首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin 18 (IL18) is a cytokine that plays an important role in inflammation as well as host defense against microbes. Mammals encode a soluble inhibitor of IL18 termed IL18 binding protein (IL18BP) that modulates IL18 activity through a negative feedback mechanism. Many poxviruses encode homologous IL18BPs, which contribute to virulence. Previous structural and functional studies on IL18 and IL18BPs revealed an essential binding hot spot involving a lysine on IL18 and two aromatic residues on IL18BPs. The aromatic residues are conserved among the very diverse mammalian and poxviruses IL18BPs with the notable exception of yatapoxvirus IL18BPs, which lack a critical phenylalanine residue. To understand the mechanism by which yatapoxvirus IL18BPs neutralize IL18, we solved the crystal structure of the Yaba-Like Disease Virus (YLDV) IL18BP and IL18 complex at 1.75 Å resolution. YLDV-IL18BP forms a disulfide bonded homo-dimer engaging IL18 in a 2∶2 stoichiometry, in contrast to the 1∶1 complex of ectromelia virus (ECTV) IL18BP and IL18. Disruption of the dimer interface resulted in a functional monomer, however with a 3-fold decrease in binding affinity. The overall architecture of the YLDV-IL18BP:IL18 complex is similar to that observed in the ECTV-IL18BP:IL18 complex, despite lacking the critical lysine-phenylalanine interaction. Through structural and mutagenesis studies, contact residues that are unique to the YLDV-IL18BP:IL18 binding interface were identified, including Q67, P116 of YLDV-IL18BP and Y1, S105 and D110 of IL18. Overall, our studies show that YLDV-IL18BP is unique among the diverse family of mammalian and poxvirus IL-18BPs in that it uses a bivalent binding mode and a unique set of interacting residues for binding IL18. However, despite this extensive divergence, YLDV-IL18BP binds to the same surface of IL18 used by other IL18BPs, suggesting that all IL18BPs use a conserved inhibitory mechanism by blocking a putative receptor-binding site on IL18.  相似文献   

2.
Interleukin (IL)-18 induces T cells and natural killer cells to produce not only interferon-gamma but also other cytokines by binding to the IL-18 receptor (IL-18R) alpha and beta subunits. However, little is known about how IL-18, IL-18Ralpha, and IL-18Rbeta form a high-affinity complex on the cell surface and transduce the signal. We found that IL-18 and IL-18Ralpha bind to glycosylphosphatidylinositol (GPI) glycan via the third mannose 6-phosphate diester and the second beta-GlcNAc-deleted mannose 6-phosphate of GPI glycan, respectively. To determine which GPI-anchored glycoprotein is involved in the complex of IL-18 and IL-18Ralpha, IL-18Ralpha of IL-18-stimulated KG-1 cells was immunoprecipitated together with CD48 by anti-IL-18Ralpha antibody. More than 90% of CD48 was detected as beta-GlcNAc-deleted GPI-anchored glycoprotein, and soluble recombinant human CD48 without GPI glycan bound to IL-18Ralpha, indicating that CD48 is associated with IL-18Ralpha via both the peptide portion and the GPI glycan. To investigate whether the carbohydrate recognition of IL-18 is involved in physiological activities, KG-1 cells were digested with phosphatidylinositol-specific phospholipase C before IL-18 stimulation. Phosphatidylinositol-specific phospholipase C treatment inhibited the phosphorylation of tyrosine kinases and the following IL-18-dependent interferon-gamma production. These observations suggest that the complex formation of IL-18.IL-18Ralpha. CD48 via both the peptide portion and GPI glycan triggers the binding to IL-18Rbeta, and the IL-18.IL-18Ralpha.CD48.IL-18Rbeta complex induces cellular signaling.  相似文献   

