首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
To determine whether globally increasing atmospheric carbon dioxide (CO2) concentrations can affect carbon partitioning between nonstructural and structural carbon pools in agroforestry plantations, Populus nigra was grown in ambient air (about 370 μmol mol?1 CO2) and in air with elevated CO2 concentrations (about 550 μmol mol?1 CO2) using free‐air CO2 enrichment (FACE) technology. FACE was maintained for 5 years. After three growing seasons, the plantation was coppiced and one half of each experimental plot was fertilized with nitrogen. Carbon concentrations and stocks were measured in secondary sprouts in seasons of active growth and dormancy during 2 years after coppicing. Although FACE, N fertilization and season had significant tissue‐specific effects on carbon partitioning to the fractions of structural carbon, soluble sugars and starch as well as to residual soluble carbon, the overall magnitude of these shifts was small. The major effect of FACE and N fertilization was on cell wall biomass production, resulting in about 30% increased above ground stocks of both mobile and immobile carbon pools compared with fertilized trees under ambient CO2. Relative C partitioning between mobile and immobile C pools was not significantly affected by FACE or N fertilization. These data demonstrate high metabolic flexibility of P. nigra to maintain C‐homeostasis under changing environmental conditions and illustrate that nonstructural carbon compounds can be utilized more rapidly for structural growth under elevated atmospheric [CO2] in fertilized agroforestry systems. Thus, structural biomass production on abandoned agricultural land may contribute to achieving the goals of the Kyoto protocol.  相似文献   

2.
Manfred Kluge 《Planta》1969,86(2):142-150
Summary Starch consumption during the dark period in detached phyllodia of Bryophyllum tubiflorum is inhibited, when the phyllodia are held in an atmosphere free from carbon dioxide during the night. This is true also in other succulent plants with Crassulacean acid metabolism=CAM (examined were Bryophyllum calycinum and Sedum morganianum). This effect seems to indicate that the role of starch in CAM is production of CO2 acceptors rather than production of carbon dioxide by respiration. If the CO2 acceptors are not used, starch consumption comes to an end.This hypothesis could also explain results of experiments in which phyllodia were held at different temperatures during the dark period, and net CO2 fixation, starch loss and malate gain were determined. At 10° CO2 uptake was at a maximum (the necessary supply of CO2 acceptors must have therefore been at a maximum, too). Under these conditions there was the greatest amount of starch consumption. At 23° C, CO2 uptake was clearly lowered, and this was also true for starch consumption. At 35° C net CO2 uptake was balanced by net CO2, output (no CO2 acceptors were needed in CO2 dark fixation). At this temperature no starch loss could be measured.  相似文献   

3.
Effects of elevated atmospheric carbon dioxide (CO2) levels on the production and spread of ectomycorrhizal fungal mycelium from colonised Scots pine roots were investigated. Pinus sylvestris (L.) Karst. seedlings inoculated with either Hebeloma crustuliniforme (Bull:Fr.) Quél. or Paxillus involutus (Fr.) Fr. were grown at either ambient (350 ppm) or elevated (700 ppm) levels of CO2. Mycelial production was measured after 6 weeks in pots, and mycelial spread from inoculated seedlings was studied after 4 months growth in perlite in shallow boxes containing uncolonised bait seedlings. Plant and fungal biomass were analysed, as well as carbon and nitrogen content of seedling shoots. Mycelial biomass production by H. crustuliniforme was significantly greater under elevated CO2 (up to a 3-fold increase was observed). Significantly lower concentrations and total amounts of N were found in plants exposed to elevated CO2.  相似文献   

