels of NLR and LR. Regarding toxicity markers, Hg exposure inhibited the δ-aminolevulinic acid dehydratase (δ-ALA-D) activity from kidney and liver of NLR, inhibited serum alanine aminotransferase (ALT) activity of LR and increased serum creatinine and urea levels of NLR and LR. Zinc pre-exposure prevented the enzymatic alterations caused by Hg. NLR and LR Hg exposed presented accumulation of mercury in the kidney, liver, blood and urine. Zinc pre-treatment prevented this accumulation partly in NLR liver and blood and completely in LR kidney and liver. These results show that NLR and LR are differently sensitive to HgCl2 and that ZnCl2 showed a promising effect against Hg toxicity.  相似文献   

3.
According to previous reports, adjuvant-induced arthritic rats present reduced activities of the hepatic glucose 6-phosphatase. A kinetic study was done in order to characterize this phenomenon. Microsomes were isolated from livers of arthritic and control rats (Holtzman strain) and the glucose 6-phosphatase was measured at various temperatures (13-37 degrees C) and glucose 6-phosphate concentrations. Irrespective of the temperature, the enzyme from arthritic rats presented a reduction of both V(max) and K(M). Detergent treatment of liver microsomes from control rats increased the activity, but no increase was found when microsomes from arthritic rats were treated in the same way. The mannose 6-phosphatase activity of detergent-treated microsomes from arthritic rats was only 25% of the activity found with detergent-treated microsomes from control rats. Without detergent treatment, the mannose 6-phosphatase activities of both control and arthritic rats were minimal. The activation energy, derived from V(max), was not changed by arthritis. In vivo arthritic rats presented higher hepatic glucose 6-phosphate concentrations, a phenomenon that is consistent with a reduced activity of glucose 6-phosphatase. It was concluded that in arthritic rats, the hydrolase is probably reduced, without a similar change in the translocase activity.  相似文献   

4.
To investigate the sites of the free fatty acid (FFA) effects to increase basal hepatic glucose production and to impair hepatic insulin action, we performed 2-h and 7-h Intralipid + heparin (IH) and saline infusions in the basal fasting state and during hyperinsulinemic clamps in overnight-fasted rats. We measured endogenous glucose production (EGP), total glucose output (TGO, the flux through glucose-6-phosphatase), glucose cycling (GC, index of flux through glucokinase = TGO - EGP), hepatic glucose 6-phosphate (G-6-P) content, and hepatic glucose-6-phosphatase and glucokinase activities. Plasma FFA levels were elevated about threefold by IH. In the basal state, IH increased TGO, in vivo glucose-6-phosphatase activity (TGO/G-6-P), and EGP (P < 0.001). During the clamp compared with the basal experiments, 2-h insulin infusion increased GC and in vivo glucokinase activity (GC/TGO; P < 0.05) and suppressed EGP (P < 0.05) but failed to significantly affect TGO and in vivo glucose-6-phosphatase activity. IH decreased the ability of insulin to increase GC and in vivo glucokinase activity (P < 0.01), and at 7 h, it also decreased the ability of insulin to suppress EGP (P < 0.001). G-6-P content was comparable in all groups. In vivo glucose-6-phosphatase and glucokinase activities did not correspond to their in vitro activities as determined in liver tissue, suggesting that stable changes in enzyme activity were not responsible for the FFA effects. The data suggest that, in overnight-fasted rats, FFA increased basal EGP and induced hepatic insulin resistance at different sites. 1) FFA increased basal EGP through an increase in TGO and in vivo glucose-6-phosphatase activity, presumably due to a stimulatory allosteric effect of fatty acyl-CoA on glucose-6-phosphatase. 2) FFA induced hepatic insulin resistance (decreased the ability of insulin to suppress EGP) through an impairment of insulin's ability to increase GC and in vivo glucokinase activity, presumably due to an inhibitory allosteric effect of fatty acyl-CoA on glucokinase and/or an impairment in glucokinase translocation.  相似文献   

