首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Aim:  To assess the probiotic effects of Lactobacillus agilis JCM 1048 and L. salivarius ssp . salicinius JCM 1230 and the pH on the cecal microflora of chicken and metabolic end products.
Methods and Results:  An in vitro system, operated with batch bioreactor, was used for this assessment. Selected bacterial species were monitored at two pH values, over 24 h of batch culture incubation. The concentration of short chain fatty acids (SCFA) and lactate in the fermented material was also determined. The addition of L. agilis JCM 1048 and L. salivarius ssp . salicinius JCM 1230 into vessel 2 (Cc + P) increased the total anaerobes, lactobacilli and bifidobacteria after 24 h incubation. Moreover, lactobacilli supplementation decreased the total aerobes and streptococci, but it did not have any effects on coliforms. The supplementation of lactobacilli in vessel 2 (Cc + P) was found to significantly increase the production of lactate, propionate and butyrate. Furthermore, pH did not alter the formation of butyrate, whereas the production of acetate and propionate was significantly decreased at pH = 5·8.
Conclusions:  L. agilis JCM 1048 and L. salivarius ssp . salicinius JCM 1230, as probiotic bacteria, have the ability to re-establish proper microbial balance by the formation of lactate as well as propionate, and stimulate butyrate-producing bacteria to produce butyrate in the chicken cecum.
Significance and Impact of the Study:  This study was the first to report this under in vitro conditions, highlighting the probiotic roles of the two Lactobacillus strains in broiler cecal fermentation at different initial pH. These useful data can be helpful in improving the fermentation process in chicken cecum.  相似文献   

2.
Two probiotic strains, Lactobacillus agilis JCM 1048 and L. salivarius subsp. salicinius JCM 1230 isolated from chicken intestine, exhibited probiotic characteristics that can be applied for chicken production. After 7 days of probiotic feeding (FD7), the count of intestinal lactobacilli in the probiotic group (group P, n=10) was significantly (p<0.05) higher than that in the control group (group C, n=9). After 40 days of probiotic feeding (FD40), the lactobacilli and enterococci counts were stable but the Enterobacteriaceae number was significantly reduced (p<0.05). A total of 163 isolated lactobacilli were identified as the L. acidophilus/gallinarum group (49.7%), L. agilis (30.7%), L. salivarius (9.2%), L. reuteri (9.2%), and Lactobacillus spp. (1.2%). The probiotic lactobacilli positively affected the Lactobacillus biota in chickens at FD7, with a significant increase in the number (p<0.05) of L. agilis and group P. The viable counts of each Lactobacillus species at FD40, however, showed no differences between two groups. An increasing incidence of L. agilis was also noted with probiotic feeding. The probiotic effect of two strains resulted in significantly increased weight gains (10.7%) of group P in comparison with group C at FD40 (p<0.01).  相似文献   

3.
The chicken cecum contains a great many bacteria, most of which are strict anaerobes. A strictly anaerobe culture-based method was used in the present study, in conjunction with the 16S rDNA clone library, to elucidate bacterial diversity and the phylogenetic relationship of cecal microbiota in the chicken. A comparative 16S rDNA sequence analysis of cultivated strains and retrieved clones from cecal contents was performed. Approximately 90% of the bacterial cells detected by microscopy did not form colonies on a medium 10 in plate-in-bottle. The 19 isolated strains yielded 11 distinct rDNA sequences, 58% of which were classified as low G + C gram-positive bacteria, 26% were related to Bacteroides spp., and 16% were classified as Proteobacteria. Based on the sequence analysis of 164 clones, 24% were identified to belong to 8 known species and 76% were considered to be 65 novel phylotypes. Approximately 94% of cloned sequences were classified into low G + C gram-positive bacteria, 4% were related to Bacteroides spp., and 2% were classified into Proteobacteria. Clostridium subcluster XIVa (38%), Clostridium cluster IV (13%), Lactobacillus spp. (24%), and Bacteroides spp. (4%) were the major groups constituting the cecal microbiota in chicken, in which the Clostridium subcluster XIVa was the most phylogenetically diverse group in chicken cecum. The 16S rDNA sequences of Lactobacillus acidophilus, L. crispatus, L. salivarius, and L. reuteri were the most frequently found in the Lactobacillus group in chicken cecum.  相似文献   

