首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several studies have shown that one of the critical factors governing protein fouling of microfiltration membranes is the presence of denaturedand/or aggregated protein in the bulk solutions. Experiments were performed to evaluate the role of intermolecular disulfide interchange reactionson protein aggregation and membrane fouling during stirred cell microfiltration of bovine serum albumin (BSA). The flux decline during BSA filtration was quite dramatic due to the formation of a protein deposit thatfully covered the membrane pores. This flux decline could be completely eliminated by capping the free sulfhydryl group present on the BSA with eithera carboxymethyl or cysteinyl group, demonstrating the critical importance of this free thiol in the intermolecular aggregation reactions and, in turn, protein fouling. BSA aggregation during storage could be reduced by the addition of metal chelators (EDTA and citrate) or dithiothreitol, orby storage at lower pH (7.0) these solutions all had a significantly lower rate of fouling upon subsequent filtration. This behavior is completely consistent with the known chemistry of the thiol-disulfide interchange reaction, demonstrating that an understanding of these intermolecular (aggregation) reactions can provide a rational framework for the analysis and control of protein fouling in these membrane systems. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
One of the primary problems in membrane‐based protein separation is membrane fouling. In this study we explored the feasibility of employing Rayleigh light scattering data from fluorescence studies combined with chemometric techniques to determine whether a correlation could be established with membrane fouling phenomena. Membrane flux was measured in a dead‐end UF filtration system and the effect of protein solution properties on the flux decline was systematically investigated. A variety of proteins were used as a test case in this study. In parallel, the colloidal behavior of the protein solutions was assessed by employing multiwavelength Rayleigh scattering measurements. To assess the usefulness of Rayleigh scattering measurements for probing the colloidal behavior of proteins, a protein solution of β‐lactoglobulin was used as a base‐case scenario. The colloidal behavior of different β‐lactoglobulin solutions was inferred based on published data for this protein, under identical solution conditions, where techniques other than Rayleigh scattering had been used. Using this approach, good agreement was observed between scattering data and the colloidal behavior of this protein. To test the hypothesis that a high degree of aggregation will lead to increased membrane fouling, filtration data was used to find whether the Rayleigh scattering intensity correlated with permeate flux changes. It was found that for protein solutions which were stable and did not aggregate, fouling was reduced and these solutions exhibited reduced Rayleigh scattering. When the aggregation behavior of the solution was favored, significant flux declines occurred and were highly correlated with increased Rayleigh scattering. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

3.
The effect of shear alone on the aggregation of recombinant human growth hormone (rhGH) and recombinant human deoxyribonuclease (rhDNase) has been found to be insignificant. This study focused on the synergetic effect of shear and gas-liquid interface on these two model proteins. Two shearing systems, the concentric-cylinder shear device (CCSD) and the rotor/stator homogenizer, were used to generate high shear (> 10(6)) in aqueous solutions in the presence of air. High shear in the presence of an air-liquid interface had no major effect on rhDNase but caused rhGH to form noncovalent aggregates. rhGH aggregation was induced by the air-liquid interface and was found to increase with increasing protein concentration and the air-liquid interfacial area. The aggregation was irreversible and exhibited a first-order kinetics with respect to the protein concentration and air-liquid interfacial area. Shear and shear rate enhanced the interaction because of its continuous generation of new air-liquid interfaces. In the presence of a surfactant, aggregation could be delayed or prevented depending upon the type and the concentration of the surfactant. The effect of air-liquid interface on proteins at low shear was examined using a nitrogen bubbling method. We found that foaming is very detrimental to rhGH even though the shear involved is low. The use of anti-foaming materials could prevent rhGH aggregation during bubbling. The superior stability exhibited by rhDNase may be linked to the higher surface tension and lower foaming tendency of its aqueous solution. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 503-512, 1997.  相似文献   

4.
A combined pore blockage and cake filtration model was applied to the virus filtration of an Fc-fusion protein using the three commercially available filters, F-1, F-2, and F-3 in a range of buffer conditions including sodium-phosphate and tris-acetate buffers with and without 200 mM NaCl at pH 7.5. The fouling behaviors of the three filters for the feed solutions spiked with minute virus of mice were described well by this combined model for all the solution conditions. This suggests that fouling of the virus filters is dominated by the pore blockage mechanism during the initial stage of the filtration and transformed to the cake filtration mechanism during the later stage of the filtration. Both flux and transmembrane resistance can be described well by this model. The pore blockage rate and the rate of increase of protein layer resistance over blocked pores are found to be affected by membrane properties as well as the solution conditions resulting from the modulation of interactions between virus, protein, and membrane by the solution conditions.  相似文献   

