首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase transitions in bilayers and monolayers of various synthetic phospholipids with different chain lengths as well as different polar head groups were studied by differential scanning calorimetry or with the film balance technique, respectively. With the film balance, area versus temperature curves (isobars) were recorded at different surface pressures. The monolayer phase transition from the fluid-condensed to the fluid-expanded phase is shifted towards higher temperature when the lateral pressure in the monolayer is increased. The temperature dependence of the equilibrium pressure as well as the magnitude of the area change at the transition depends only on the nature of the phospholipid head group and not on the chain length of the hydrocarbon chains of the lipid. Phospholipids with strong intermolecular attractive interactions between the head groups show low values for dpi/dTm and for the area change, deltaf, whereas phospholipids with negatively charged head groups without intermolecular attractive forces exhibit higher values for dpi/dTm and deltaf. The shift of the monolayer phase transition temperature when increasing the chain length of the lipid is almost identical to the shift in Tm observed for the bilayer system of the same phospholipids. A comparison of monolayer and bilayer systems on the basis of the absolute value of the molecular area of the phospholipid in the bilayer gel phase and the change in area at the bilayer and monolayer transition leads to the following conclusions. The behaviour of the bilayer system is very similar to that of the respective monolayer system at a lateral pressure of approx. 30 dyne/cm, because at this pressure the absolute area and the area change in both systems are the same. Further support for this conclusion comes from the experimental finding that a lateral pressure of 30 dyne/cm the shift in Tm due to the increase in charge when the methyl ester of phosphatidic acid is investigated is the same for the bilayer and the monolayer system.  相似文献   

2.
J M Boggs  M A Moscarello 《Biochemistry》1978,17(26):5734-5739
Lipophilin, a hydrophobic protein fraction, purified and delipidated from the proteolipid of human myelin, possesses a layer of boundary lipid surrounding it when incorporated into lipid vesicles. The protein reduces the energy absorbed during the lipid phase transition, indicating that the boundary lipid does not go through the phase transition. The amount of boundary lipid was estimated by plotting the enthalpy of the transition against the protein to lipid mole ratio and extrapolating to deltaH = 0 for a number of synthetic phosphatidylcholines, to determine the ability of fatty acid chains of varying length to interact with the protein. The amount of boundary lipid was found to be similar, 21-25 molecules per molecule of lipophilin, for fatty acid chains of length 14-18 carbons but somewhat less, 16 molecules of lipid per molecule of protein, for a fatty acid chain length of 12 or for one with a trans double bond (18:1tr). No preferential interaction was observed with a lipid containing a particular fatty acid chain length when the protein was incorporated into a mixture of these lipids. These results suggest that the binding of lipids to the boundary layer of other membrane proteins and enzymes may not depend significantly on lipid fatty acid chain length.  相似文献   