4.
Arbutus unedo is a sclerophyllous evergreen, characteristic of Mediterranean coastal scrub vegetation. In Italy, trees of A. unedo have been found close to natural CO2 vents where the mean atmospheric carbon dioxide concentration is about 2200 μmol mol?1. Comparisons were made between trees growing in elevated and ambient CO2 concentrations to test for evidence of adaptation to long-term exposure to elevated CO2. Leaves formed at elevated CO2 have a lower stomatal density and stomatal index and higher specific leaf area than those formed at ambient CO2, but there was no change in carbon to nitrogen ratios of the leaf tissue. Stomatal conductance was lower at elevated CO2 during rapid growth in the spring. In mid-summer, under drought stress, stomatal closure of all leaves occurred and in the autumn, when stress was relieved, the conductance of leaves at both elevated and ambient CO2 increased. In the spring, the stomatal conductance of the new flush of leaves at ambient CO2 was higher than the leaves at elevated CO2, increasing instantaneous water use efficiency at elevated CO2. Chlorophyll fluorescence measurements suggested that elevated CO2 provided some protection against photoinhibition in mid-summer. Analysis of A/Ci curves showed that there was no evidence of either upward or downward regulation of photosynthesis at elevated CO2. It is therefore anticipated that A. unedo will have higher growth rates as the ambient CO2 concentrations increase.  相似文献   

5.
The carbon/nutrient balance hypothesis suggests that leaf carbon to nitrogen ratios influence the synthesis of secondary compounds such as condensed tannins. We studied the effects of rising atmospheric carbon dioxide on carbon to nitrogen ratios and tannin production. Six genotypes of Populus tremuloides were grown under elevated and ambient CO2 partial pressure and high- and low-fertility soil in field open-top chambers in northern lower Michigan, USA. During the second year of exposure, leaves were harvested three times (June, August, and September) and analyzed for condensed tannin concentration. The carbon/nutrient balance hypothesis was supported overall, with significantly greater leaf tannin concentration at high CO2 and low soil fertility compared to ambient CO2 and high soil fertility. However, some genotypes increased tannin concentration at elevated compared to ambient CO2, while others showed no CO2 response. Performance of lepidopteran leaf miner (Phyllonorycter tremuloidiella) larvae feeding on these plants varied across genotypes, CO2, and fertility treatments. These results suggest that with rising atmospheric CO2, plant secondary compound production may vary within species. This could have consequences for plant–herbivore and plant–microbe interactions and for the evolutionary response of this species to global climate change.  相似文献   

6.
Ching Huei Kao  Shang Fa Yang 《Planta》1982,155(3):261-266
The mechanism of light-inhibited ethylene production in excised rice (Oryza sativa L.) and tobacco (Nicotiana tabacum L.) leaves was examined. In segments of rice leaves light substantially inhibited the endogenous ethylene production, but when CO2 was added into the incubation flask, the rate of endogenous ethylene production in the light increased markedly, to a level which was even higher than that produced in the dark. Carbon dioxide, however, had no appreciable effect of leaf segments incubated in the dark. The endogenous level of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, was not significantly affected by lightdark or CO2 treatment, indicating that dark treatment or CO2exerted its effect by promoting the conversion of ACC to ethylene. This conclusion was supported by the observations that the rate of conversion of exogenously applied ACC to ethylene was similarly inhibited by light, and this inhibition was relieved in the presence of CO2. Similar results were obtained with tobacco leaf discs. The concentrations of CO2 giving half-maximal activity was about 0.06%, which was only slightly above the ambient level of 0.03%. The modulation of ACC conversion to ethylene by CO2 or light in detached leaves of both rice and tobacco was rapid and fully reversible, indicating that CO2 regulates the activity, but not the synthesis, of the enzyme converting ACC to ethylene. Our results indicate that light inhibition of ethylene production in detached leaves is mediated through the internal level of CO2, which directly modulates the activity of the enzyme converting ACC to ethylene.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid Recipient of a Republic of China National Science Council Fellowship  相似文献   