4.
A probiotic Lactobacillus strain was given in drinking water to young broiler chickens from 1 to 19 days of age. Cecal contents were collected from 4- and 19-day-old chickens in treated and control groups. Enumeration of bacteria by culture on selective media showed a decrease in Clostridium perfringens carriage in the 4-day-old treated chickens, whereas coliforms and Lactobacillus populations were not significantly affected by the treatment. Fluorescent in situ hybridization analysis with 7 phylogenetic probes targeting the major groups of intestinal bacteria revealed that the Clostridium coccoides group accounted for more than 50% of the total bacteria in the cecum of 4-day-old chickens, whereas the bacterial community of 19-day-old chickens evolved towards a more diverse microbiota with Faecalibacterium prausnitzii (36%) and C. coccoides (22%) groups representing the predominant bacteria. No effect of the Lactobacillus strain supplementation was observed in the composition of the cecal microbiota assessed by fluorescent in situ hybridization with the 7 probes. Nevertheless, profiling of the cecal microbiota using temporal temperature gradient gel electrophoresis in combination with principal component analysis demonstrated an impact of the probiotic treatment on the overall bacterial community as well as on the Lactobacillus population.  相似文献   

5.
A large number of commensal bacteria inhabit the intestinal tract, and interbacterial communication among gut microbiota is thought to occur. In order to analyze symbiotic relationships between probiotic strains and the gut microbiota, a ring with a membrane filter fitted to the bottom was used for in vitro investigations. Test strains comprising probiotic nitto strains (Lactobacillus acidophilus NT and Bifidobacterium longum NT) and type strains (L. acidophilus JCM1132T and B. longum JCM1217T) were obtained from diluted fecal samples using the membrane filter to simulate interbacterial communication. Bifidobacterium spp., Streptococcus pasteurianus, Collinsella aerofaciens, and Clostridium spp. were the most abundant gut bacteria detected before coculture with the test strains. Results of the coculture experiments indicated that the test strains significantly promote the growth of Ruminococcus gnavus, Ruminococcus torques, and Veillonella spp. and inhibit the growth of Sutterella wadsworthensis. Differences in the relative abundances of gut bacterial strains were furthermore observed after coculture of the fecal samples with each test strain. Bifidobacterium spp., which was detected as the dominant strain in the fecal samples, was found to be unaffected by coculture with the test strains. In the present study, interbacterial communication using bacterial metabolites between the test strains and the gut microbiota was demonstrated by the coculture technique. The detailed mechanisms and effects of the complex interbacterial communications that occur among the gut microbiota are, however, still unclear. Further investigation of these relationships by coculture of several fecal samples with probiotic strains is urgently required.  相似文献   

6.
We report the draft genome sequence of Lactobacillus salivarius SMXD51, isolated from the cecum of healthy chickens showing an activity against Campylobacter--the food-borne pathogen that is the most common cause of gastroenteritis in the European Union (EU)--and potentially interesting features for a probiotic strain, explaining our interest in it.  相似文献   

7.
Cecal microbiome divergence of broiler chickens by sex and body weight   总被引:1,自引:0,他引:1  
The divergence of gut bacterial community on broiler chickens has been reported as potentially possible keys to enhancing nutrient absorption, immune systems, and increasing poultry health and performance. Thus, we compared cecal bacterial communities and functional predictions by sex and body weight regarding the association between cecal microbiota and chicken growth performance. In this study, a total of 12 male and 12 female 1-day-old broiler chickens were raised for 35 days in 2 separate cages. Chickens were divided into 3 subgroups depending on body weight (low, medium, and high) by each sex. We compared chicken cecal microbiota compositions and its predictive functions by sex and body weight difference. We found that bacterial 16S rRNA genes were classified as 3 major phyla (Bacteroidetes, Firmicutes, and Proteobacteria), accounting for > 98% of the total bacterial community. The profiling of different bacterial taxa and predictive metagenome functions derived from 16S rRNA genes were performed over chicken sex and bodyweight. Male chickens were related to the enrichment of Bacteroides while female chickens were to the enrichment of Clostridium and Shigella. Male chickens with high body weight were associated with the enrichment of Faecalibacterium and Shuttleworthia. Carbohydrate and lipid metabolisms were suggested as candidate functions for weight gain in the males. This suggests that the variation of cecal bacterial communities and their functions by sex and body weight may be associated with the differences in the growth potentials of broiler chickens.  相似文献   