3.
IL-18 is a pleiotropic proinflammatory cytokine that is involved in induction of inflammatory mediators, regulation of the cytotoxic activity of NK cells and T cells, and differentiation and activation of both Th1 and Th2 cells. IL-18 signals through its specific cell surface receptor IL-18R, which comprises two subunits: IL-18R alpha and IL-18R beta. IL-18R alpha alone has a weak affinity for IL-18 binding, while the IL-18R alpha/beta complex has a high affinity. By using several anti-IL-18 mAbs and IL-18 binding protein, we have examined whether these site-specific inhibitors could block the binding of IL-18 to IL-18R alpha and to the IL-18R alpha/beta complex. Here we show that IL-18 binding to IL-18R alpha was inhibited by a neutralizing mAb, 125-2H, while binding of IL-18 to the alpha/beta receptor complex was not. This suggests that IL-18R beta-induced conformational changes may occur in IL-18R alpha upon dimerization, leading to changes in the presentation of IL-18 binding sites. Epitope mapping of 125-2H using human-mouse IL-18 chimeras identified a region in IL-18 that was required for 125-2H recognition. This region, as examined by IL-18R binding and functional analysis, appeared to be critical for triggering signal transduction through the heterodimeric receptor.  相似文献   

4.
To evaluate the characteristics of chicken interleukin-18 (ChIL-18) in different forms in vitro, the ChIL-18 full-length gene (ChIL-18-F) and the ChIL-18 presumed mature protein gene (ChIL-18-M) were cloned and inserted into the eukaryotic expression vector pCI, to construct recombinant pCI-ChIL-18-F and pCI-ChIL-18-M. The recombinant plasmids were then transferred into chicken splenic lymphocytes (CSLs). Western blot showed that ChIL-18-F, with a molecular weight of 23.0 kDa, was produced in CSLs transfected by pCI-ChIL-18-F; ChIL-18-M, with a molecular weight of 19.5 kDa, was produced in CSLs transfected by pCI-ChIL-18-M. The nitric oxide (NO) level in the transfected CSLs and the culture medium at different time points was further examined under confocal microscopy using 4,5-diaminofluorescein staining. The results showed that both pCI-ChIL-18-F and pCI-ChIL-18-M groups showed significant increase in intracellular and extracellular NO production compared with pCI transfected control cells. These results suggest that both ChIL- 18-F and ChIL- 18-M could stimulate NO secretion in CSLs. To characterize the intracellular distribution of ChIL-18, ChIL-18-F and ChIL-18-M were each fused to the enhanced green fluorescent protein gene, and expressed in Vero cells. The results showed that the ChIL-18-F tended to the membranous region in Veto cells, while ChIL- 18-M did not. This indicates that the N-terminal 27 amino acid peptide helped ChIL-18 target to Vero cell membranes.  相似文献   

5.
To evaluate the characteristics of chicken interleukin-18 (ChIL-18) in different forms in vitro,the ChIL-18 full-length gene (ChIL-18-F) and the ChIL-18 presumed mature protein gene (ChIL-18-M) werecloned and inserted into the eukaryotic expression vector pCI,to construct recombinant pCI-ChIL-18-Fand pCI-ChIL-18-M.The recombinant plasmids were then transferred into chicken splenic lymphocytes(CSLs).Western blot showed that ChIL-18-F,with a molecular weight of 23.0 kDa,was produced in CSLstransfected by pCI-ChlL-18-F;ChIL-18-M,with a molecular weight of 19.5 kDa,was produced in CSLstransfected by pCI-ChIL-18-M.The nitric oxide (NO) level in the transfected CSLs and the culture mediumat different time points was further examined under confocal microscopy using 4.5-diaminofluoresceinstaining.The results showed that both pCI-ChIL-18-F and pCI-ChIL-18-M groups showed significantincrease in intracellular and extracellular NO production compared with pCI transfected control cells.Theseresults suggest that both ChIL-18-F and ChIL-18-M could stimulate NO secretion in CSLs.To characterizethe intracellular distribution of ChIL-18,ChIL-18-F and ChIL-18-M were each fused to the enhanced greenfluorescent protein gene,and expressed in Vero cells.The results showed that the ChIL-18-F tended to themembranous region in Vero cells,while ChIL-18-M did not.This indicates that the N-terminal 27 amino acidpeptide helped ChIL-18 target to Veto cell membranes.  相似文献   