5.
Recent studies have reported very low capacity during sterile filtration of glycoconjugate vaccines due to rapid fouling of the sterile filter. The objective of this study was to explore the potential for significantly increasing the capacity of the sterile filter through the use of an appropriate prefilter. Data were obtained using prefilters with different pore size and chemistry, with the sterile filtration performed at constant filtrate flux using 0.22 μm nominal pore size Durapore® polyvinylidene difluoride membranes. Prefiltration through 5 μm pore size Durapore® or Nylon prefilters nearly eliminated the fouling of the sterile filter, leading to more than a 100-fold reduction in the rate of pressure increase for the sterile filter. This dramatic improvement in sterile filter performance was due to the removal of large components (greater than 1 μm in size) as confirmed by dynamic light scattering. These results demonstrate the potential of using large pore size prefilters to significantly enhance the performance of the sterile filtration process for the production of important glycoconjugate vaccines.  相似文献   

6.
Virus filtration is a robust size-based technique that can provide the high level of viral clearance required for the production of mammalian-derived biotherapeutics such as monoclonal antibodies. Several studies have shown that the retention characteristics of some, but not all, virus filters can be significantly affected by membrane fouling, but there have been no direct measurements of how protein fouling might alter the location of virus capture within these membranes. The objective of this study was to directly examine the effect of protein fouling by human immunoglobulin G (IgG) on virus capture within the Viresolve® Pro and Viresolve® NFP membranes by scanning electron microscopy using different size gold nanoparticles. IgG fouling shifted the capture location of 20 nm gold nanoparticles further upstream within the Viresolve® Pro filter due to the constriction and/or blockage of the pores in the virus retentive region of the filter. In contrast, IgG fouling had no measurable effect on the capture of 20 nm nanoparticles in the Viresolve® NFP membrane, and IgG fouling had no effect on the capture of larger 40 and 100 nm nanoparticles in either membrane. These results provide important insights into how protein fouling alters the virus retention characteristics of different virus filters.  相似文献   

7.
As biomanufacturers consider the transition from batch to continuous processing, it will be necessary to re-examine the design and operating conditions for many downstream processes. For example, the integration of virus removal filtration in continuous biomanufacturing will likely require operation at low and constant filtrate flux instead of the high (constant) transmembrane pressures (TMPs) currently employed in traditional batch processing. The objective of this study was to examine the effect of low operating filtrate flux (5–100 L/m2/h) on protein fouling during normal flow filtration of human serum Immunoglobulin G (hIgG) through the Viresolve® Pro membrane, including a direct comparison of the fouling behavior during constant-flux and constant-pressure operation. The filter capacity, defined as the volumetric throughput of hIgG solution at which the TMP increased to 30 psi, showed a distinct minimum at intermediate filtrate flux (around 20–30 L/m2/h). The fouling data were well-described using a previously-developed mechanistic model based on sequential pore blockage and cake filtration, suitably modified for operation at constant flux. Simple analytical expressions for the pressure profiles were developed in the limits of very low and high filtrate flux, enabling rapid estimation of the filter performance and capacity. The model calculations highlight the importance of both the pressure-dependent rate of pore blockage and the compressibility of the protein cake to the fouling behavior. These results provide important insights into the overall impact of constant-flux operation on the protein fouling behavior and filter capacity during virus removal filtration using the Viresolve® Pro membrane.  相似文献   