3.
The effect of myelin basic protein on the myelin lipid cerebroside sulfate was studied by differential scanning calorimetry and use of the fatty acid spin label, 16-S-SL, in order to determine (i) the effect of basic protein on the metastable phase behavior experienced by this lipid, and (ii) to determine if basic protein perturbs the lipid packing as it does with some acidic phospholipids. The effects of basic protein on the thermodynamic parameters of the lipid phase transition were compared with those of polylysine which has an ordering effect on acidic phospholipids as a result of its electrostatic interactions with the lipid head groups. Different synthetic species of cerebroside sulfate of varying fatty acid chain length and with and without a hydroxy fatty acid were used. The non-hydroxy fatty acid forms of cerebroside sulfate undergo a transition from a metastable to a more ordered stable state while the hydroxy fatty acid forms remain in the metastable state at the cation concentration used in this study (0.01 M Na+ or K+). The non-hydroxy fatty acid forms were still able to go into a stable state in the presence of both basic protein and polylysine. At low concentrations, basic protein increased the rate of the transition to the stable state, while polylysine decreased it for the longest chain length form studied. However, at high concentrations, basic protein probably prevented formation of the stable state. The hydroxy fatty acid forms did not go into the stable state in the presence of basic protein and polylysine. It is argued that the increased rate of formation of the stable state in the presence of basic protein and decreased rate in the presence of polylysine are consistent with interdigitation of the lipid acyl chains in the stable state. Basic protein also had a small perturbing effect on the lipid. It decreased the total enthalpy of the lipid phase transition. When added to the non-hydroxy fatty acid forms it increased the temperature of the liquid crystalline to metastable phase transition and decreased the temperature of the stable to liquid crystalline phase transition. It significantly decreased the transition temperature of the hydroxy fatty acid forms but only a portion of the lipid was affected. In contrast, polylysine increased the transition temperature of the metastable and stable states of all forms of cerebroside sulfate but had a greater effect on the non-hydroxy fatty acids forms than on the hydroxy fatty acid forms.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Dumas F  Tocanne JF  Leblanc G  Lebrun MC 《Biochemistry》2000,39(16):4846-4854
The structural and functional consequences of a mismatch between the hydrophobic thickness d(P) of a transmembrane protein and that d(L) of the supporting lipid bilayer were investigated using melibiose permease (MelB) from Escherichia coli reconstituted in a set of bis saturated and monounsaturated phosphatidylcholine species differing in acyl-chain length. Influence of MelB on the midpoint gel-to-liquid-phase transition temperature, T(m), of the saturated lipids was investigated through fluorescence polarization experiments, with 1,6-diphenyl-1,3,5-hexatriene as the probe, for varying protein/lipid molar ratio. Diagrams in temperature versus MelB concentration showed positive or negative shifts in T(m) with the short-chain lipids DiC12:0-PC and DiC14:0-PC or the long-chain lipids DiC16:0-PC and DiC18:0-PC, respectively. Theoretical analysis of the data yielded a d(L) value of 3.0 +/- 0.1 nm for the protein, similar to the 3.02 nm estimated from hydropathy profiles. Influence of the acyl chain length on the carrier activity of MelB was investigated in the liquid phase, using the monounsaturated PCs. Binding of the sugar to the transporter showed no dependence on the acyl chain length. In contrast, counterflow and Deltapsi-driven experiments revealed strong dependence of melibiose transport on the lipid acyl chain length. Similar bell-shaped transport versus acyl chain length profiles were obtained, optimal activity being supported by diC16:1-PC. On account of a d(P) value of 2.65 nm for the lipid and of various local constraints which would all tend to elongate the acyl chains in contact with the protein, one can conclude that maximal activity was obtained when the hydrophobic thickness of the bilayer matched that of the protein.  相似文献   

5.
The lipid composition was affected by growth temperature in Anacystis nidulans, but was not in Anabaena variabilis. A. variabilis contained fatty acids of 18 and 16 carbon atoms, which were localized at 1- and 2-positions, respectively, of the glycerol moiety of lipids. Desaturation of C18 acids was affected by the growth temperature. A. nidulans contained fatty acids of 14, 16 and 18 carbon atoms. Monounsaturated and saturated acids were esterified mainly to 1- and 2-position, respectively. Desaturation and chain length of fatty acids were influenced by the growth temperature. The variations in lipid and fatty acid compositions with the growth temperature are discussed in relation to the growth temperature-dependent shift of thermotropic phase transition temperature of the membrane lipids in the blue-green algae.  相似文献   

