首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The response of mature spermatozoa to the X-ray induction (500 R and 3000 R) of sex-linked recessive lethals was studied in Drosophila melanogaster males known to be deficient in excision- or post-replication repair of UV damage in somatic cells. The results show that the induced frequencies of recessive lethals in the excision-repair-deficient males (mei-9a and mei-9L1) are similar to those in the appropriate repair-proficient males (mei+ and Berlin-K). However, in the post-replication-repair-deficient males (w mus(1)101D1), these frequencies are significantly lower than in the comparable repair-proficient males (w) after 500 R, but not after 3000 R.  相似文献   

2.
Repair-defective mutants of Drosophila melanogaster which identify two major DNA excision repair loci have been examined for their effects on alkylation-induced mutagenesis using the sex-linked recessive lethal assay as a measure of genotoxic endpoint. The alkylating agents (AAs) chosen for comparative analysis were selected on the basis of their reaction kinetics with DNA and included MMS, EMS, MNU, DMN, ENU, DEN and ENNG. Repair-proficient males were treated with the AAs and mated with either excision-defective mei-9L1 or mus(2)201D1 females or appropriate excision-proficient control females. The results of the present work suggest that a qualitative and quantitative relationship exists between the nature and the extent of chemical modification of DNA and the induction of of genetic alterations. The presence of either excision-defective mutant can enhance the frequency of mutation (hypermutability) and this hypermutability can be correlated with the Swain-Scott constant S of specific AAs such that as the SN1 character of the DNA alkylation reaction increases, the difference in response between repair-deficient and repair-proficient females decreases. The order of hypermutability of AAs with mei-9L1 relative to mei-9+ is MMS greater than MNU greater than DMN = EMS greater than iPMS = ENU = DEN = ENNG. When the percentage of lethal mutations induced in mei-9L1 females are plotted against those determined for control females, straight lines of different slopes are obtained. These mei-9L1/mei-9+ indices are: MMS = 7.6, MNU = 5.4, DMN = 2.4, EMS = 2.4 and iPMS = ENU = DEN = ENNG = 1. An identical order of hypermutability with similar indices is obtained for the mus(2)201 mutants: MMS(7.3) greater than MNU (5.4) greater than EMS(2.0) greater than ENU(1.1). Thus, absence of excision repair function has a significant effect on mutation production by AAs efficient in alkylating N-atoms in DNA but no measurable influence on mutation production by AAs most efficient in alkylating O-atoms in DNA. The possible nature of these DNA adducts has been discussed in relation to repair of alkylated DNA. In another series of experiments, the effect on alkylation mutagenesis of mei-9L1 was studied in males, by comparing mutation induction in mei-9L1 males vs. activity in Berlin K (control). Although these experiments suggested the existence of DNA repair in postmeiotic cells during spermatogenesis, no quantitative comparisons could be made.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
E W Vogel 《Mutation research》1986,162(2):201-213
Postmeiotic cell stages of repair-proficient ring-X (RX) males were treated with methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), diethylnitrosamine (DEN) or ethylnitrosourea (ENU) and then mated to either repair-defective (mei-9L1) or to repair-competent females (mei-9+). Absence of the mei-9+ function resulted in a hypermutability effect to all alkylating agents (AAs) when they were assayed for their ability to induce chromosomal aberrations (chromosome loss; CL), irrespective of marked differences in distribution of DNA adducts brought about by these AAs. This picture is different from that described previously for the induction of point mutations (Vogel et al., 1985a). There, evidence was presented indicating that reduction in DNA excision repair does not affect point mutation induction (recessive lethals) by those AAs most efficient in ring-oxygen alkylation such as ENU, DEN, N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG), and isopropyl methanesulfonate (iPMS): the order of hypermutability of AAs with mei-9L relative to mei-9+ was MMS greater than MNU greater than DMN = EMS greater than iPMS = ENU = DEN = ENNG. When the percentage of lethal mutations induced in mei-9L1 females were plotted against those determined for mei-9+ females, straight lines of following slopes were obtained: MMS = 7.6, MNU = 5.4, DMN = 2.4, EMS = 2.4, and iPMS = ENU = DEN = ENNG = 1. Those findings, together with the recent observation that AAs do not split into two groups when assayed for their ability to cause CL, point to the involvement of different DNA alkylation products in ENU- and DEN-induced chromosome loss vs. that of point mutations. It is concluded that with ENU and DEN chromosomal loss results from N-alkylation products whereas point mutations (SLRL) are the consequence of interactions with oxygen-sites in DNA. Thus, as a consequence of a very dominating role of O-ethylguanine (and possibly O4-alkylation of thymine), N-alkylation in DNA does not contribute measurably to mutation induction in the case of ENU-type mutagens while O-alkylation, very clearly, does not show a positive correlation with the formation of chromosome breakage events in Drosophila. Conversely, it appeared that with MMS-type mutagens (MMS; dimethyl sulfate, DMS; trimethyl phosphate, TMP), alkylation products such as 7-methylguanine and 3-methyladenine, if unrepaired or misrepaired, are potentially mutagenic lesions causing both mutations and chromosomal aberrations.  相似文献   