8.
The milk protein β-lactoglobulin (βLG) dominates the properties of whey aggregates in food products. Here we use spectroscopic and calorimetric techniques to elucidate how anionic, cationic and non-ionic surfactants interact with bovine βLG and modulate its heat-induced aggregation. Alkyl trimethyl ammonium chlorides (xTAC) strongly promote aggregation, while sodium alkyl sulfates (SxS) and alkyl maltopyranosides (xM) reduce aggregation. Sodium dodecyl sulfate (SDS) binds to non-aggregated βLG in several steps, but reduction of aggregation was associated with the first binding step, which occurs far below the critical micelle concentration. In contrast, micellar concentrations of xMs are required to reduce aggregation. The ranking order for reduction of aggregation (normalized to their tendency to self-associate) was C10-C12>C8>C14 for SxS and C8>C10>C12>C14>C16 for xM. xTAC promote aggregation in the same ranking order as xM reduce it. We conclude that SxS reduce aggregation by stabilizing the protein's ligand-bound state (the melting temperature t(m) increases by up to 10°C) and altering its charge potential. xM monomers also stabilize the protein's ligand-bound state (increasing t(m) up to 6°C) but in the absence of charged head groups this is not sufficient by itself to prevent aggregation. Although micelles of both anionic and non-ionic surfactants destabilize βLG, they also solubilize unfolded protein monomers, leaving them unavailable for protein-protein association and thus inhibiting aggregation. Cationic surfactants promote aggregation by a combination of destabilization and charge neutralization. The food compatible surfactant sodium dodecanoate also inhibited aggregation well below the cmc, suggesting that surfactants may be a practical way to modulate whey protein properties.  相似文献   

9.
Protein fouling is a critical problem for ultrafiltration. In this study, we adopted bovine serum albumin (BSA) as a model protein and polysulfone membrane as a typical ultrafiltration membrane. We then investigated the factors of the protein denaturation and aggregation, such as stirring shear stress and intermolecular exchange of disulfide during ultrafiltration, and discussed the BSA fouling mechanism. Fourier transform-infrared analysis revealed that magnetic stirring did not cause any difference in the secondary structural change of BSA gel-like deposits on the ultrafiltration membrane. BSA aggregates were collected from BSA gel-like deposits on the ultrafiltration membrane by centrifugation. Polyacrylamide gel electrophoresis in SDS analysis of BSA aggregates proved that the major binding of the BSA aggregates involved intermolecular disulfhydryl binding and that capping the free thiol group in BSA molecules with cysteine induced a remarkable decrease in the amount of the BSA aggregates during ultrafiltration. We concluded that one of the main factors in the BSA aggregation during ultrafiltration is the intermolecular exchange of disulfide through cysteinyl residue. We also found that the BSA aggregation caused a decrease in alpha-helix from 66% to 50% and an increase in beta-sheet from 20% to 36%, which was presumably because the cysteine residues associated with the intermolecular disulfide bonds had been located in alpha-helices. Copyright John Wiley & Sons, Inc.  相似文献   

10.
The widely used 0.2/0.22 µm polymer sterile filters were developed for small molecule and protein sterile filtration but are not well-suited for the production of large nonprotein biological therapeutics, resulting in significant yield loss and production cost increases. Here, we report on the development of membranes with isoporous sub-0.2 μm rectangular prism pores using silicon micromachining to produce microslit silicon nitride (MSN) membranes. The very high porosity (~33%) and ultrathin (200 nm) nature of the 0.2 µm MSN membranes results in a dramatically different structure than the traditional 0.2/0.22 µm polymer sterile filter, which yielded comparable performance properties (including gas and hydraulic permeance, maximum differential pressure tolerance, nanoparticle sieving/fouling behavior). The results from bacteria retention tests, conducted according to the guidance of regulatory agencies, demonstrated that the 0.2 µm MSN membranes can be effectively used as sterile filters. It is anticipated that the results and technologies presented in this study will find future utility in the production of non-protein biological therapeutics and in other biological and biomedical applications.  相似文献   

11.
Membrane fouling commonly occurs in all filter types during virus filtration in protein‐based biopharmaceutical manufacturing. Mechanisms of decline in virus filter performance due to membrane fouling were investigated using a cellulose‐based virus filter as a model membrane. Filter performance was critically dependent on solution conditions; specifically, ionic strength. To understand the interaction between immunoglobulin G (IgG) and cellulose, sensors coated with cellulose were fabricated for surface plasmon resonance and quartz crystal microbalance with energy dissipation measurements. The primary cause of flux decline appeared to be irreversible IgG adsorption on the surface of the virus filter membrane. In particular, post‐adsorption conformational changes in the IgG molecules promoted further irreversible IgG adsorption, a finding that could not be adequately explained by DLVO theory. Analyses of adsorption and desorption and conformational changes in IgG molecules on cellulose surfaces mimicking cellulose‐based virus removal membranes provide an effective approach for identifying ways of optimizing solution conditions to maximize virus filter performance. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:379–386, 2018  相似文献   