5.
Isoleucine, a branched chain amino acid, plays an important role in the improvement of glucose metabolism as evidenced by the increase of insulin-independent glucose uptake in vitro. This study evaluated the effect of isoleucine on glucose uptake and oxidation in fasted rats and on gluconeogenesis in vivo and in vitro. Oral administration of isoleucine decreased the plasma glucose level by 20% and significantly increased muscle glucose uptake by 71% without significant elevation of the plasma insulin level compared with controls at 60 min after administration. Furthermore, expiratory excretion of 14CO2 from [U-14C]glucose in isoleucine-administered rats was increased by 19% compared with controls. Meanwhile, isoleucine decreased AMP levels in the liver but did not affect hepatic glycogen synthesis. Under insulin-free conditions, isoleucine significantly inhibited glucose production when alanine was used as a glucogenic substrate in isolated hepatocytes. This inhibition by isoleucine was also associated with a decline in mRNA levels for phosphoenolpyruvate carboxykinase and glucose-6-phosphatase (G6Pase) and a decreased activity of G6Pase in isolated hepatocytes. These findings suggest that a reduction of gluconeogenesis in liver, along with an increase of glucose uptake in the muscle, is also involved in the hypoglycemic effect of isoleucine. In conclusion, isoleucine administration stimulates both glucose uptake in the muscle and whole body glucose oxidation, in addition to depressing gluconeogenesis in the liver, thereby leading to the hypoglycemic effect in rats.  相似文献   

6.
1. The administration of glucagon, cAMP [adenosine 3',5'-(cyclic)-monophosphate], BcAMP [6-N-2'-O-dibutyryladenosine 3',5'-(cyclic)-monophosphate] or adrenaline to foetal rats during the last 2 days of gestation evoked the appearance of tyrosine aminotransferase and enhanced the accumulation of glucose 6-phosphatase in the liver. In foetuses 1-2 days younger only BcAMP was effective. After birth liver glucose 6-phosphatase no longer responds to glucagon or BcAMP. Tyrosine aminotransferase is still inducible by these agents in 2-day-old rats, but not in 50-day-old rats. After adrenalectomy of adults glucagon or BcAMP can enhance the induction of the enzyme by hydrocortisone. The results indicate that the ability to synthesize tyrosine aminotransferase and glucose 6-phosphatase when exposed to cAMP develops sooner than the ability to respond to glucagon with an increase in the concentration of cAMP; the responsiveness of enzymes to different hormones changes with age. A scheme illustrating the sequential development of competence in regulating the level of an enzyme is presented. 2. Actinomycin inhibited the effects of glucagon and BcAMP on liver tyrosine aminotransferase and glucose 6-phosphatase in foetal rats. Growth hormone, insulin and hydrocortisone did not enhance the formation of these enzymes. 3. The time-course of accumulation of glucose 6-phosphatase in the kidney is different from that in the liver. Hormones that increase the accumulation in foetal liver do not do so in the kidney of the same foetus or in the livers of postnatal rats.  相似文献   

7.
Despite resistance exercises being associated with health outcomes, numerous issues are still unresolved and further research is required before the exercise can faithfully be prescribed as medicine. The goal of this study was to investigate whether there are sex differences in resistance training effects on metabolic alterations induced by monosodium glutamate (MSG), a model of obesity, in male and female rats. Male and female Wistar rats received MSG (4 g/kg body weight/day, s.c.) from postnatal day 1 to 10. After 10 days from MSG administration, the rats were separated into two groups: MSG-sedentary and MSG-exercised. At postnatal day 60, the animals started a resistance training protocol in an 80 degrees inclined vertical ladder apparatus and performed it for 7 weeks. Control rats received saline solution and were divided in saline-sedentary and saline-exercised. Resistance training restored all plasma biochemical parameters (glucose, cholesterol, triglycerides, aspartate aminotransferase, and alanine aminotransferase) increased in male and female rats treated with MSG. The MSG administration induced hyperglycemia associated with a decrease in the skeletal muscle glucose transporter 4 (GLUT4) levels and accompanied by deregulation in proteins, G-6Pase, and tyrosine aminotransferase, involved in hepatic glucose metabolism of male and female rats. MSG induced dyslipidemia and lipotoxicity in the liver and skeletal muscle of male rats. Regarding female rats, lipotoxicity was found only in the skeletal muscle. The resistance training had beneficial effects against metabolic alterations induced by MSG in male and female rats, through regulation of proteins (GLUT2, protein kinase B, and GLUT4) involved in glucose and lipid pathways in the liver and skeletal muscle.  相似文献   