4.
W Ferro  J C Eeken 《Mutation research》1985,149(3):385-398
The influence of defects in DNA repair processes on X-ray-induced genetic damage in post-meiotic male germ cell stages of Drosophila melanogaster was studied using the 'maternal effects approach'. Basc males were irradiated in N2, air or O2 either as 48-h-old pupae (to sample spermatids) or as 3-4-day-old adults (to sample mature spermatozoa) and mated to females of 3 repair-deficient strains (mei-9a: excision-repair-deficient; mei-41D5: post-replication-repair-deficient; mus(1)101D1: post-replication-repair-deficient and impaired in DNA synthesis). Simultaneous controls involving mating of males to repair-proficient females (mei+) were run. The frequencies of sex-linked recessive lethals and of autosomal translocations were determined following standard genetic procedures. The responses elicited in the different crosses with repair-deficient females were compared with those in mei+ crosses. The main findings are the following: with mei-9 females, the frequencies of recessive lethals are higher after irradiation of spermatids in N2, but not after irradiation in air of O2 (relative to those in the mei+ crosses); this result is different from that obtained in earlier work with spermatozoa, in which cell stage, higher yields of recessive lethals were obtained after irradiation of males in either N2 or air; in the mei-9 crosses, there are no significant differences in response (relative to mei+) after irradiation of either spermatozoa or spermatids in O2; the translocation frequencies in the mei-9 crosses are similar to those in the mei+ crosses, irrespective of the treated germ cell stage or the irradiation atmosphere; irradiation of either spermatozoa or spermatids in N2, air or O2 does not result in any differential recovery of recessive lethals in the mei-41 relative to mei+ crosses; irradiation of spermatids in N2 and of spermatozoa in air leads to a higher recovery of translocations in the mei-41 crosses; and after irradiation of spermatids or spermatozoa in any of the gaseous atmospheres, the frequencies of recessive lethals and of translocations are lower in the mus-101 crosses. The differences in responses (between cell stages, in different gaseous atmospheres and with different repair-deficient females) are explained on the basis of both qualitative and quantitative differences in the composition of the initial lesions and the extent to which their repair may be affected by the defects present in the different repair-deficient females. Several discrepancies between expectations based on biochemical results and the genetic results are pointed out.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The role of nucleotide excision repair in the mutagenicity of the monofunctional alkylating agents N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), methyl methanesulfonate (MMS), N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG), and N-ethyl-N-nitrosourea (ENU) in Salmonella typhimurium was examined. The mutagenic potential of the mutagenic agents used increased in the following order: MMS less than ENU less than ENNG less than MNNG. The results obtained confirm the involvement of nucleotide excision repair in the removal of mutagenic lesions from the DNA of S. typhimurium cells exposed to high doses of methylating as well as ethylating agents. At the low doses of all the alkylating agents used, the nucleotide excision repair-proficient strain was mutagenized more efficiently than the uvrB mutant. This phenomenon, a consequence of competition between nucleotide excision-repair enzymes and constitutive O6-methylguanine-DNA methyltransferase, is discussed.  相似文献   