12.
The presence of even minute amounts of protein aggregates in solution can significantly alter the kinetics of amyloid formation. Removal of such pre-existing aggregates is critical for reproducible analysis of amyloid formation. Here we examine the effects of membrane filtration on insulin fibrillization. We find that filtration of insulin with large pore membranes (≥ 100 nm) generally slows fibril formation relative to unfiltered solutions by removing pre-aggregated protein. Unexpectedly, filtration with small pore membranes (< 100 nm) showed no beneficial effect and, in some cases, accelerated insulin fibril formation. This effect may be due to fragmentation of pre-existing aggregates during filtration through small pore membranes, which can increase the number of amyloid-forming precursors. These findings reveal the complexity of removing protein aggregates via filtration and suggest optimal filtration protocols for conducting fibril formation analysis of insulin and similar amyloidogenic proteins.  相似文献   

13.
The downstream process development of novel antibodies (Abs) is often challenged by virus filter fouling making a better understanding of the underlying mechanisms highly desirable. The present study combines the protein characterization of different feedstreams with their virus filtration performance using a novel high throughput filtration screening system. Filtration experiments with Ab concentrations of up to 20 g/L using either low interacting or hydrophobically interacting pre-filters indicate the existence of two different fouling mechanisms, an irreversible and a reversible one. At the molecular level, size exclusion chromatography revealed that the presence of large amount of high molecular weight species—considered as irreversible aggregates—correlates with irreversible fouling that caused reduced Ab throughput. Results using dynamic light scattering show that a concentration dependent increase of the mean hydrodynamic diameter to the range of dimers (17 nm at 20 g/L) together with a negative DLS interaction parameter kD (−18 mL/g) correlate with the propensity to form reversible aggregates and to cause reversible fouling, probably by a decelerated Ab transport velocity within the virus filter. The two fouling mechanisms are further supported by buffer flush experiments. Finally, concepts for reversible and irreversible fouling mechanisms are discussed together with strategies for respective fouling mitigation. © 2019 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2776, 2019.  相似文献   

14.
Fouling of the membrane by cell and protein mixtures can result in severe flux declines, leading to the eventual need to clean or replace the membrane. In this study multi-photon microscopy, a fluorescence-based technique is used to 3-D image in situ the fouling of microfiltration membranes by suspensions containing combinations of washed yeast, bovine serum albumin (BSA) and ovalbumin. Appropriate fluorescent labelling allows the three foulant species to be clearly identified. Images correlate well with filtration data and clearly show the cake of yeast cells capturing protein aggregates. The proteins exhibited very different filtration behaviour. When filtering washed yeast together with ovalbumin and/or a 50:50 mixture by mass of BSA and ovalbumin, the ovalbumin fouling dominates the system. Capture of aggregates by the cake did not reduce fouling of the membrane by the protein and increased the resistance of the cake. For mixtures of BSA and washed yeast, the presence of a cake of yeast cells did reduce fouling of the membrane by the protein, however, the extra resistance due to the cake resulted in a flux lower than that when filtering BSA alone.  相似文献   

15.
研究采用添加硅藻土、植物棉、活性炭等3种不同预处理手段来过滤铜绿微囊藻,并考察未预处理及预处理后的藻液过滤过程中的过滤特性、有机物分布及膜污染特性。结果表明, 3种预处理手段对过滤通量均有所提高并减缓膜污染。其中,硅藻土预处理提高平均过滤通量达915%,明显优于其他助滤手段。活性炭预处理能够有效吸附芳香族蛋白质类荧光污染物,显著降低污染膜的不可逆化学污染阻力。通过OCT及SEM分析可知未预处理的高藻水直接过滤造成的膜污染最严重,饼层结构的粗糙度最低并且厚度也最小,而硅藻土通过优化饼层结构以达到缓解膜污染的效果。最后基于XDLVO理论结果也进一步证实硅藻土预处理手段对改善膜污染效果最好。研究结果对未来蓝藻水华膜处理技术的预处理手段研发具有指导意义。  相似文献   