7.
Both carbon dioxide and ethylene can affect the rate of root elongation. Carbon dioxide can also promote ethylene biosynthesis by enhancing the activity of 1-aminocylopropane-1-carboxylic acid (ACC) oxidase. Since the amount of CO2 in the soil air, and in the atmosphere surrounding roots held in enclosed containers, is known to vary widely, we investigated the effects of varying CO2 concentrations on ethylene production by excised and intact sunflower roots (Helianthus annuus L. cv. Dahlgren 131). Seedlings were germinated in an aeroponic system in which the roots hung freely in a chamber and were misted with nutrient solution. This allowed for treatment, manipulation and harvest of undamaged and minimally disturbed roots. While exposure of excised roots to 0.5% CO2 could produce a small increase in ethylene production (compared to roots in ambient CO2), CO2 concentrations of 2% and above always inhibited ethylene evolution. This inhibition of ethylene production by CO2 was attributed to a reduction in the availability of ACC: however, elevated CO2 had no effect on ACC oxidase activity. ACC levels in excised roots were depressed by CO2 at a concentration of 2% (as compared to ambient CO2), but n-malonyl-ACC (MACC) levels were not affected. Treating intact roots with 2% CO2 inhibited elongation by over 50%. Maximum inhibition of elongation occurred 1 h after the CO2 treatment began, but elongation rates returned to untreated values by 6 h. Supplying these same intact roots with 2% CO2 did not alter ethylene evolution. Thus, in excised sunflower roots 2% CO2 treatment reduces ethylene evolution by lowering the availability of ACC. Intact seedlings respond differently in that 2% CO2 does not affect ethylene production in roots. These intact roots also temporarily exhibit a significantly reduced rate of elongation in response to 2% CO2.  相似文献   

8.
We measured the short‐term direct and long‐term indirect effects of elevated CO2 on leaf dark respiration of loblolly pine (Pinus taeda) and sweetgum (Liquidambar styraciflua) in an intact forest ecosystem. Trees were exposed to ambient or ambient + 200 µmol mol?1 atmospheric CO2 using free‐air carbon dioxide enrichment (FACE) technology. After correcting for measurement artefacts, a short‐term 200 µmol mol?1 increase in CO2 reduced leaf respiration by 7–14% for sweetgum and had essentially no effect on loblolly pine. This direct suppression of respiration was independent of the CO2 concentration under which the trees were grown. Growth under elevated CO2 did not appear to have any long‐term indirect effects on leaf maintenance respiration rates or the response of respiration to changes in temperature (Q10, R0). Also, we found no relationship between mass‐based respiration rates and leaf total nitrogen concentrations. Leaf construction costs were unaffected by growth CO2 concentration, although leaf construction respiration decreased at elevated CO2 in both species for leaves at the top of the canopy. We conclude that elevated CO2 has little effect on leaf tissue respiration, and that the influence of elevated CO2 on plant respiratory carbon flux is primarily through increased biomass.  相似文献   

9.
Using controlled environmental growth chambers, whole plants of soybean, cv. ‘Clark’, were examined during early development (7–20 days after sowing) at both ambient (≈ 350 μL L–1) and elevated (≈ 700 μL L–1) carbon dioxide and a range of air temperatures (20, 25, 30, and 35 °C) to determine if future climatic change (temperature or CO2 concentration) could alter the ratio of carbon lost by dark respiration to that gained via photosynthesis. Although whole-plant respiration increased with short-term increases in the measurement temperature, respiration acclimated to increasing growth temperature. Respiration, on a dry weight basis, was either unchanged or lower for the elevated CO2 grown plants, relative to ambient CO2 concentration, over the range of growth temperatures. Levels of both starch and sucrose increased with elevated CO2 concentration, but no interaction between CO2 and growth temperature was observed. Relative growth rate increased with elevated CO2 concentration up to a growth temperature of 35 °C. The ratio of respiration to photosynthesis rate over a 24-h period during early development was not altered over the growth temperatures (20–35 °C) and was consistently less at the elevated relative to the ambient CO2 concentration. The current experiment does not support the proposition that global increases in carbon dioxide and temperature will increase the ratio of respiration to photosynthesis; rather, the data suggest that some plant species may continue to act as a sink for carbon even if carbon dioxide and temperature increase simultaneously.  相似文献   