6.
The O-specific polysaccharide moieties (PS) of the O18A, O18A1, O18B, and O18B1 antigens (lipopolysaccharides, LPS) consist of L-rhamnose (Rha), N-acetyl-D-glucosamine, D-galactose, and D-glucose in different molar ratios. By using chemical fragmentation, methylation, as well as one- and two-dimensional NMR spectroscopy, the structures of these polysaccharides were found to be [formula: see text] In O18A-PS and O18A1-PS x = 2, whereas in O18B-PS and in O18B11-PS x = 3. In all four polysaccharides alpha-D-Galp (residue D) is substituted at O-3. This substituent L (residue E) is beta-D-GlcpNAc-(1 in O18A-PS and O18A1-PS and it is alpha-D-Glcp-(1 in O18B-PS and O18B1-PS. Whereas there is no further substituent on the main chain of the O18A and O18B polysaccharides, in O18A1-PS and O18B1-PS the alpha-D-GlcpNAc residue A is substituted with alpha-Glcp-(1 (residue F), which is linked to O-6 in O18A1-PS and to O-4 in O18B1-PS. These results show that the O18 antigen comprises a group of four related LPS (O18A and O18B, with their glucosylated forms O18A1 and O18B1). The results are discussed with respect to epitope definition and biochemical implications.  相似文献   

7.
IL-18 and IL-12 are major IFN-gamma-inducing cytokines but the unique synergism of IL-18 and IL-12 remains unclear. In the human NK cell line NKO, IL-18R alpha, and IL-18R beta are expressed constitutively but IL-18 did not induce IFN-gamma unless IL-12 was present. COS-1 fibroblasts, which produce the chemokine IL-8 when stimulated by IL-1 beta or TNF-alpha, do not respond to IL-18, despite abundant expression of the IL-18R alpha chain. COS-1 cells lack expression of the IL-18R beta chain. The IL-18R beta cDNA was cloned from a human T-B lymphoblast cDNA library and COS-1 cells were transiently transfected with the IL-18R beta chain and a luciferase reporter. In transfected COS-1 cells, IL-18 induced IL-8 and luciferase in the absence of IL-12 and independently of IL-1 and TNF. Ab against the IL-18R alpha chain, however, prevented IL-18 responsiveness in COS-1 cells transfected with the IL-18R beta chain, suggesting that both chains be functional. In NKO cells and PBMC, IL-12 increased steady-state mRNA levels of IL-18R alpha and IL-18R beta; the production of IFN-gamma corresponded to IL-12-induced IL-18R alpha and IL-18R beta chains. We conclude that functional reconstitution of the IL-18R beta chain is essential for IL-12-independent proinflammatory activity of IL-18-induced IL-8 in fibroblasts. The synergism of IL-18 plus IL-12 for IFN-gamma production is, in part, due to IL-12 up-regulation of both IL-18R alpha and IL-18R beta chains, although postreceptor events likely contribute to IFN-gamma production.  相似文献   

8.
The centromere, a chromosomal locus that acts as a microtubule attachment site, is epigenetically specified by the enrichment of CENP‐A nucleosomes. Centromere maintenance during the cell cycle requires HJURP‐mediated CENP‐A deposition, a process regulated by the Mis18 complex (Mis18α/Mis18β/Mis18BP1). Spatial and temporal regulation of Mis18 complex assembly is crucial for its centromere association and function. Here, we provide the molecular basis for the assembly and regulation of the Mis18 complex. We show that the N‐terminal region of Mis18BP1 spanning amino acid residues 20–130 directly interacts with Mis18α/β to form the Mis18 complex. Within Mis18α/β, the Mis18α MeDiY domain can directly interact with Mis18BP1. Mis18α/β forms a hetero‐hexamer with 4 Mis18α and 2 Mis18β. However, only two copies of Mis18BP1 interact with Mis18α/β to form a hetero‐octameric assembly, highlighting the role of Mis18 oligomerization in limiting the number of Mis18BP1 within the Mis18 complex. Furthermore, we demonstrate the involvement of consensus Cdk1 phosphorylation sites on Mis18 complex assembly and thus provide a rationale for cell cycle‐regulated timing of Mis18 assembly and CENP‐A deposition.  相似文献   