6.
7.
In a simplified approach to the in vivo situation, where pathogenic fibrillar protein deposits are often found associated with cellular membranes, the aggregation kinetics of insulin in the presence of various model biomembranes were investigated using the Thioflavin T (ThT) fluorescence assay. The lipid dynamics near the gel-fluid transition, the chain length of saturated lipids and the presence of DOPE or DOPS in DOPC-vesicles modulate the aggregation kinetics of insulin in an indifferent, an aggregation-accelerating or an aggregation-inhibiting manner, subtly depending on the pH-value and the presence of salt. The rate of insulin aggregation in bulk solution dominates the overall aggregation process in most cases at low pH, where the lipid additives exert no effect on the aggregation kinetics. The occurrence of dynamic line defects near the gel-fluid transition temperature of DSPC facilitates a partial membrane insertion of the protein, which in turn shields exposed hydrophobic protein patches from intermolecular association and hence inhibit aggregation. An exclusively aggregation-accelerating effect was observed in the presence of 0.1M NaCl for all lipid additives investigated, which is likely due to an enhanced surface accumulation of the protein. Apart from weak dipole-dipole, dipole-monopole and hydrogen bonding interactions, the release of curvature elastic stress in mixed DOPC/DOPE-membranes and preferred interactions of insulin with carboxylic groups in DOPC/DOPS-membranes favour an increased surface accumulation. At neutral pH, a partial insertion of insulin into the lipid bilayer is favoured, which accounts for the aggregation-inhibiting effect of all lipid bilayer systems studied except those containing DOPS. Generally, the extent of inhibition increases with the lipid chain length and the extent of curvature stress in mixed unsaturated lipid membranes and also when the gel-fluid transition temperature of pure phospholipids is approached. The accelerating effect of DOPS on the aggregation of insulin under net electrostatic repulsion at pH 7.4 remains to be elucidated, yet, it might result from increased surface accumulation and/or faster/more extensive unfolding of the protein without a subsequent membrane insertion. These results demonstrate that a delicate interplay between different physical and chemical properties of lipid membranes has to be taken into account in a detailed discussion of membrane-associated protein aggregation phenomena.  相似文献   

8.
The function of many intrinsic membrane proteins requires a conformational transition that is often strongly influenced by the molecular composition of the bilayer in which the protein is embedded. Recently, a mechanism for this shift in conformational equilibrium was suggested, in which it is argued that a shift in distribution of lateral pressures of the bilayer resulting from a change in lipid composition alters the amount of mechanical work of the protein conformational transition, if the change in the cross-sectional area profile of the protein varies with depth within the bilayer. As there is little information on the change in shape of the transmembrane region of any protein, various simple geometric models are considered. For both a generic model, and more specific models that approximate likely cooperative rearrangements of alpha-helices in bundles, it is found that the conformational equilibrium depends on the first and second integral moments of the lateral pressure distribution. In addition to revealing the possible physical underpinnings of the well-known correlation between protein activity and the 'nonlamellar' tendency of bilayer lipids, this dependence on moments of the pressure profile allows for prediction of the relative effects of different lipid compositional changes even in the absence of information on specific protein shape changes. Effects of variation in acyl chain length, degree and position of cis-unsaturation, and addition of cholesterol and small interfacially-active solutes (n-alkanols) are compared.  相似文献   

9.
Previous computer analyses suggested two possible lipid binding sites, residues 49-71 and 131-155, of the primary amino acid sequence on ABP-280 (filamin), which could facilitate membrane attachment/insertion. We expressed these regions as fusion proteins with schistosomal GST and investigated their interaction with mixtures of zwitterionic (dimyristoyl-l-alpha-phosphatidylcholine, DMPC) and anionic (dimyristoyl-l-alpha-phosphatidylglycerol, DMPG) phospholipids in reconstituted lipid bilayers by differential scanning calorimetry (DSC). Using vesicles of mixed DMPC/DMPG with increasing fusion protein concentrations, we established in calorimetric assays a decrease of the main chain transition enthalpy, DeltaH, and a shift in chain melting temperature. This is indicative of the insertion of these fragments into the hydrophobic region of lipid membranes. We confirmed these findings by the film balance technique using lipid monolayers (DMPG). The binding judged from both methods was of moderate affinity.  相似文献   