10.
Effects of daytime carbon dioxide concentration on dark respiration in rice   总被引:5,自引:1,他引:4  
Rising atmospheric carbon dioxide concentration ([CO2]) has generated considerable interest in the response of agricultural crops to [CO2]. The objectives of this study were to determine the effects of a wide range of daytime [CO2] on dark respiration of rice (Oryza sativa L. cv. IR-30). Rice plants were grown season-long in naturally sunlit plant growth chambers in subambient (160 and 250), ambient (330), or super-ambient (500, 660 and 900 μmol CO2 mol?1 air) [CO2] treatments. Canopy dark respiration, expressed on a ground area basis (Rd) increased with increasing [CO2] treatment from 160 to 500 μmol mol?1 treatments and was very similar among the superambient treatments. The trends in Rd over time and in response to increasing daytime [CO2] treatment were associated with and similar to trends previously described for photosynthesis. Specific respiration rate (Rdw) decreased with time during the growing season and was higher in the subambient than the ambient and superambient [CO2] treatments. This greater Rdw in the subambient [CO2] treatments was attributed to a higher specific maintenance respiration rate and was associated with higher plant tissue nitrogen concentration.  相似文献   

11.
Coralline algae are considered among the most sensitive species to near future ocean acidification. We tested the effects of elevated pCO2 on the metabolism of the free‐living coralline alga Lithothamnion corallioides (“maerl”) and the interactions with changes in temperature. Specimens were collected in North Brittany (France) and grown for 3 months at pCO2 of 380 (ambient pCO2), 550, 750, and 1000 μatm (elevated pCO2) and at successive temperatures of 10°C (ambient temperature in winter), 16°C (ambient temperature in summer), and 19°C (ambient temperature in summer +3°C). At each temperature, gross primary production, respiration (oxygen flux), and calcification (alkalinity flux) rates were assessed in the light and dark. Pigments were determined by HPLC. Chl a, carotene, and zeaxanthin were the three major pigments found in L. corallioides thalli. Elevated pCO2 did not affect pigment content while temperature slightly decreased zeaxanthin and carotene content at 10°C. Gross production was not affected by temperature but was significantly affected by pCO2 with an increase between 380 and 550 μatm. Light, dark, and diel (24 h) calcification rates strongly decreased with increasing pCO2 regardless of the temperature. Although elevated pCO2 only slightly affected gross production in L. corallioides, diel net calcification was reduced by up to 80% under the 1,000 μatm treatment. Our findings suggested that near future levels of CO2 will have profound consequences for carbon and carbonate budgets in rhodolith beds and for the sustainability of these habitats.  相似文献   

12.
It has been hypothesized that greater production of total nonstructural carbohydrates (TNC) in foliage grown under elevated atmospheric carbon dioxide (CO2) will result in higher concentrations of defensive compounds in tree leaf litter, possibly leading to reduced rates of decomposition and nutrient cycling in forest ecosystems of the future. To evaluate the effects of elevated atmospheric CO2 on litter chemistry and decomposition, we performed a 111 day laboratory incubation with leaf litter of trembling aspen (Populus tremuloides Michaux) produced at 36 Pa and 56 Pa CO2 and two levels of soil nitrogen (N) availability. Decomposition was quantified as microbially respired CO2 and dissolved organic carbon (DOC) in soil solution, and concentrations of nonstructural carbohydrates, N, carbon (C), and condensed tannins were monitored throughout the incubation. Growth under elevated atmospheric CO2 did not significantly affect initial litter concentrations of TNC, N, or condensed tannins. Rates of decomposition, measured as both microbially respired CO2 and DOC did not differ between litter produced under ambient and elevated CO2. Total C lost from the samples was 38 mg g?1 litter as respired CO2 and 138 mg g?1 litter as DOC, suggesting short‐term pulses of dissolved C in soil solution are important components of the terrestrial C cycle. We conclude that litter chemistry and decomposition in trembling aspen are minimally affected by growth under higher concentrations of CO2.  相似文献   