8.
Five potentially probiotic canine fecal lactic acid bacterium (LAB) strains, Lactobacillus fermentum LAB8, Lactobacillus salivarius LAB9, Weissella confusa LAB10, Lactobacillus rhamnosus LAB11, and Lactobacillus mucosae LAB12, were fed to five permanently fistulated beagles for 7 days. The survival of the strains and their potential effects on the indigenous intestinal LAB microbiota were monitored for 17 days. Denaturing gradient gel electrophoresis (DGGE) demonstrated that the five fed LAB strains survived in the upper gastrointestinal tract and modified the dominant preexisting indigenous jejunal LAB microbiota of the dogs. When the LAB supplementation was ceased, DGGE analysis of jejunal chyme showed that all the fed LAB strains were undetectable after 7 days. However, the diversity of the intestinal indigenous microbiota of the dogs, as characterized from jejunal chyme plated on Lactobacillus selective medium without acetic acid, was reduced and did not return to the original level during the study period. In all but one dog, an indigenous Lactobacillus acidophilus strain emerged as the dominant LAB strain. In conclusion, strains LAB8 to LAB12 have potential as probiotic strains for dogs as they survive in and dominate the jejunal LAB microbiota during feeding and have the ability to modify the intestinal microbiota.  相似文献   

9.
The use of antibiotic growth promotants in poultry rearing is a public health concern due to antibiotic resistance in bacteria and the harborage of resistance genes. Lupulone, a hop β-acid from Humulus lupulus, has been considered as a potential feed additive growth promotant. Here, the effect of lupulone was evaluated for its effect on the microbiota of the chicken intestine. The intestinal microbiota of broilers was quantified after the addition of 125 mg L(-1) lupulone to water and challenge with Clostridium perfringens. Microbial DNA was extracted from the broiler midgut and cecal sections and bacterial groups were quantified using real-time PCR. The predominant cecal bacterial groups were Clostridium leptum subgroup 16S rRNA gene Cluster IV, Clostridium coccoides subgroup 16S rRNA gene Clusters XIVa and XIVb and Bacteroides, whereas Lactobacillus, the Enterobacteriaceae family and Enterococcus dominated the midgut. Lupulone at 125 mg L(-1) significantly decreased the C. perfringens subgroup 16S rRNA gene Cluster I, which contains several pathogenic species, in both the midgut and the cecum and Lactobacillus in the midgut. No significant changes were noted in the overall microbiota for the cecum or the midgut. Lupulone warrants further evaluation as a botanical agent to mitigate C. perfringens overgrowth in antibiotic-free reared poultry.  相似文献   

10.
Terminal restriction fragment length polymorphism (T-RFLP) was investigated as a tool for monitoring the human intestinal microflora during antibiotic treatment and during ingestion of a probiotic product. Fecal samples from eight healthy volunteers were taken before, during, and after administration of clindamycin. During treatment, four subjects were given a probiotic, and four subjects were given a placebo. Changes in the microbial intestinal community composition and relative abundance of specific microbial populations in each subject were monitored by using viable counts and T-RFLP fingerprints. T-RFLP was also used to monitor specific bacterial populations that were either positively or negatively affected by clindamycin. Some dominant bacterial groups, such as Eubacterium spp., were easily monitored by T-RFLP, while they were hard to recover by cultivation. Furthermore, the two probiotic Lactobacillus strains were easily tracked by T-RFLP and were shown to be the dominant Lactobacillus community members in the intestinal microflora of subjects who received the probiotic.  相似文献   

11.
The aim of this study was to determine the relationship between the composition and function of gut microbiota. Here, we compared the bacterial compositions and fermentation metabolites of human and chicken gut microbiotas. Results generated by quantitative PCR (qPCR) and 454 pyrosequencing of the 16S rRNA gene V3 region showed the compositions of human and chicken microbiotas to be markedly different, with chicken cecal microbiotas displaying more diversity than human fecal microbiotas. The nutrient requirements of each microbiota growing under batch and chemostat conditions were analyzed. The results showed that chicken cecal microbiotas required simple sugars and peptides to maintain balanced growth in vitro but that human fecal microbiotas preferred polysaccharides and proteins. Chicken microbiotas also produced higher concentrations of volatile fatty acids than did human microbiotas. Our data suggest that the availability of different fermentable substrates in the chicken cecum, which exist due to the unique anatomical structure of the cecum, may provide an environment favorable to the nourishment of microbiotas suited to the production of the higher-energy metabolites required by the bird. Therefore, gut structure, nutrition, immunity, and life-style all contribute to the selection of an exclusive bacterial community that produces types of metabolites beneficial to the host.  相似文献   