10.
alpha-Sarcin is a single polypeptide chain protein which exhibits antitumour activity by degrading the larger ribosomal RNA of tumour cells. We describe the interaction of a alpha-sarcin with lipid model systems. The protein specifically interacts with negatively-charged phospholipid vesicles, resulting in protein-lipid complexes which can be isolated by ultracentrifugation in a sucrose gradient. alpha-Sarcin causes aggregation of such vesicles. The extent of this interaction progressively decreases when the molar ratio of phosphatidylcholine increases in acidic vesicles. The kinetics of the vesicle aggregation induced by the protein have been measured. This process is dependent on the ratio of alpha-sarcin present in the protein-lipid system. A saturation plot is observed from phospholipid vesicles-protein titrations. The saturating protein/lipid molar ratio is 1:50. The effect produced by the antitumour protein on the lipid vesicles is dependent on neither the length nor the degree of unsaturation of the phospholipid acyl chain. However, the aggregation is dependent on temperature, being many times higher above the phase transition temperature of the corresponding phospholipid than below it. The effects of pH and ionic strength have also been considered. An increase in the ionic strength does not abolish the protein-lipid interaction. The effect of pH may be related to conformational changes of the protein. Binding experiments reveal a strong interaction between alpha-sarcin and acidic vesicles, with Kd = 0.06 microM. The peptide bonds of the protein are protected against trypsin hydrolysis upon binding to acidic vesicles. The interaction of the protein with phosphatidylglycerol vesicles does not modify the phase transition temperature of the lipid, although it decreases the amplitude of the change of fluorescence anisotropy associated to the co-operative melting of 1,6-diphenyl-1,3,5-hexatriene (DPH)-labelled vesicles. The results are interpreted in terms of the existence of both electrostatic and hydrophobic components for the interaction between phospholipid vesicles and the antitumour protein.  相似文献   

11.
Cerebroside sulfate (galactosylceramide I3-sulfate) containing alpha-hydroxy lignoceric acid (C24:0h-CBS), nervonic acid (C24:1-CBS), or hexacosanoic acid (C26:0-CBS) was prepared by a semi-synthetic procedure and studied by differential scanning calorimetry. The phase behavior of these species in 2 M KCl was compared to that of shorter chain length hydroxy and non-hydroxy fatty acid species reported earlier. All three of the new lipids undergo metastable phase behavior similar but not identical to the other species. In addition, the metastable phase behavior of all of the non-hydroxy fatty acid species was found to be more complex than previously thought, with several phases of high transition temperatures and enthalpies possible. Fatty acid hydroxylation inhibits the transition from the metastable to some of the more stable phases. It also significantly increases the phase transition temperatures of both the metastable and stable phases indicating that it contributes to the hydrogen bonding network formed between the lipid molecules and helps overcome the lateral repulsive effect of the negatively charged sulfate. The C-15 cis double bond significantly lowers the temperature and enthalpy of the phase transition indicating that it increases the lateral separation of the lipid molecules and decreases the intermolecular hydrogen bonding interactions. However, it does not prevent formation of a more stable phase. By comparing the effect of various structural modifications reported here and earlier it could be concluded that fatty acid chain length has little effect on the phase transition temperature and enthalpy. This suggests that the forces between the lipid molecules may be dominated by head group interactions rather than interactions between the lipid chains. However, fatty acid chain length has a significant effect on the tendency of the hydroxy fatty acid species to form the more stable phase. The ease of formation of the stable phase increases with increase in chain length. Thus an increase in chain length helps overcome the kinetic barrier to stable phase formation presented by hydroxylation of the fatty acid.  相似文献   

12.
The basic protein of myelin binds electrostatically to acidic lipids but has several hydrophobic segments which may penetrate into the lipid bilayer. Calorimetric and spin-label evidence suggests that below the phase transition temperature, Tc, several phase states occur in the complex of phosphatidylglycerol with basic protein, possibly due to differences in the degree of penetration of the protein and/or interdigitation of the lipid acyl chains. One of these states is a metastable state which starts to melt 10 degrees C below the Tc of the pure lipid and then refreezes, with release of heat, into a stable state. The stable state melts near the Tc of the pure lipid but restricts the motion of fatty acid spin-labeled near the terminal methyl much more than does the pure lipid. The relationship between the rate of conversion to the stable state and the degree of penetration of the protein at varying pH, in the range 4--8, and the lipid acyl chain length, in the range 14 to 18 carbons, was investigated. Altering the pH in this range affects protonation of the histidines of the protein but has no effect on the lipid at pH 4 and above. The rate of conversion of the sample to both the metastable state and the stable state decreased with increase in pH for phosphatidylglycerol with all lipid chain lengths. It also decreased with decreasing chain length at constant pH. This suggested that the lipid could refreeze into the stable state more readily if a smaller proportion of the total bilayer thickness was occupied by the hydrophobic segments of the protein. The consistency of these results with the concept of penetration of portions of the protein partway into the bilayer lends support to this hypothesis.  相似文献   