9.
To develop antimicrobial peptides having higher bacterial selectivity than a novel antimicrobial peptide P18, we synthesized several analogues. The P18 analogues are designed by movement of the N-terminal Trp2 residue in P18 (P18-W6, P18-W8 and P18-W15) and the substitution of the central Pro9 residue with D-Pro or Nala (P18-Nala9 and P18-D-Pro9). These analogues retained potent antibacterial activity but displayed less hemolytic activity than P18. From the viewpoint of their therapeutic index, P18 analogues had approximate 3- to 7-fold higher bacterial selectivity compared to P18. The analogues preferentially bind to bacterial membrane-mimicking negatively charged liposomes as well as does P18. Their high specificity to negatively charged phospholipids corresponds well with their high bacterial selectivity. Furthermore, P18-W6, P18-W8 and P18-Nala9 induced a significant inhibition in NO production from LPS-stimulated macrophage RAW264.7 cells, as well as P18. This result suggests that these peptides appear to have promising therapeutic potential for future development as a novel anti-inflammatory agent as well as antimicrobial agent.  相似文献   

10.
It is recognized that IL‐18 is related to development of asthma, but role of IL‐18 in asthma remains controversial and confusing. This is largely due to lack of information on expression of IL‐18 binding protein (BP) and IL‐18 receptor (R) in asthma. In this study, we found that plasma levels of IL‐18 and IL‐18BP were elevated in asthma. The ratio between plasma concentrations of IL‐18 and IL‐18BP was 1:12.8 in asthma patients. We demonstrated that 13‐fold more monocytes, 17.5‐fold more neutrophils and 4.1‐fold more B cells express IL‐18BP than IL‐18 in asthmatic blood, suggesting that there is excessive amount of IL‐18BP to abolish actions of IL‐18 in asthma. We also discovered that more IL‐18R+ monocytes, neutrophils and B cells are located in asthmatic blood. Once injected, IL‐18 eliminated IL‐18R+ monocytes in blood, but up‐regulated expression of IL‐18R in lung macrophages of OVA‐sensitized mice. Our data clearly indicate that the role of IL‐18 in asthma is very likely to be determined by balance of IL‐18/IL‐18BP/IL‐18R expression in inflammatory cells. Therefore, IL‐18R blocking or IL‐18BP activity enhancing therapies may be useful for treatment of asthma.  相似文献   

11.
Atg18 is essential for both autophagy and the regulation of vacuolar morphology. The latter process is mediated by phosphatidylinositol 3,5-bisphosphate binding, which is dispensable for autophagy. Atg18 also binds to phosphatidylinositol 3-phosphate (PtdIns(3)P) in vitro. Here, we investigate the relationship between PtdIns(3)P-binding of Atg18 and autophagy. Using an Atg18 variant, Atg18(FTTG), which is unable to bind phosphoinositides, we found that PtdIns(3)P binding of Atg18 is essential for full activity in both selective and nonselective autophagy. Atg18(FTTG) formed a complex with Atg2 in a normal manner, and Atg18-Atg2 complex formation occurred in cells in the absence of PtdIns(3)P, indicating that Atg18-Atg2 complex formation is independent of PtdIns(3)P-binding of Atg18. Atg18 localized to endosomes, the vacuolar membrane, and autophagic membranes, whereas Atg18(FTTG) did not localize to these structures. The localization of Atg2 to autophagic membranes was also lost in Atg18(FTTG) cells. These data indicate that PtdIns(3)P-binding of Atg18 is involved in directing the Atg18-Atg2 complex to autophagic membranes. Connection of a 2xFYVE domain, a specific PtdIns(3)P-binding domain, to the C terminus of Atg18(FTTG) restored the localization of Atg18-Atg2 to autophagic membranes and full autophagic activity, indicating that PtdIns(3)P-binding by Atg18 is dispensable for the function of the Atg18-Atg2 complex but is required for its localization. This also suggests that PtdIns(3)P does not act allosterically on Atg18. Taken together, Atg18 forms a complex with Atg2 irrespective of PtdIns(3)P binding, associates tightly to autophagic membranes by interacting with PtdIns(3)P, and plays an essential role.  相似文献   