6.
Adenovirus 5 treated with MNNG (N-methyl-N'-nitro-N-nitrosoguanidine) has greater plaque-forming ability in cell strains having the Mer+ phenotype than in strains having the Mer- phenotype. MNNG-treated Mer- strains repair the N3-methyladenine (N3MeA) but not the O6-methylguanine (O6MeG) produced in their DNA, while MNNG-treated Mer+ strains repair both of these adducts. The fate of N7-methylguanine (another DNA adduct produced by MNNG) is similar in Mer+ and Mer- strains. We show in this paper that 2.3 +/- 0.4 O6MeG and 1.4 N3MeA per adenovirus genome correlate with one lethal hit when the survival assay is done using Mer- strains as viral hosts. We suggest that O6MeG is the lesion lethal to the virus.  相似文献   

7.
The effects of 5-azacytidine (5-AZ) and mitomycin C (MMC), administered by larval feeding, on crossing-over were measured in Drosophila melanogaster male germ cells of a DNA repair-proficient and a repair-deficient (mei-9L1) strain. Both 5-AZ and MMC are effective inducers of male crossing-over. The estimated number of induced recombination events was higher in repair-proficient than in mei-9L1 males. The apparently lower sensitivity of mei-9L1 males to crossing-over induction may be the result of an incomplete crossing-over process.  相似文献   

8.
This study was aimed at ascertaining the extent to which paternal repair processes possibly deficient in mei-9a, mei-41D5 and mus-101D1 genotypes would affect the recovery of radiation-induced recessive lethals in early spermatids, spermatocytes and spermatogonia. These germ cell stages were sampled in two 2-day broods from freshly hatched males, that were irradiated as 24-h old pupae in O2, or N2 followed by N2 or O2 post-treatment. Spontaneous mutation frequencies were higher in mei-9 and mei-41 males, and thus appropriate corrections were applied to the radiation data. Only with mei-9 males a clear and consistent increase of the radiation-induced mutation frequency was observed. The effect is somewhat more pronounced in brood B, presumably representing spermatogonia, than in brood A and is observed after radiation in either O2 or N2. The paternal repair process thus differs from the maternal one in that it also responds to radiation damage induced in O2. The finding that, following irradiation under anoxia, post-treatment with O2 (versus that with N2), also lowers the mutation frequency in mei-9 males, indicates that the repair defect in mei-9 does not interfere with oxygen-dependent post-radiation repair. Thus there are two different paternal repair processes in these early stages of spermatogenesis: that is, one controlled by mei-9 and one depending on oxygen. Mei-41 and mus-101 do not appear to interfere with the paternal repair process. The frequency of translocations recovered from these stages was likewise not affected by mus-101.  相似文献   

9.
6 mutant alleles of the mei-41 locus in Drosophila melanogaster are shown to cause hypersensitivity to hydroxyurea in larvae. The strength of that sensitivity is directly correlated with the influence of the mutant alleles on meiosis in that: alleles exhibiting a strong meiotic effect (mei-41D2, mei-41D5, mei-41D7) are highly sensitive; alleles with negligible meiotic effects (mei-41(104)D1, mei-41(104)D2) are moderately sensitive and an allele which expresses meiotic effects only under restricted conditions (mei-41D9) has an intermediate sensitivity. This sensitivity is not a general feature of strong postreplication repair-deficient mutants, because mutants with that phenotype from other loci do not exhibit sensitivity (mus(2)205A1, mus(3)302D1, mus(3)310D1). The observed lethality is not due to hypersensitivity of DNA synthesis in mei-41 larvae to hydroxyurea as assayed by tritiated thymidine incorporation. Lethality is, however, potentially attributable to an abnormal enhancement of chromosomal aberrations by hydroxyurea in mutant mei-41 larvae. Both in vivo and in vitro exposure of neuroblast cells to hydroxyurea results in an increase in 3 types of aberrations which is several fold higher in mei-41 tissue. Since hydroxyurea disrupts DNA synthesis, these results further implicate the mei-41 locus in DNA metabolism and provide an additional tool for an elucidation of its function. The possible existence of additional genes of this nature is suggested by a more modest sensitivity to hydroxyurea which has been detected in two stocks carrying mutagen-sensitive alleles of alternate genes.  相似文献   