13.
Organotin compounds have a broad range of biological activities and are ubiquitous contaminants in the environment. Their toxicity mainly lies in their action on the membrane. In this contribution we study the interaction of tributyltin and triphenyltin with model membranes composed of phosphatidylcholines of different acyl chain lengths using differential scanning calorimetry, (31)P-nuclear magnetic resonance, X-ray diffraction and infrared spectroscopy. Organotin compounds broaden the main gel to liquid-crystalline phase transition, shift the transition temperature to lower values and induce the appearance of a new peak below the main transition peak. These effects are more pronounced in the case of tributyltin and are quantitatively larger as the phosphatidylcholine acyl chain length decreases. Both tributyltin and triphenyltin increase the enthalpy change of the transition in all the phosphatidylcholine systems studied except in dilauroylphosphatidylcholine. Organotin compounds do not affect the macroscopic bilayer organization of the phospholipid but do affect the degree of hydration of its carbonyl moiety. The above evidence supports the idea that organotin compounds are located in the upper part of the phospholipid palisade near the lipid/water interface.  相似文献   

14.
Summary The effect of myelin basic protein from normal human central nervous system on lipid organization has been investigated by studying model membranes containing the protein by differential scanning calorimetry or electron spin resonance spectroscopy. Basic protein was found to decrease the phase transition temperature of dipalmitoyl phosphatidyl-glycerol, phosphatidic acid, and phosphatidylserine. The protein had a greater effect on the freezing temperature, measured from the cooling scan, than on the melting temperature, measured from the heating scan. These results are consistent with partial penetration of parts of the protein into the hydrocarbon region of the bilayer in the liquid crystalline state and partial freezing out when the lipid has been cooled below its phase transition temperature.The effect of the protein on fatty acid chain packing was investigated by using a series of fatty acid spin labels with the nitroxide group located at different positions along the chain. If the protein has not yet penetrated, it increases the order throughout the bilayer in the gel phase, probably by decreasing the repulsion between the lipid polar head groups. Above the phase transition temperature, when parts of it are able to penetrate, it decreases the motion of the lipid fatty acid chains greatly near the polar head group region, but has little or no effect near the interior of the bilayer. Upon cooling again the protein still decreases the motion near the polar head group region but increases it greatly in the interior. Thus, the protein penetrates partway into the bilayer, distorts the packing of the lipid fatty acid chains, and prevents recrystallization, thus decreasing the phase transition temperature.The magnitude of the effect varied with the lipid and was greatest for phosphatidic acid and phosphatidylglycerol. It could be reversed upon cooling for phosphatidylglycerol but not phosphatidic acid. The protein was only observed to decrease the phase transition temperature of phosphatidylserine upon cooling. It had only a small effect on phosphatidylethanolamine and no effect on phosphatidylcholine. Thus, the protein may penetrate to a different extent into different lipids even if it binds to the polar head group region by electrostatic interactions.  相似文献   

15.
The interaction of surfactants with the vesicle membrane of the negatively charged lipid, dilauroylphosphatidic acid, was investigated through their effect on the gel-to-liquid-crystalline phase transition of the lipid bilayer. Three types of surfactants (anionic, cationic and non-ionic) with different hydrocarbon chain length were examined. (i) Anionic sodium alkylsulfates affected the phase transition temperature, Tm, only weakly. (ii) Non-ionic alkanoyl-N-methylglucamides decreased Tm monotonously with increasing concentration. The depression of Tm induced by these surfactants was analyzed by applying the van't Hoff model for the freezing-point depression, and the partition coefficients of the surfactants between bulk water and lipid membrane were estimated. (iii) Cationic alkyltrimethylammonium bromides affected Tm in a complex manner depending on the hydrocarbon chain length of the surfactants. Octyl-/tetradecyl-trimethylammonium bromide depressed/elevated Tm monotonously with increasing concentration, whereas the change in Tm induced by decyl- and dodecyltrimethylammonium bromides was not monotonous but biphasic. This complex behavior of the phase transition temperature was well explained, based on the statistical mechanical theory presented by Suezaki et al. (Biochim. Biophys. Acta, 818 (1985) 31-37), which takes into account the interaction between surfactant molecules incorporated in the lipid membrane.  相似文献   