12.
Op18/stathmin (Op18) is a phosphorylation-regulated microtubule destabilizer that is frequently overexpressed in tumors. The importance of Op18 in malignancy was recently suggested by identification of a somatic Q18-->E mutation of Op18 in an adenocarcinoma. We addressed the functional consequences of aberrant Op18 expression in leukemias by analyzing the cell cycle of K562 cells either depleted of Op18 by expression of interfering hairpin RNA or induced to express wild-type or Q18E substituted Op18. We show here that although Op18 depletion increases microtubule density during interphase, the density of mitotic spindles is essentially unaltered and cells divide normally. This is consistent with phosphorylation-inactivation of Op18 during mitosis. Overexpression of wild-type Op18 results in aneugenic activities, manifest as aberrant mitosis, polyploidization, and chromosome loss. One particularly significant finding was that the aneugenic activity of Op18 was dramatically increased by the Q18-->E mutation. The hyperactivity of mutant Op18 is apparent in its unphosphorylated state, and this mutation also suppresses phosphorylation-inactivation of the microtubule-destabilizing activity of Op18 without any apparent effect on its phosphorylation status. Thus, although Op18 is dispensable for mitosis, the hyperactive Q18-->E mutant, or overexpressed wild-type Op18, exerts aneugenic effects that are likely to contribute to chromosomal instability in tumors.  相似文献   

13.
Interleukin-18 (IL-18) is a pro-inflammatory cytokine, and IL-18-binding protein (IL-18BP) is a naturally occurring protein that binds IL-18 and neutralizes its biological activities. Computer modeling of human IL-18 identified two charged residues, Glu-42 and Lys-89, which interact with oppositely charged amino acid residues buried in a large hydrophobic pocket of IL-18BP. The cell surface IL-18 receptor alpha chain competes with IL-18BP for IL-18 binding, although the IL-18 receptor alpha chain does not share significant homology to IL-18BP. In the present study, Glu-42 was mutated to Lys and Lys-89 to Glu; Glu-42 and Lys-89 were also deleted separately. The deletion mutants (E42X and K89X) were devoid of biological activity, and the K89E mutant lost 95% of its activity. In contrast, compared with wild-type (WT) IL-18, the E42K mutant exhibited a 2-fold increase in biological activity and required a 4-fold greater concentration of IL-18BP for neutralization. The binding of WT IL-18 and its various mutants to human natural killer cells was evaluated by competition assays. The mutant E42K was more effective than WT IL-18 in inhibiting the binding of (125)I-IL-18 to natural killer cells, whereas the three inactive mutants E42X, K89E, and K89X were unable to compete with (125)I-IL-18 for binding. Similarly, WT IL-18 and the E42K mutant induced degradation of Ikappa-Balpha, whereas the three biologically inactive mutants did not induce degradation. The present study reveals that Glu-42 and Lys-89 are critical amino acid residues for the integrity of IL-18 structure and are important for binding to cell surface receptors, for signal transduction, and for neutralization by IL-18BP.  相似文献   

14.
Cloning and characterization of a new isoform of mouse interleukin-18   总被引:2,自引:0,他引:2  
Interleukin-18 (IL-18) is a novel proinflammatory cytokine with potent interferon (IFN)-γ inducing activity that plays an important biological role in the enhancement of the activity of natural killer cells and cytotoxic T lymphocytes, In this study, we have identified a novel short form of IL- 18 in mouse, named IL-18s. IL-18s might be an alternative splicing variant of IL-18 and its cDNA contains a 57 bp in-frame deletion, Like IL-18, IL-18s is also widely expressed in mouse tissues, It was suggested that IL-18s might have a caspase- 1-dependent mechanism for maturation and secretion similar to that of IL- 18: when transfected in COS-7 cells, pro-IL-18s (22 kDa) could be detected, and the mature IL-18s (16 kDa) could also be detected when combined with caspase-1. We observed that recombinant mouse IL-18s did not show any IL-18-like function, and IL-18s could enhance the ability of IL-18 to increase IFN-γ production by approximately 40% in mouse splenocytes. This effect was observed primarily at relative low concentrations of IL-18, suggesting that IL- 18s might regulate the activity of IL- 18 in the physiological conditions,  相似文献   