13.
We measured sediment production of carbon dioxide (CO2) and methane (CH4) and the net flux of CO2 across the surfaces of 15 boreal and subarctic lakes of different humic contents. Sediment respiration measurements were made in situ under ambient light conditions. The flux of CO2 between sediment and water varied between an uptake of 53 and an efflux of 182 mg C m−2 day−1 from the sediments. The mean respiration rate for sediments in contact with the upper mixed layer (SedR) was positively correlated to dissolved organic carbon (DOC) concentration in the water (r2 = 0.61). The net flux of CO2 across the lake surface [net ecosystem exchange (NEE)] was also closely correlated to DOC concentration in the upper mixed layer (r2 = 0.73). The respiration in the water column was generally 10-fold higher per unit lake area compared to sediment respiration. Lakes with DOC concentrations <5.6 mg L−1 had net consumption of CO2 in the sediments, which we ascribe to benthic primary production. Only lakes with very low DOC concentrations were net autotrophic (<2.6 mg L−1) due to the dominance of dissolved allochthonous organic carbon in the water as an energy source for aquatic organisms. In addition to previous findings of allochthonous organic matter as an important driver of heterotrophic metabolism in the water column of lakes, this study suggests that sediment metabolism is also highly dependent on allochthonous carbon sources.  相似文献   

14.
Soybean (Glycine max) was grown at ambient and enhanced carbon dioxide (CO2, + 250 μL L?1 above ambient) with and without the presence of a C3 weed (lambsquarters, Chenopodium album L.) and a C4 weed (redroot pigweed, Amaranthus retroflexus L.), in order to evaluate the impact of rising atmospheric carbon dioxide concentration [CO2] on crop production losses due to weeds. Weeds of a given species were sown at a density of two per metre of row. A significant reduction in soybean seed yield was observed with either weed species relative to the weed‐free control at either [CO2]. However, for lambsquarters the reduction in soybean seed yield relative to the weed‐free condition increased from 28 to 39% as CO2 increased, with a 65% increase in the average dry weight of lambsquarters at enhanced [CO2]. Conversely, for pigweed, soybean seed yield losses diminished with increasing [CO2] from 45 to 30%, with no change in the average dry weight of pigweed. In a weed‐free environment, elevated [CO2] resulted in a significant increase in vegetative dry weight and seed yield at maturity for soybean (33 and 24%, respectively) compared to the ambient CO2 condition. Interestingly, the presence of either weed negated the ability of soybean to respond either vegetatively or reproductively to enhanced [CO2]. Results from this experiment suggest: (i) that rising [CO2] could alter current yield losses associated with competition from weeds; and (ii) that weed control will be crucial in realizing any potential increase in economic yield of agronomic crops such as soybean as atmospheric [CO2] increases.  相似文献   

15.
The aim of this work was to examine the effect of abrupt changes in temperature in the range 5 to 30°C upon the rate of photosynthetic carbon assimilation in leaves of barley (Hordeum vulgare L.). Measurement of the CO2-assimilation rate in relation to the intercellular partial pressure of CO2 at different temperatures and O2 concentrations and at saturating irradiance showed that as the temperature was decreased photosynthesis was saturated at progressively lower CO2 partial pressures and that the transition between the CO2-limited and ribulose-1,5-bisphosphate-regeneration-limited rate became more abrupt. Feeding of orthophosphate to leaves resulted in an increased rate of CO2 assimilation at lower temperatures at around ambient or higher CO2 partial pressures both in 20% O2 and in 2% O2 and it removed the abruptness in the transition between the CO2-limited and ribulose-1,5-bisphosphate-regeneration-limited rates. Phosphate feeding tended to inhibit carbon assimilation at higher temperatures. The response of carbon assimilation to temperature was altered by feeding orthophosphate, by changing the concentrations of CO2 or of O2 or by leaving plants in the dark at 4°C for several hours. Similarly, the response of carbon assimilation to phosphate feeding or to changes in 2% O2 was altered by leaving the plants in the dark at 4°C. The mechanism of limitation of photosynthesis by an abrupt lowering of temperature is discussed in the light of the results.Abbreviations A rate of CO2 assimilation - P i intercellular partial pressure of CO2 - RuBP ribulose-1,5-bisphosphate  相似文献   