10.
Radiation-induced premutational lesions on the chromosomes of irradiated mature spertozoa of Drosphila are processed when the sperm nucleus the egg cytoplasm at fertilization. This processing depends on enzymatic repair systems, which are built up in ocytes under the control of the maternal genotype. The present study is concerned with 2 repair-deficient mutants, mei-9a and mus-101D1. Irradiated Basc males were crossed to homozygous mei-9a or mus-101D1 females, or to repair-proficient control females. The frequencies of recovered sex-link recessive lethal mutations and of II–III translocations were used to assess the effects of impaired maternal repair. Neutrons, as a densely ionizing radiation, and X-rays as a sparsely ionizing one, were used to induce the premutational lesions.The question being asked was whether different radiation qualities cause specific types of lesion that are processed differentially under conditions of impaired maternal repair. The results indicate that this may be so. In comparison with the control, with repair-proficient females, all major effects caused by impaired maternal repair led to frequency reductions in the recovery of lethals and translocations. These reductions in yield were pronounced in all neutron experiments, whereby mus-101D1 had a stronger effect than mei-9a. Two possible explanations are considered. The first is based on the idea that specific lesions are processed in a specific way, resulting in a specific mutational end-product, which may not be recovered when repair is impaired. The second is based on the notion that energy deposition in cells exposed to neutrons is not uniform, which leads to clustered damage. Impaired repair may select againts multiply damaged cells much more powerfully than normal repair. Consequently, the surviving fraction of cells is likely to have received less than the average dose. With X-rays, no or only spurious effects of the repair-defective mutants were detected, except in the following case: recovery of translocations (but not of lethals) was strongly reduced when irradiated males were crossed to mus-101D1 females. It is assumed that mus-101D1 is defective in repair of DNA double-strand damage, and that the formation of translocations may depend particularly on this repair function.  相似文献   

11.
To analyze the underlying mechanisms of the UZ system in Drosophila melanogaster, i.e., the unstable white locus with an IS element included originally described by Rasmuson and Green (1974), the repair deficient mutants mei-9b and mei-4lD5 and the meiotic mutant mei-2l8 were introduced into X-chromosomes containing the UZ system. These strains were submitted to larval feeding of MMS to analyze differences occurring in mutation rate and survival. The mei-9b and mei-4l strains were markedly sensitive to MMS treatment, while mei-2l8 did not affect survival. Only the mutant mei-4l, which is lacking in post-replication repair, affected the somatic mutation rate of the UZ system, decreasing it by 50%. The spontaneous germ line mutation rate of UZ, on the other hand, was increased by introducing mei-4l or mei-9b, possibly as a result of the high frequency of unrepaired spontaneous chromosome breaks that occur in these mutants.  相似文献   

12.
The sex-linked recessive lethal test has been used to compare mutation induction by ethyl methanesulfonate and methyl methanesulfonate in spermatogenic stages of the DNA repair-deficient mei-9AT1 mutant and a repair-proficient control strain. For both agents, the data demonstrate that induced mutation rates are similar in both strains for the meiotic and post-meiotic broods. Conversely, for spermatogonial broods, the data indicate that the excision-deficient strain exhibits a 4-8 fold increase in induced mutation rate in comparison to the excision-proficient control strain. These experiments suggest that the low mutability of gonial cells normally observed for these agents is due to effective excision-repair processes which function until the commencement of meiosis. From alkylation mutagenesis experiments with repair-deficient E. coli strains, we note that the mei-9 strain exhibits pleiotropic mutant phenotypes very similar to those displayed by the uvr D mutant. By analogy with these studies, we speculate that mei-9, like uvr D, is deficient in a DNA unwinding protein.  相似文献   