15.
Yang H  Wang S  Liu Z  Wu MH  McAlpine B  Ansel J  Armstrong C  Wu G 《Gene》2001,265(1-2):133-145
The cell surface adhesion molecule human MUC18 (huMUC18 or Mel-CAM) has been postulated to play a key pathogenic role in metastatic melanoma progression. To establish an immunocompetent syngeneic mouse model that would greatly facilitate our understanding of the role of MUC18 in the metastatic behavior of melanoma, we cloned and characterized the mouse MUC18 (muMUC18) cDNA gene. The gene was amplified by RT-PCR and RACE of the poly(A)+RNA isolated from the mouse melanoma cell line B16F10/Queens. The cloned muMUC18 cDNA gene contained 28 nucleotides of 5'-UTR, 908 nucleotides of 3'-UTR, and an open reading frame (ORF) of 1947 nucleotides encoding a protein of 648 amino acids, which is two amino acids longer than huMUC18. The size of the muMUC18 mRNA is about 3 kb with a shorter 3'-UTR than the huMUC18 mRNA (about 3.3 kb). Besides, the sequence in the 3' UTR of the two mRNAs is diverse with only 31% identity. The 5'-UTR and coding sequences of the muMUC18 cDNA are 72.4 and 80.6% identical to those of huMUC18, respectively. The deduced amino acid sequence of the muMUC18 cDNA is 76.2% identical to that of huMUC18. The amino acid sequences deduced from MUC18 cDNA sequences from six other mouse melanoma cell lines are identical except one to three residues, suggesting that the muMUC18 cDNA sequence determined in this report is correct. The muMUC18 protein is predicted to be slightly more acidic than the human protein. The levels of muMUC18 mRNA and protein in nine mouse melanoma cell lines were directly proportional to their ability to establish metastatic colonies in lungs of syngeneic mice. Most biological functions of the muMUC18 may be similar to the huMUC18.  相似文献   

16.
In an effort to identify regions on chromosome 18 that may be critical in the appearance of the Edwards syndrome phenotype, we have analyzed six patients with partial duplication of chromosome 18. Four of the patients have duplications involving the distal half of 18q (18q21.1-qter) and are very mildly affected. The remaining two patients have most of 18q (18q12.1-qter) duplicated, are severely affected, and have been diagnosed with Edwards syndrome. We have employed FISH, using DNA probes from a chromosome 18-specific library, for the precise determination of the duplicated material in each of these patients. The clinical features and the extent of the chromosomal duplication in these patients were compared with four previously reported partial trisomy 18 patients, to identify regions of chromosome 18 that may be responsible for certain clinical features of trisomy 18. The comparative analysis confirmed that there is no single region on 18q that is sufficient to produce the trisomy 18 phenotype and identified two regions on 18q that may work in conjunction to produce the Edwards syndrome phenotype. In addition, correlative analysis indicates that duplication of 18q12.3-q22.1 may be associated with more severe mental retardation in trisomy 18 individuals.  相似文献   

17.
Regulation of Op18 during spindle assembly in Xenopus egg extracts   总被引:5,自引:0,他引:5  
Oncoprotein 18 (Op18) is a microtubule-destabilizing protein that is negatively regulated by phosphorylation. To evaluate the role of the three Op18 phosphorylation sites in Xenopus (Ser 16, 25, and 39), we added wild-type Op18, a nonphosphorylatable triple Ser to Ala mutant (Op18-AAA), and to mimic phosphorylation, a triple Ser to Glu mutant (Op18-EEE) to egg extracts and monitored spindle assembly. Op18-AAA dramatically decreased microtubule length and density, while Op18-EEE did not significantly affect spindle microtubules. Affinity chromatography with these proteins revealed that the microtubule-destabilizing activity correlated with the ability of Op18 to bind tubulin. Since hyperphosphorylation of Op18 is observed upon addition of mitotic chromatin to extracts, we reasoned that chromatin-associated proteins might play a role in Op18 regulation. We have performed a preliminary characterization of the chromatin proteins recruited to DNA beads, and identified the Xenopus polo-like kinase Plx1 as a chromatin-associated kinase that regulates Op18 phosphorylation. Depletion of Plx1 inhibits chromatin-induced Op18 hyperphosphorylation and spindle assembly in extracts. Therefore, Plx1 may promote microtubule stabilization and spindle assembly by inhibiting Op18.  相似文献   