16.
High-sensitivity differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were used to study the interaction of a synthetic alpha-helical hydrophobic transmembrane peptide, Acetyl-Lys2-Gly-Leu24-Lys2-Ala-Amide, and members of a homologous series of n-saturated diacylphosphatidylethanolamines (PEs). In the lower range of peptide mol fractions, the DSC endotherms exhibited by the lipid/peptide mixtures consist of two components. The temperature and cooperativity of the sharper, higher-temperature component are very similar to those of pure PE bilayers and are almost unaffected by variations in the peptide/lipid ratio. However, the fractional contribution of this component to the total enthalpy change decreases with increases in peptide concentration, and this component completely disappears at higher peptide mol fractions. The other component, which is less cooperative and occurs at a lower temperature, predominates at higher peptide concentrations. These two components of the DSC endotherm can be attributed to the chain-melting phase transitions of peptide-nonassociated and peptide-associated PE molecules, respectively. Although the temperature at which the peptide-associated PE molecules melt is progressively decreased by increases in peptide concentration, the magnitude of this shift is independent of the length of the PE hydrocarbon chain. In addition, the width of the phase transition observed at higher peptide concentrations is also relatively insensitive to PE hydrocarbon chain length, except that peptide gel-phase immiscibility occurs in very short- or very long-chain PE bilayers. Moreover, the enthalpy of the chain-melting transition of the peptide-associated PE does not decrease to 0 even at high peptide concentrations, suggesting that this peptide does not abolish the cooperative gel/liquid-crystalline phase transition of the lipids with which it is in contact. The FTIR spectroscopic data indicate that the peptide remains in a predominantly alpha-helical conformation, but that the peptide alpha-helix is subject to small distortions coincident with the changes in hydrophobic thickness that accompany the chain-melting phase transition of the PE bilayer. These data also indicate that the peptide significantly disorders the hydrocarbon chains of adjacent PE molecules in both the gel and liquid-crystalline states relatively independently of lipid hydrocarbon chain length. The relative independence of many aspects of PE-peptide interactions on the hydrophobic thickness of the host bilayer observed in the present study is in marked contrast to the results of our previous study of peptide-phosphatidylcholine (PC) model membranes (Zhang et al. (1992) Biochemistry 31:11579-11588), where strong hydrocarbon chain length-dependent effects were observed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The phase behaviour, particularly the fluidity within each phase state and the transitions between them, of lipopolysaccharides and of their lipid moiety, free lipid A, of various species of Gram-negative bacteria, especially of Salmonella minnesota and Escherichia coli, has been investigated by applying mainly Fourier-transform infrared spectroscopy and differential scanning calorimetry. For enterobacterial strains, the transition temperatures of the gel----liquid crystalline (beta----alpha) phase transition of the hydrocarbon chains in dependence on the length of the sugar moiety are highest for free lipids A (around 45 degrees C) and lowest for deep rough mutant lipopolysaccharides (around 30 degrees C). Evaluating certain infrared active vibration bands of the hydrocarbon moiety, mainly the symmetric stretching vibration of the methylene groups around 2850 cm-1, it was found that, in the gel state, the acyl chains of lipopolysaccharides and free lipid A have a higher fluidity as compared with saturated and the same fluidity as compared with unsaturated phospholipids. This 'partial fluidization' of lipopolysaccharide below the transition temperature correlates with its reduced enthalpy change at that temperature compared to phospholipids with the same chain length. The fluidity depends strongly on ambient conditions, i.e. on the Mg2+ and H+ content: higher Mg2+ concentrations and low pH values make the acyl chains of free lipid A and lipopolysaccharide preparations significantly more rigid and also partially increase the transition temperature. The influence of Mg2+ is highest for free lipid A and decreases with increasing length of the sugar side chain within the lipopolysaccharide molecules, whereas the effect of a low pH is similar for all preparations. At basic pH, a fluidization of the lipopolysaccharide and lipid A acyl chains and a decrease in transition temperature take place. Free lipid A and all investigated rough mutant lipopolysaccharides exhibit an extremely strong lyotropic behaviour in the beta----alpha melting enthalpy but not in the value of the transition temperature. The phase transition is distinctly expressed only at water concentrations higher than 50-60%. A further increase of the water content still leads to an increase in the phase-transition enthalpy, particularly for lipopolysaccharides with a more complete sugar moiety. The fluidity of the hydrocarbon chains is shown to be an important parameter with respect to the expression of biological activities.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Interactions of proteins and cholesterol with lipids in bilayer membranes.   总被引:6,自引:0,他引:6  
Mixtures of lipids and protein, the ATPase from rabbit sarcoplasmic reticulum, were studied by freeze-fracture electron microscopy and by measurement of the amount of fluid lipid with the spin label 2,2,6,6-tetramethylpiperidine-1-oxyl (TEM-PO). In dimyristoyl phosphatidylcholine vesicles the protein molecules were randomly distributed above the transition temperature, Tt, of the lipid and aggregated below Tt. For mixtures of dimyristoyl and dipalmitoyl phosphatidylcholine the existence of fluid and solid domains were shown in the temperature interval predicted from earlier TEMPO measurements. When protein was incorporated into this lipid mixture, freeze-fracture particles were randomly distributed in fluid lipids, or aggregated when only solid lipids were present. In mixtures of dimyristoyl phosphatidylcholine with cholesterol the protein was distributed randomly above the transition temperature of the phosphatidylcholine. Below that transition temperature the protein was excluded from a banded phase of solid lipid in the case of 10 mol% cholesterol. In mixtures containing 20 mol% cholesterol, protein molecules formed linear arrays, 50-200 nm in length, around smooth patches of lipid. Phase diagrams for lipid/cholesterol and lipid/protein systems are proposed which account for many of the available data. A model for increasing solidification of lipid around protein molecules or cholesterol above the transition temperature of the lipid is discussed.  相似文献   