13.
14.
7 single-mutant and five double-mutant strains of Drosophila melanogaster were tested for their relative sensitivity to the chemical carcinogens: 1-acetylaminofluorene, benzo(alpha)pyrene, N-methyl-N'-nitro-N-nitrosoguanidine, 4-nitro quinoline-1-oxide and aflatoxin B1. Among the single mutants, mei-9a, mei-41D5 and mus(1)104D1 are hypersensitive to all 5 chemicals, whereas mus(1)107D1 is hypersensitive only to 4-nitroquinoline-1-oxide and is slightly sensitive to benzo(alpha)pyrene. The mei-9a mei-41D5 double-mutant is the most sensitive of 5 tested double-mutants which carry the mei-9a allele. When treated with 0.025 mM benzo(alpha)pyrene this double-mutant produces significantly more sex-linked recessive lethals and dominant lethals than does the control. Analysis of double-mutants reveals that the mei-9+ product functions in a different repair pathway of methyl methanesulfonate-induced damage than do the normal products of the mus(1)103, mus(1)104 and mus(1)107 loci. Our findings suggest that the sensitivity of Drosophila repair-deficient mutants could be exploited in screening for potential mutagens and carcinogens.  相似文献   

15.
16.
It was shown that life span of wild type strain Canton-S increased after low doze gamma-irradiation. It was revealed the decrease of life span after irradiation in Drosophila mutants with defects of DNA damage sensation and repair genes mei-9 and mei-41, both in homozygous and heterozygous lines. In mei-41 line males' lives longer than females in contrast to other lines.  相似文献   

17.
P Kerklaan  S Bouter  G Mohn 《Mutation research》1983,122(3-4):257-266
A mutant of Salmonella typhimurium strain TA1535 with decreased glutathione (GSH) levels was isolated after treatment with UV and selection for N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG) resistance; this GSH- mutant also exhibited increased resistance to MNNG, the methyl analog of ENNG. Estimation of the cellular GSH content showed that the GSH- derivative contained about 20% of the GSH levels found in TA1535. In mutagenicity tests (hisG46 leads to His+), the GSH- strain required the presence of GSH or L-cysteine in the medium for an optimal phenotypic expression and/or growth of spontaneous and induced His+ revertants, and may, therefore, be allelic to cys mutants of Salmonella described earlier. The mutagenic activity of MNNG, ENNG and 1,2-dibromoethane (DBE), but not that of N-ethylnitrosourea (ENU), was strongly reduced in TA1535/GSH-; pretreatment of the strain with GSH restored the mutagenicity of the first 3 chemicals to levels normally found in TA1535. The results support the current view that MNNG, ENNG and DBE, but not ENU, can be activated via reaction with GSH to species of higher reactivity and mutagenicity. It is concluded that the present GSH- strain can be used to study more systematically the role of GSH in the bioactivation and -deactivation of xenobiotics to mutagenic factors.  相似文献   

18.
W Ferro 《Mutation research》1983,107(1):79-92
Muller-5 males were irradiated with X-rays in nitrogen, in air or in oxygen (followed by nitrogen or oxygen post-treatments in the nitrogen and oxygen series) and were mated to females of a repair-proficient strain (mei+) or to those of a strain known to be deficient in excision repair of UV damage (in somatic cells). The latter strain, designated as mei-9a, is also known to be sensitive, in the larval stages, to the killing effects of UV, X-rays and to a number of chemical mutagens. The frequencies of sex-linked recessive lethals and autosomal translocations induced in the spermatozoa of males were determined and compared. The frequencies of sex-linked recessive lethals in the mei-9 control groups were consistently higher than in the mei+ groups. Irradiation in air or in nitrogen led to significantly higher yields of recessive lethals when the irradiated males were mated to mei-9 females, whereas, after irradiation in oxygen, the yields were similar with both kinds of female. No significant differences in the frequencies of reciprocal translocations were observed between the mei+ and mei-9 groups after irradiation of the males in nitrogen, in air or in oxygen. Likewise, no differential effects of the contrasting post-treatments (nitrogen versus oxygen), either for recessive lethals or for translocations, could be discerned. These results are considered to support the notion that the kinds of genetic damage induced in mature spermatozoa in air or in nitrogen are qualitatively similar (at least with respect to the component(s) that lead to the production of recessive lethal mutations), but clearly different when induced in an oxygen atmosphere. The enhanced yields of recessive lethals with mei-9 females (after irradiation of the males either in air or in nitrogen) has been interpreted on the assumption that the mei-9 mutant is also deficient for the repair of X-ray-induced, recessive lethal-generating premutational lesions. Possible reasons for the lack of differences between the mei+ and mei-9 groups with respect to translocation yields and for the absence of measurable differences in response between the contrasting post-treatments (after irradiation of the males in nitrogen) are discussed.  相似文献   