18.
The amphipathic helix hypothesis for the lipid-associating domains of exchangeable plasma apolipoproteins has been further studied by analysis of the structure of the complexes formed between four synthetic peptide analogs of the amphipathic helix and dimyristoyl phosphatidylcholine (DMPC). Density gradient ultracentrifugation, negative stain electron microscopy, nondenaturing gradient gel electrophoresis, 1H NMR, high sensitivity differential scanning calorimetry, and circular dichroism were the techniques used in these studies. The two analogs Asp-Trp-Leu-Lys-Ala-Phe-Tyr-Asp-Lys-Val-Ala-Glu-Lys-Leu-Lys-Glu-Ala-Phe (18A) and 18A-Pro-18A whose sequences most strongly mimic native amphipathic sequences were found also most strongly to mimic apolipoprotein A-I in DMPC complex structure. The covalently linked dimer of the prototype amphipathic analog 18A, 18A-Pro-18A, appears to have greater lipid affinity than 18A. This presumably is the result of the cooperativity provided by two covalently linked lipid-associating domains in 18A-Pro-18A. The studies further suggest that the charge-reversed analog of the prototype 18A, reverse-18A, has the lowest lipid affinity of the four analogs studied and forms only marginally stable discoidal DMPC complexes. We postulate that this low lipid affinity is due predominantly, but not necessarily exclusively, to the lack of a hydrophobic contribution of lysine residues at the polar-nonpolar interface of reverse-18A versus 18A. The intermediate lipid affinity of des-Val10-18A, the fourth analog peptide, to produce a rank order of 18A-Pro-18A greater than 18A greater than des-Val10-18A greater than reverse-18A, supports this interpretation. Des-Val10-18A which has Val deleted from 18A has an amphipathic helical structure partially disrupted by the shift of 2 lysine residues away from the polar-nonpolar interface.  相似文献   

19.
Interleukin-18 (IL-18) is a critical proinflammatory cytokine whose extracellular bioactivity is regulated by a cellular IL-18 binding protein (IL-18BP). Many poxviruses have acquired variants of this IL-18BP gene, some of which have been shown to act as viral virulence factors. Yaba monkey tumor virus (YMTV) encodes a related family member, 14L, which is similar to the orthopoxvirus IL-18BPs. YMTV 14L was expressed from a baculovirus system and tested for its ability to bind and inhibit IL-18. We found that YMTV 14L bound both human IL-18 (hIL-18) and murine IL-18 with high affinity, at 4.1 nM and 6.5 nM, respectively. YMTV 14L was able to fully sequester hIL-18 but could only partially inhibit the biological activity of hIL-18 as measured by gamma interferon secretion from KG-1 cells. Additionally, 17 hIL-18 point mutants were tested by surface plasmon resonance for their ability to bind to YMTV 14L. Two clusters of hIL-18 surface residues were found to be important for the hIL-18-YMTV 14L interaction, in contrast to results for the Variola virus IL-18BP, which has been shown to primarily interact with a single cluster of three amino acids. The altered binding specificity of YMTV 14L most likely represents an adaptation resulting in increased fitness of the virus and affirms the plasticity of poxviral inhibitor domains that target cytokines like IL-18.  相似文献   

20.
IL-12 and IL-18 are both proinflammatory cytokines that contribute to promoting Th1 development and IFN-gamma expression. However, neither IL-12R nor IL-18R is expressed as a functional complex on most resting T cells. This study investigated the molecular mechanisms underlying the induction of an IL-18R complex in T cells. Resting T cells expressed IL-18Ralpha chains but did not exhibit IL-18 binding sites as detected by incubation with rIL-18 followed by anti-IL-18 Ab, suggesting a lack of IL-18Rbeta expression in resting T cells. Although they also failed to express IL-12R, stimulation with anti-CD3 plus anti-CD28 generated IL-12R. Exposure of these cells to IL-12 led not only to up-regulation of IL-18Ralpha expression but also to induction of IL-18R binding sites on both CD4(+) and CD8(+) T cells concomitant with IL-18Rbeta mRNA expression. The IL-18 binding site represented a functional IL-18R complex capable of exhibiting IL-18 responsiveness. IL-12 induction of an IL-18R complex and IL-18Rbeta mRNA expression was not observed in STAT4-deficient (STAT4(-/-)) T cells and was substantially decreased in IFN-gamma(-/-) T cells. However, the failure of STAT4(-/-) T cells to induce an IL-18R complex was not corrected by IFN-gamma. These results indicate that STAT4 and IFN-gamma play an indispensable role and a role as an amplifying factor, respectively, in IL-12 induction of the functional IL-18R complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号