12.
A rifampin-resistant Lactobacillus salivarius strain, CTC2197, was assessed as a probiotic in poultry, by studying its ability to prevent Salmonella enteritidis C-114 colonization in chickens. When the probiotic strain was dosed by oral gavage together with S. enteritidis C-114 directly into the proventriculus in 1-day-old Leghorn chickens, the pathogen was completely removed from the birds after 21 days. The same results were obtained when the probiotic strain was also administered through the feed and the drinking water apart from direct inoculation into the proventriculus. The inclusion of L. salivarius CTC2197 in the first day chicken feed revealed that a concentration of 10(5) CFU g(-1) was enough to ensure the colonization of the gastrointestinal tract of the birds after 1 week. However, between 21 and 28 days, L. salivarius CTC2197 was undetectable in the gastrointestinal tract of some birds, showing that more than one dose would be necessary to ensure its presence till the end of the rearing time. Freeze-drying and freezing with glycerol or skim milk as cryoprotective agents, appeared to be suitable methods to preserve the probiotic strain. The inclusion of the L. salivarius CTC2197 in a commercial feed mixture seemed to be a good way to supply it on the farm, although the strain showed sensitivity to the temperatures used during the feed mixture storage and in the chicken incubator rooms. Moreover, survival had been improved after several reinoculations in chicken feed mixture.  相似文献   

13.
Analysis of model systems, for example in mice, has shown that the microbiota in the gastrointestinal tract can play an important role in the efficiency of energy extraction from diets. The study reported here aimed to determine whether there are correlations between gastrointestinal tract microbiota population structure and energy use in chickens. Efficiency in converting food into muscle mass has a significant impact on the intensive animal production industries, where feed represents the major portion of production costs. Despite extensive breeding and selection efforts, there are still large differences in the growth performance of animals fed identical diets and reared under the same conditions. Variability in growth performance presents management difficulties and causes economic loss. An understanding of possible microbiota drivers of these differences has potentially important benefits for industry. In this study, differences in cecal and jejunal microbiota between broiler chickens with extreme feed conversion capabilities were analysed in order to identify candidate bacteria that may influence growth performance. The jejunal microbiota was largely dominated by lactobacilli (over 99% of jejunal sequences) and showed no difference between the birds with high and low feed conversion ratios. The cecal microbial community displayed higher diversity, and 24 unclassified bacterial species were found to be significantly (<0.05) differentially abundant between high and low performing birds. Such differentially abundant bacteria represent target populations that could potentially be modified with prebiotics and probiotics in order to improve animal growth performance.  相似文献   

14.
利用PCR-DGGE方法分析不同鸡群的盲肠微生物菌群结构变化   总被引:2,自引:0,他引:2  
李永洙 《生态学报》2011,31(21):6513-6521
研究不同品种、饲养阶段的健康和不良鸡群对盲肠细菌种群结构和多样性的影响。使用基于16S rDNA的PCR-DGGE技术,结合割胶回收DNA进行克隆和测序,分别以4、6、10、16、20、40周龄蛋鸡及1、2、4、6、7、8周龄肉鸡健康、不良鸡群盲肠内容物为样本,研究其中特定细菌类群的16S rDNA序列片段指纹图谱,并进行聚类分析,鉴定特异性和共性种群。在两品种健康鸡群盲肠内容物的细菌群落中,Lactobacillus属菌株的相似性均高于不良鸡群,并且在不同饲养阶段的健康、不良鸡群间指纹图谱平均条带数差异显著(P<0.05);而Bacteroides属菌株在健康鸡群盲肠内容物细菌的相似性与不良鸡群较为相近,健康、不良鸡群间平均条带数差异显著(P<0.05);Clostridium属菌株在蛋鸡20、40周龄的平均条带数差异不显著(P>0.05),但肉鸡各周龄健康、不良鸡群间的平均条带数差异显著(P<0.05)。序列测序结果,在蛋鸡产蛋期健康、不良鸡群样本中均检测到能动乳杆菌(Lactobacillus agilis),而育雏和育成期中均检测到鸟乳杆菌(Lactobacillus aviaries)和不可培养细菌;两品种的健康、不良鸡群样本中均检测到Bacteroides属的生酸拟杆菌(Bacteroides acidifaciens)、不可培养物细菌(Uncultured bacterium);而健康、不良蛋鸡群样本中均检测到Clostridium属不可培养的变形菌(Uncultured proteobacterium),健康肉鸡群中检测到索氏志贺菌(Shigella sonnei),而两品种不良鸡群中均缺乏此类菌种。结果显示,不同品种、饲养阶段的鸡群,其盲肠细菌群落的组成差异显著,并且细菌种群结构对鸡群的生长发育影响较大。  相似文献   