8.
Mercury is a highly toxic metal which induces oxidative stress. Superoxide dismutases, catalase, and glutathion peroxidase are proteins involved in the endogenous antioxidant defence system. In the present study rats were administered orally, by gavage, a single daily dose of HgCl2 for three consecutive days. In order to find a relation between the proteins involved in the antioxidant defence and mercury intoxication, parameters of liver injury, redox state of the cells, as well as intracellular protein levels and enzyme activities of Mn-dependent superoxide dismutase (MnSOD), Cu-Zn-dependent superoxide dismutase (CuZnSOD), catalase, and glutathione peroxidase (GPx) were assayed both in blood and in liver homogenates. HgCl2 at the doses of 0.1 mg/kg produced liver damage which that was detected by a slight increase in serum alanine aminotransferase and gamma glutamyl transferase. Hepatic GSH/GSSG ratio was assayed as a parameter of oxidative stress and a significant decrease was detected, as well as significant increases in enzyme activities and protein levels of hepatic antioxidant defence systems. Changes in both MnSOD and CuZnSOD were parallel to those of liver injury and oxidative stress, while the changes detected in catalase and GPx activities were progressively increased along with the mercury intoxication. Other enzyme activities related to the glutathione redox cycle, such as glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PDH), also increased progressively. We conclude that against low doses of mercury that produce a slight oxidative stress and liver injury, the response of the liver was to induce the synthesis and activity of the enzymes involved in the endogenous antioxidant system. The activities of all the enzymes assayed showed a rapidly induced coordinated response.  相似文献   

9.
Coccinia indica (Family: Cucurbitaceae, locally known as telakucha) leaves were extracted with 95% ethanol. Following evaporation of the solvents, the residue was suspended in distilled water. When this suspension was fed orally to male normal-fed and 48-hr starved rats, the blood glucose was lowered 21% (P less than 0.01) in normal-fed and 24% (P less than 0.001) in 48-hr starved animals respectively. Starvation had induced a 3-fold increase in the activity of glucose-6-phosphatase and this activity was depressed 19% (P less than 0.05) by extract feeding while basal activity of the enzyme in normal-fed rats remained unaffected. Consistent with the depression of glucose-6-phosphatase, urea cycle enzyme arginase was also depressed 21% (P less than 0.001) and 12% (P less than 0.01) in the liver of 48 hr-starved and normal-fed animals respectively. Unlike glucose-6-phosphatase, starvation induced levels of gluconeogenic enzymes alanine aminotransferase and aspartate aminotransferase were not affected by Coccinia extract. These results suggest that the hypoglycemic effect of C. indica is partly due to the repression of the key gluconeogenic enzyme glucose-6-phosphatase.  相似文献   

10.
Snake venoms present different action mechanisms because of their complex composition, represented mainly by toxins and enzymes. This work aimed to investigate the effects of the Crotalus durissus terrificus(Cdt) venom in the liver. Wistar rats were inoculated intraperitoneally with saline (control) or Cdt venom. After 3, 4, or 6 h, the following parameters were analyzed: (a) hepatic function, (b) oxidative stress parameters, and (c) the metabolism of alanine in the isolated perfused liver. Plasma activities of alanine aminotransferase and aspartate aminotransferase and hepatic glutathione S‐transferase and catalase presented significant elevation in rats inoculated with 300 μg ? kg?1 Cdt venom. Liver lipoperoxidation was enormously increased by venom doses of 100, 200, and 300 μg ?kg?1, whereas glutathione S‐transferase was not changed. Perfused livers from rats inoculated with 1500 μg ?kg?1 venom showed increased production of lactate, pyruvate, and ammonia when alanine was the metabolic substrate. These results demonstrate that the Cdt venom can produce several changes in hepatocytes. The causes of the changes are possibly related to the disequilibrium in the redox homeostasis but also to specific needs of the poisoned organism, for example, an increased supply of lactate and pyruvate in response to an increased activity of the Cori cycle. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:195–203, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20376  相似文献   

11.
A stimulation of gluconeogenesis by excessive intake of retinol is suggested on the basis of enhanced incorporation of [2-14C]glycine into liver glycogen in rats fed excess retinol. Among the key gluconeogenic enzymes studied, activities of hepatic PEP-carboxykinase, fructose-1,6-bisphosphatase, glucose-6-phosphatase, and alanine aminotransferase were markedly increased, whereas that of pyruvate carboxylase remained unaltered. However, feeding of retinol to bilaterally adrenalectomized rats or rats treated with actinomycin D failed to cause significant increase in the activities of these enzymes. It is concluded that (i) gluconeogenesis is stimulated by excess retinol due to, perhaps, increased activities of key gluconeogenic enzymes, and (ii) adrenals are directly or indirectly involved in the retinol-mediated increase in the activities of the gluconeogenic enzymes. Also, data are presented that indicate a requirement for protein synthesis for the expression of retinol-mediated alterations in the activities of gluconeogenic enzymes.  相似文献   