19.
The repair-deficient mutants mei-9a, mei-41D5, mus101D1, mus104D1 and mus302D1 in Drosophila melanogaster were investigated regarding their effects on spontaneous and X-ray-induced chromosome loss in postmeiotic cells. Each mutant was incorporated singly into XC2, and the ring-X male provided with BSYy+. From matings of males carrying mus101D1, mus302D1 or mei-41D5, mutants identifying a caffeine-sensitive (CAS) postreplication-repair pathway, with corresponding mutant females, and non-mutant males to non-mutant females, overall frequencies of spontaneous partial loss and spontaneous complete loss were significantly increased in each mutant cross except for spontaneous complete loss with mus302 where an increase was noted only in brood 2. Similar findings were noted when males carrying the excision-repair mutant mei-9a were mated with mei-9a females. Males carrying the mutant mus104D1, identifying a caffeine-insensitive (CIS) postreplication-repair pathway, tested with mus104D1 females, produced results that were not significantly different from non-mutant controls. When males were given 3000 rad X-irradiation, frequencies of induced partial loss were significantly higher with mus101D1, mus302D1, mei-41D5 and mei91, and not significantly higher with mus101D1, mus302D1, mei41D5 and mei-9a, and not significantly different from controls with mus104D1. It was suggested that the functional CAS postreplication-repair pathway primarily promotes repair of breaks while an alternative pathway(s) not defined by mus104 promotes misrepair. Therefore, the significant increases in both spontaneous and induced partial loss with the excision-repair-deficient mutant mei-9a suggests the possibility that (a) the excision-repair-pathway may not function in misrepair and (b) the undefined misrepair pathway may be dominant pathway for postreplication repair in Drosophila since mei-9a females presumably have functional postreplication repair and misrepair capacity. The suggestion that the CAS postreplication-repair pathway and the excision-repair pathway function primarily in repair, and an undefined pathway in misrepair is in line with the finding that with mus104D1, no significant increase was found in spontaneous complete loss, but with mus101D1, mus302D1, mei-41D5 and mei-9a significant increases were observed. Results on induced complete loss, with the exception of those with mei-41D5, show a poor correlation with other classes of loss of each of the mutants. Possible explanations for this discrepancy are discussed.  相似文献   

20.
Following matings of DEN-treated Xc2/BSYy+ males with repair-deficient mei-9 alpha females and ordinary females, significant increases in complete and partial sex chromosome loss as well as dramatic shifts in sex ratio were found with mei-9 alpha but not ordinary females. Accordingly, the mei-9 alpha female enhances the detection of chromosome lesions leading to chromosome loss induced in the male genome by DEN. To date, the 4 compounds tested in this way (DMN, DEN, MMS and procarbazine) exhibit strong potentiation of chromosome loss with mei-9 alpha females suggesting the possibility that a protocol involving treatment (or not) or Xc2/BSYy+ males mated with mei-9 alpha females may hold promise as an alternative to traditional tests for chromosome loss using repair-proficient females. Comparison with published translocation data on the 4 compounds indicated above suggests an overall greater sensitivity of the described mei-9 alpha chromosome-loss test compared with the traditional translocation test in the detection of chemically induced chromosome lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号