16.
The effect of controlled carbon dioxide environment on in vitro shoot growth and multiplication in Feronia limonia (a tropical fruit plant, Family- Rutaceae) was studied. Carbon dioxide available in the ambient air of the growth room was insufficient for in vitro growth of the shoots alone. Also, the presence of sucrose only as the C-source in the medium (without CO2), was found to be inadequate for sustainable growth and multiplication of shoots. The carbon dioxide enrichment promoted shoot multiplication and overall growth. The promotory effect of CO2 was independent of the presence of sucrose in the medium. In the presence of both CO2 and sucrose, an additive effect was observed producing maximum shoot growth. In the absence of sucrose a higher concentration of CO2 (10.0)g m−3 was required to achieve photoautotrophic shoot multiplication comparable to ambient air controls. Highest leaf area per shoot cluster promoting shoot growth and multiplication was recorded under this treatment. Shoots growing on sucrose containing medium under controlled CO2 environment of 0.6 g m−3 concentration evoked better response than ambient air controls (shoots growing on sucrose containing medium) in growth room. This treatment produced the overall best response. The present study highlighted the possibility of photoautotrophic multiplication which might prove useful for successful hardening and acclimatization in tissue culture plants.  相似文献   

17.
Productivity of aridland plants is predicted to increase substantially with rising atmospheric carbon dioxide (CO2) concentrations due to enhancement in plant water-use efficiency (WUE). However, to date, there are few detailed analyses of how intact desert vegetation responds to elevated CO2. From 1998 to 2001, we examined aboveground production, photosynthesis, and water relations within three species exposed to ambient (around 38 Pa) or elevated (55 Pa) CO2 concentrations at the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility in southern Nevada, USA. The functional types sampled—evergreen (Larrea tridentata), drought-deciduous (Ambrosia dumosa), and winter-deciduous shrubs (Krameria erecta)—represent potentially different responses to elevated CO2 in this ecosystem. We found elevated CO2 significantly increased aboveground production in all three species during an anomalously wet year (1998), with relative production ratios (elevated:ambient CO2) ranging from 1.59 (Krameria) to 2.31 (Larrea). In three below-average rainfall years (1999–2001), growth was much reduced in all species, with only Ambrosia in 2001 having significantly higher production under elevated CO2. Integrated photosynthesis (mol CO2 m−2 y−1) in the three species was 1.26–2.03-fold higher under elevated CO2 in the wet year (1998) and 1.32–1.43-fold higher after the third year of reduced rainfall (2001). Instantaneous WUE was also higher in shrubs grown under elevated CO2. The timing of peak canopy development did not change under elevated CO2; for example, there was no observed extension of leaf longevity into the dry season in the deciduous species. Similarly, seasonal patterns in CO2 assimilation did not change, except for Larrea. Therefore, phenological and physiological patterns that characterize Mojave Desert perennials—early-season lags in canopy development behind peak photosynthetic capacity, coupled with reductions in late-season photosynthetic capacity prior to reductions in leaf area—were not significantly affected by elevated CO2. Together, these findings suggest that elevated CO2 can enhance the productivity of Mojave Desert shrubs, but this effect is most pronounced during years with abundant rainfall when soil resources are most available.  相似文献   