12.
BACKGROUND: Syngeneic vascular cells are interesting tools for indirect gene therapy in the cardiovascular system. This study aims to optimize transfection conditions of primary cultures of vascular smooth muscle cells (VSMCs) using different non-viral vectors and zinc as an adjuvant and to implant these transfected cells in vivo. METHODS: Non-liposomal cationic vectors (FuGene 6), polyethylenimines (ExGen 500), and histidylated polylysine (HPL) were used as non-viral vectors in vitro with secreted alkaline phosphatase (SEAP) as reporter gene. Transfection efficiency was compared in cultured rat, rabbit and human VSMCs and fibroblasts. Zinc chloride (ZnCl2) was added to optimize transfection of rat VSMCs in vitro which were then seeded in vivo. RESULTS: Much higher SEAP levels were obtained in rabbit cells with FuGene 6 (p <0.0001) at day 2 than in equivalent rat and human cells. Rat VSMCs transfected in vitro with FuGene 6 and ExGen 500 expressed higher SEAP levels than with HPL. In rat VSMCs, SEAP secretion was more than doubled by addition of 250 microM ZnCl2 (p <0.0001) for all vectors. Seeding of syngeneic VSMCs transfected under optimized conditions (FuGene 6/pcDNA3-SEAP +250 microM ZnCl2) into healthy Lewis rats using various routes or into post-infarct myocardial scar resulted in a peak of SEAP expression at day 2 and detectable activity in the plasma for at least 8 days. CONCLUSIONS: FuGene 6 is an efficient non-viral transfection reagent for gene transfer in somatic smooth muscle cells in vitro and ZnCl2 enhances its efficiency. This increased expression of the transgene product is maintained after seeding in vivo.  相似文献   

13.
The mechanism of activation of hepatic microsomal glucose-6-phosphatase (EC 3.1.3.9) in vitro by amiloride has been investigated in both intact and fully disrupted microsomes. The major effect of amiloride is a 4.5-fold reduction in the Km of glucose-6-phosphatase activity in intact diabetic rat liver microsomes. Amiloride also decreased the Km of glucose-6-phosphatase activity in intact liver microsomes isolated from starved rats 2.5-fold. Kinetic calculations, direct enzyme assays and direct transport assays all demonstrated that the site of amiloride action was T1, the hepatic microsomal glucose 6-phosphate transport protein. This is, to our knowledge, the first report of an activation of any of the proteins of the multimeric hepatic microsomal glucose-6-phosphatase complex.  相似文献   

14.
1. Factors governing hepatic utilization of alanine were studied in vivo and in vitro in rats adapted to increasing dietary protein. 2. Hepatic alanine utilization was enhanced 5-fold with a 90%-casein diet, compared with a 13%-casein diet. The increased uptake resulted from enhanced fractional extraction in the presence of high concentrations of alanine in the portal vein. 3. The increase in alanine metabolism on high-protein diets was associated with an increase in alanine aminotransferase and in pyruvate utilization for gluconeogenesis. 4. The emergence of a high-affinity component appeared to be responsible for the enhanced transport of alanine with high-protein diets. 5. High extracellular concentrations after alanine loads resulted in a maximal rate of utilization and of accumulation of alanine by liver cells in vivo and in vitro. Alanine accumulation was particularly active with high-protein diets. 6. In starved rats, alanine transport was also increased, but low concentrations of alanine in afferent blood contributed to make transport limiting for alanine utilization. 7. In fed rats, the rates of transport and catabolism of alanine generally appear to undergo parallel changes; both processes thus play a fundamental role in the control of alanine utilization by the liver.  相似文献   

15.
The possibility whether alterations in the cyclic AMP-adenylate cyclase-phosphodiesterase system play a role in the action of 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (DDT) on hepatic and renal carbohydrate metabolism was investigated. Administration of exogenous cyclic AMP (10mg/100g) was found to mimic the action of DDT which enhanced the activities of pyruvate carboxylase, phosphoenolpyruvate carboxylase, fructose 1,6-diphosphatase and glucose 6-phosphatase in both liver and kidney cortex, elevated the concentration of blood glucose and urea and decreased the amount of hepatic glycogen. Treatment with theophylline augmented the effects of a submaximal dose of this halogenated hydrocarbon on serum urea and glucose as well as the key gluconeogenic enzymes in liver and kidney cortex. Addition of DDT in vitro to liver and kidney homogenates resulted in a significant enhancement of adenylate cyclase activity. Hepatic and renal slices from rats already treated with DDT displayed an increased ability to convert [(3)H]adenosine into cyclic [(3)H]AMP. Whereas kidney-cortex slices excised from rats given caffeine and DDT produced an even greater amount of cyclic [(3)H]AMP, imidazole, propranolol and hydrazine prevented the insecticide-stimulated rise in cyclic nucleotide production. In contrast, prostaglandin E(1) failed to exert any significant effect on DDT-induced increases in cyclic [(3)H]AMP synthesis from radioactive adenosine. The present study and our previous findings (Kacew & Singhal, 1973e) support the concept that the DDT-induced alterations in carbohydrate metabolism of liver and kidney cortex may be related to an initial stimulation of the cyclic AMP-adenylate cyclase system in these tissues.  相似文献   