15.
The diversity of bacterial floras in the ilea and ceca of chickens that were fed a vegetarian corn-soy broiler diet devoid of feed additives was examined by analysis of 1,230 partial 16S rRNA gene sequences. Nearly 70% of sequences from the ileum were related to those of Lactobacillus, with the majority of the rest being related to Clostridiaceae (11%), Streptococcus (6.5%), and Enterococcus (6.5%). In contrast, Clostridiaceae-related sequences (65%) were the most abundant group detected in the cecum, with the other most abundant sequences being related to Fusobacterium (14%), Lactobacillus (8%), and Bacteroides (5%). Statistical analysis comparing the compositions of the different 16S rRNA libraries revealed that population succession occurred during some sampling periods. The significant differences among cecal libraries at 3 and 7 days of age, at 14 to 28 days of age, and at 49 days of age indicated that successions occurred from a transient community to one of increasing complexity as the birds aged. Similarly, the ileum had a stable bacterial community structure for birds at 7 to 21 days of age and between 21 to 28 days of age, but there was a very unique community structure at 3 and 49 days of age. It was also revealed that the composition of the ileal and cecal libraries did not significantly differ when the birds were 3 days old, and in fact during the first 14 days of age, the cecal microflora was a subset of the ileal microflora. After this time, the ileum and cecum had significantly different library compositions, suggesting that each region developed its own unique bacterial community as the bird matured.  相似文献   

16.
The antagonistic effect exerted towards Salmonella typhimurium by the flora issued from conventional chickens was studied in gnotobiotic animals. In germfree chickens and mice inoculated with S. typhimurium, the highest bacterial counts were observed in ceca, and were not significantly different in either host. The protection afforded by the inoculation of cecal flora issued from a conventional chicken was more effective when this flora was inoculated first into germfree chickens than when it was given only after inoculation with S. typhimurium. Administration of a cecal flora from a 15-day-old chick to gnotobiotic mice and chicken resulted in the inhibition of a further intestinal colonization by S. typhimurium in both hosts. Sixteen strains were isolated among the predominant populations of the fecal flora from chicken flora recipient mice. Association of 14 strains of strictly anaerobic bacteria with 2 strains of Escherichia coli and Streptococcus faecium only decreased the number of S. typhimurium in the ileum of gnotobiotic mice, but not in their cecum. Anaerobe cultures were obtained from 10(-6) and 10(-8) dilutions prepared from the fecal flora of gnotobiotic recipient mice. Antagonistic bacteria were present only in cultures from the 10(-6) dilution. Cecal concentrations of volatile fatty acids were shown not to be the sole factor implicated in the antagonistic effect against S. typhimurium.  相似文献   

17.
Extra-intestinal pathogenic Escherichia coli (ExPEC) strains cause many diseases in humans and animals. While remaining asymptomatic, they can colonize the intestine for subsequent extra-intestinal infection and dissemination in the environment. We have previously identified the fos locus, a gene cluster within a pathogenicity island of the avian ExPEC strain BEN2908, involved in the metabolism of short-chain fructooligosaccharides (scFOS). It is assumed that these sugars are metabolized by the probiotic bacteria of the microbiota present in the intestine, leading to a decrease in the pathogenic bacterial population. However, we have previously shown that scFOS metabolism helps BEN2908 to colonize the intestine, its reservoir. As the fos locus is located on a pathogenicity island, one aim of this study was to investigate a possible role of this locus in the virulence of the strain for chicken. We thus analysed fos gene expression in extracts of target organs of avian colibacillosis and performed a virulence assay in chickens. Moreover, in order to understand the involvement of the fos locus in intestinal colonization, we monitored the expression of fos genes and their implication in the growth ability of the strain in intestinal extracts of chicken. We also performed intestinal colonization assays in axenic and Specific Pathogen-Free (SPF) chickens. We demonstrated that the fos locus is not involved in the virulence of BEN2908 for chickens and is strongly involved in axenic chicken cecal colonization both in vitro and in vivo. However, even if the presence of a microbiota does not inhibit the growth advantage of BEN2908 in ceca in vitro, overall, growth of the strain is not favoured in the ceca of SPF chickens. These findings indicate that scFOS metabolism by an ExPEC strain can contribute to its fitness in ceca but this benefit is fully dependent on the bacteria present in the microbiota.  相似文献   