19.
The translational diffusion of pyrene, pyrene butyric acid and pyrene decanoic acid has been determined in phosphatidylcholine bilayers of different chain length and under pressure up to 200 bars. In the liquid crystalline phase and at a given temperature the diffusion decreases with increasing chain length. At a constant reduced temperature, T red (about 10 K above the transition temperature), long chain lipids exhibit the fastest diffusion which is in disagreement with hydrodynamic models but favours free volume models for diffusion in lipid bilayers. The volume of activation, V act, calculated from the decrease of the diffusion coefficient with pressure, ln D/P, depends on lipid chain length. V act decreases with decreasing lipid chain length at a given temperature, T=65°C, and increases at the reduced temperature. These results are again in agreement with the dependence of the diffusion on lipid chain length and therefore with the free volume model.Abbreviations DLPC Dilauroylphosphatidylcholine - DMPC Dimyristoylphosphatidylcholine - DPPC Dipalmitoylphosphatidylcholine - DSPC Distearoylphosphatidylcholine - LUV Large unilamellar vesicles - SUV Small unilamellar vesicles - Tris Tris(hydroxymethyl)aminomethan  相似文献   

20.
For a charged membrane in an electrolyte solution the electrostatic free energy is derived treating the system as a diffuse double layer. The dependence of the free energy on external parameters like surface charge density and temperature is obtained and the physical basis discussed. As an application the charges are shown to exert an electrostatic surface pressure on the lipid chain packing which leads to a shift in the phase transition of lipid membranes. The results confirm the interpretation of experimental data as given by Träuble et al. in the accompanying paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号