18.
Carbon dioxide has been rapidly accumulating in the atmosphere and is expected to continue to do so. This accumulation is presumed to have important direct effects on plant growth. The interacting affects of a small increase in CO2 concentration (466 p.p.m., approximately 30% increase from current ambient conditions), nitrogen fertilization and fungal endophyte (Neotyphodium lolii) infection on the growth and chemical composition of perennial ryegrass (Lolium perenne) were investigated. It was found that dry mass production was approximately 50% greater under elevated CO2 than under ambient CO2, but only in conditions of high soil N. High molecular weight carbohydrates and total carbohydrates (LMW + HMW CHO) depended on an interaction between CO2 and endophyte infection. Infected plants contained significantly more carbohydrate than endophyte-free plants, and the difference was greatest in ambient CO2 conditions. Protein concentrations were also influenced by the interaction between CO2 and endophyte-infection. Endophyte-free plants had 40% lower concentrations of soluble protein under elevated CO2 than under ambient CO2, but this CO2 effect on soluble protein was largely absent in endophyte-infected plants. CO2, endophyte-infection and nitrogen interacted to influence the total chlorophyll concentration of the grass such that chlorophyll concentration was always lower in elevated CO2 but this decline was much greater in endophyte-free plants, particularly in conditions of high soil N. In the endophyte-infected plants, the concentrations of the pyrrolopyrazine alkaloid peramine depended on the interaction between CO2 and N fertilization such that peramine concentrations declined with increasing N at ambient CO2 but remained roughly constant across N levels at elevated CO2. A similar pattern was seen for the ergot alkaloid ergovaline. The biochemical responses of perennial ryegrass to elevated CO2 are clearly modified by the presence of endophytic fungi.  相似文献   

19.
Climate change factors such as elevated carbon dioxide (CO2) and temperature typically affect carbon (C) and nitrogen (N) dynamics of crop plants and the performance of insect herbivores. Insect‐resistant transgenic plants invest some nutrients to the production of specific toxic proteins [i.e. endotoxins from Bacillus thuringiensis (Bt)], which could alter the C–N balance of these plants, especially under changed abiotic conditions. Aphids are nonsusceptible to Lepidoptera‐targeted Bt Cry1Ac toxin and they typically show response to abiotic conditions, and here we sought to discover whether they might perform differently on compositionally changed Bt oilseed rape. Bt oilseed rape had increased N content in the leaves coupled with reduced total C compared with its nontransgenic counterpart, but in general the C : N responses of both plant types to elevated CO2 and temperature were similar. Elevated CO2 decreased N content and increased C : N ratio of both plant types. Elevated temperature increased C and N contents, total chlorophyll and carotenoid concentrations under ambient CO2, but decreased these under elevated CO2. In addition, soluble sugars were increased and starch decreased by elevated temperature under ambient but not under elevated CO2, whereas photosynthesis was decreased in plants grown under elevated temperature in both CO2 levels. Myzus persicae, a generalist aphid species, responded directly to elevated temperature with reduced developmental time and decreased adult and progeny weights, whereas the development of the Brassica specialist Brevicoryne brassicae was less affected. Feeding by M. persicae resulted in an increase in the N content of oilseed rape leaves under ambient CO2, indicating the potential of herbivore feeding itself to cause allocation changes. The aphids performed equally well on both plant types despite the differences between C–N ratios of Bt and non‐Bt oilseed rape, revealing the absence of plant composition‐related effects on these pests under elevated CO2, elevated temperature or combined elevated CO2 and temperature conditions.  相似文献   

20.
In vitro growth and multiplication of shoots of a woody tree species Wrightia tomentosa in a controlled carbon dioxide environment was studied. The cultures were grown on BA supplemented MS medium with or without 3% sucrose. A range of CO2 concentrations (0.0, 0.6, 10.0 and 40.0 g m–3) was controlled in small chambers by using solutions of NaHCO3, Na2CO3, KHCO3 and K2CO3. To obtain a CO2-free environment, a saturated solution of KOH was kept in the chambers. It was concluded that the growing shoot cultures required either sucrose in the medium as a carbon source or an ambient CO2 environment. Complete absence of a carbon source caused severe browning of the shoots and death within 30 days. The cultures grew better with 10.0 g m–3 carbon dioxide in the environment than with 3.0% sucrose in the medium. With both CO2 and sucrose being available, the best response was obtained at 0.6 g m–3 CO2 in the chamber. At this concentration the rate of shoot multiplication was nearly double the standard rate obtained when exposed to the natural CO2 level and sucrose-supplemented medium. Total fresh and dry weight, leaf number and area per cluster also showed the best response under this condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号