18.
The capybara (Hydrochoerus hydrochaeris) is the world's largest living rodent. Native to South America, this hindgut fermenter is herbivorous and coprophagous and uses its enlarged cecum to digest dietary plant material. The microbiota of specialized hindgut fermenters has remained largely unexplored. The aim of this work was to describe the composition of the bacterial community in the fermenting cecum of wild capybaras. The analysis of bacterial communities in the capybara cecum is a first step towards the functional characterization of microbial fermentation in this model of hindgut fermentation. We sampled cecal contents from five wild adult capybaras (three males and two females) in the Venezuelan plains. DNA from cecal contents was extracted, the 16S rDNA was amplified, and the amplicons were hybridized onto a DNA microarray (G2 PhyloChip). We found 933 bacterial operational taxonomic units (OTUs) from 182 families in 21 bacterial phyla in the capybara cecum. The core bacterial microbiota (present in at least four animals) was represented by 575 OTUs. About 86% of the cecal bacterial OTUs belong to only five phyla, namely, Firmicutes (322 OTUs), Proteobacteria (301 OTUs), Bacteroidetes (76 OTUs), Actinobacteria (69 OTUs), and Sphirochaetes (37 OTUs). The capybara harbors a diverse bacterial community that includes lineages involved in fiber degradation and nitrogen fixation in other herbivorous animals.  相似文献   

19.
Lactobacilli are the predominant microorganisms of the vaginal bacterial microbiota, and they play a major role in the maintenance of a healthy urogenital tract. In consequence, the interest in their potential use as probiotics has significantly increased during the last decade. In the present study we assessed the influence of different excipients on the survival of 4 probiotic vaginal lactobacilli incorporated into glycerinated gelatin ovules and stored at 5 degrees C for 60 d. Results showed that viability after storage was a strain-dependent characteristic, but inclusion of ascorbic acid significantly increased survival in 3 of the 4 strains tested. The best survival was observed for Lactobacillus salivarius CRL 1328 in ovules containing skimmed milk. No significant differences in viability were observed between control ovules (glycerogelatin base without excipients) and those containing lactose or Tween 80 for any of the strains tested. Lactobacillus acidophilus CRL 1259 and Lactobacillus crispatus CRL 1266 were, respectively, the most resistant and sensitive strains to the storage with the different substances. In conclusion, these results provide a basis for selecting excipients to improve the survival of lactobacilli in a probiotic product, in an attempt to ensure the delivery of an adequate number of viable cells to the urogenital tract.  相似文献   

20.
During inhibitory activity screening of 296 strains of lactic acid bacteria from the gastro-intestinal tract of chicks, 77 strains showed inhibition against enteric indicator strains ( Salmonella enteritidis and Escherichia coli ). Eight different strains identified as Lactobacillus salivarius were selected for the following attributes: their ability to inhibit all the indicator strains; a high adhesion efficiency to the epithelial cells of chickens and also their resistance to a number of antibiotics, monensin, bile salts and pH 3·0. The inhibitory action was not affected by the addition of catalase and no inhibition was detected after neutralizing the supernatant culture fluid. The competitiveness of the most promising strains, Lact. salivarius CTC2183 and CTC2197, was assessed in chicken feed mixture and in vivo . It was concluded that both strains were capable of becoming predominant over the indigenous flora in the incubated chicken feed mixture. In vivo tests showed that Lact. salivarius CTC2197 was able to colonize and overcome Lact. salivarius CTC2183 and the indigenous flora in the crop and caecum of the inoculated chicks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号