16.
Organoselenides have been documented as promising pharmacological agents against a number of diseases associated with oxidative stress. Here we have investigated, for the first time, the potential antioxidant activity of binaphthyl diselenide ((NapSe)2; 50 mg kg?1, p.o.) against the 2‐nitropropane (2‐NP)‐induced hepatoxicity in rats, using different end points of toxicity (liver histopathology, plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT) and creatinine). In addition, in view of the association of oxidative stress with 2‐NP exposure, hepatic lipid peroxidation, ascorbic acid levels, δ‐aminolevulinate dehydratase (δ‐ALA‐D) and catalase (CAT) activities were evaluated. 2‐NP caused an increase of AST, ALT and hepatic lipid peroxidation. 2‐NP also caused hepatic histopathological alterations and δ‐ALA‐D inhibition. (NapSe)2 (50 mg kg?1) prevented 2‐NP‐induced changes in plasmatic ALT and AST activities and also prevented changes in hepatic histology, δ‐ALA‐D and lipid peroxidation. Results presented here indicate that the protective mechanism of (NapSe)2 against 2‐NP hepatotoxicity is possibly linked to its antioxidant activity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
In the present study we evaluated the effect of chronic methionine administration on oxidative stress and biochemical parameters in liver and serum of rats, respectively. We also performed histological analysis in liver. Results showed that hypermethioninemia increased chemiluminescence, carbonyl content and glutathione peroxidase activity, decreased total antioxidant potential, as well as altered catalase activity. Hypermethioninemia increased synthesis and concentration of glycogen, besides histological studies showed morphological alterations and reduction in the glycogen/glycoprotein content in liver. Serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and glucose were increased in hypermethioninemic rats. These findings suggest that oxidative damage and histological changes caused by methionine may be related to the hepatic injury observed in hypermethioninemia.  相似文献   

18.
19.
Porphobilinogen-synthase (PBG-synthase) is an enzyme extensively used as a bioindicator of metals and other oxidizing agents. The objective of this study was to verify the effects of HgCl(2) (5mg/kg/day, s.c.), a metal that mainly affects the nervous and renal systems, on kidney, liver and brain from rats exposed during one of the phases considered critical for development. Mercury decreased PBG-synthase activity from liver, kidney and brain and altered corporal, renal and cerebral weights. The kidney was the most sensitive tissue. It accumulated a large amount of metal and PBG-synthase activity was decreased up to 50%. The second period seemed to be the most sensitive, because in this phase the rats presented alterations in body, brain and kidney weights, and there was also an expressive inhibition in hepatic and renal PBG-synthase activities. In general, large quantities of metal accumulated in the tissues are in agreement with the inhibition verified in these tissues.  相似文献   

20.
A protective effect of Rho-kinase inhibitor on various organ injuries is gaining attention. Regarding liver injury, Rho-kinase inhibitor is reported to prevent carbon tetrachloride (CCl4)- or dimethylnitrosamine-induced liver fibrosis and hepatic ischemia-reperfusion injury in rats. Because Rho-kinase inhibitor not only improved liver fibrosis but also reduced serum alanine aminotransferase (ALT) level in CCl4-induced liver fibrosis, we wondered whether Rho-kinase inhibitor might exert a direct hepatocyte-protective effect. We examined this possibility in acute CCl4 intoxication in rats. Rho-kinase inhibitor, HA-1077, reduced serum alanine ALT level in rats with acute liver injury induced by CCl4 with the improvement of histological damage and the reduction of the number of apoptotic cells. In cultured rat hepatocytes in serum-free condition, HA-1077 reduced apoptosis evaluated by quantitative determination of cytoplasmic histone-associated DNA oligonucleosome fragments with the reduction of caspase-3 activity and the enhancement of Bcl-2 expression. HA-1077 stimulated phosphorylation of Akt, and wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway, abrogated the reduction of hepatocyte apoptosis by HA-1077 in vitro. Furthermore, wortmannin abrogated the reduction of serum ALT level by HA-1077 in rats with acute liver injury induced by CCl4, suggesting that the activation of PI3-kinase/Akt pathway may be involved in the hepatocyte-protective effect by Rho-kinase inhibitor in vivo. In conclusion, Rho-kinase inhibitor prevented hepatocyte damage in acute liver injury induced by CCl4 in rats and merits consideration as a hepatocyte-protective agent in liver injury, considering its direct antiapoptotic effect on hepatocytes in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号