16.
On the surface of the nirtocellulose membrane filter (pore size 0.3--0.5 mem), normal mouse or hamster embryo fibroblasts formed discrete cell aggregates. Behaviour of transformed fibroblast-like cells of 9 different lines was compared with that of normal cells. Cells of 3 transformed lines grew on this substratum as a uniform monolayer displaying no tendency to aggregation. The following 3 cell lines exposed a slightly "patchy" cell distribution on the 3rd--4th day of cultivation but were unable to form discrete aggregates. The remaining 3 lines did form aggregates but the dynamics of aggregation and the final aggregation pattern for two of them were abnormal. Only one of the 9 investigated transformed lines had the normal aggregation behaviour. Hence, in the course of the neoplastic evolution, cells lose their ability fo form aggregates on the filter surface. Mechanisms of cell aggregation and possible reasons of differencies in the aggregation behaviour between normal and transformed cells, are discussed.  相似文献   

17.
Virus filtration process is used to ensure viral safety in the biopharmaceutical downstream processes with high virus removal capacity (i.e., >4 log10). However, it is still constrained by protein fouling, which results in reduced filtration capacity and possible virus breakthrough. This study investigated the effects of protein fouling on filtrate flux and virus breakthrough using commercial membranes that had different symmetricity, nominal pore size, and pore size gradients. Flux decay tendency due to protein fouling was influenced by hydrodynamic drag force and protein concentration. As the results of prediction with the classical fouling model, standard blocking was suitable for most virus filters. Undesired virus breakthrough was observed in the membranes having relatively a large pore diameter of the retentive region. The study found that elevated levels of protein solution reduced virus removal performance. However, the impact of prefouled membranes was minimal. These findings shed light on the factors that influence protein fouling during the virus filtration process of biopharmaceutical production.  相似文献   

18.
In this study, a filtration-based perfusion process was developed for the production of monoclonal antibodies (IgM) by suspended hybridoma cells grown in protein-free medium. It was found that the use of protein-free medium for perfusion culture generated the formation of numerous visible suspended particles consisting of dead cells and cellular debris aggregated into fibrous material. Surprisingly high apparent viabilities were observed in such protein-free cultures. In addition, membrane fouling occurred more rapidly in protein-free medium than in conventional serum-supplemented medium. By the addition of deoxyribonuclease I (DNase I) to the protein-free medium, it was possible to prevent the formation of aggregates and to follow the evolution of the total cell population more accurately. Moreover, DNase I significantly reduced the fouling of filtration membranes, and that, for two different types of separation systems (cross-flow and vortex-flow filtration) and two different types of membranes (polycarbonate and hydrophilized polysultone). From these results, it is clear that the presence of DNA fragments liberated following cellular death is playing an important role in membrane fouling. Longevity of filtration membranes was found to be considerably greater using a vortex-flow filtration module than with a static plate-and-frame cross-flow filtration module. The use of vortex-flow filtration of conjuction with DNase I allowed maintenance of perfusion cultures for more than 1 month without membrane fouling or antibody retention and with a constant permeate IgM concentration of 250 mg/L. Hybridomacells appeared to gradually adapt to increasing rotational speed in the vortex-flow filtration module.  相似文献   

19.
Filtration of ethanol fermentation medium and broth by using symmetric and asymmetric ceramic membranes has been studied in an internal filter bioreactor. Factors studied included membrane structure and pore size, medium sterilization, and concentrations of glucose, yeast extract in the medium, yeast cell and protein in broth. The aim was to determine the main factors responsible for the decline in filtration performance during ethanol fermentation by Saccharomyces cerevisiae. Flux index (Fi) of a new concept has been developed to evaluate the degree of flux decline during the membrane fouling process. Fi was defined as the ratio of the membrane flux at certain filtration time (t?=?t) to the initial (t?=??0) flux of pure water, not the initial (t?=?+0) flux of the test fluid. Flux with sterilized medium was approximately two-fold higher than that with unsterilized medium although the reason could not be explained clearly. Glucose, interaction between glucose and yeast extract, yeast cells, and proteins in fermentation broth were found to play an important part in membrane fouling. Fi of the symmetric membrane decreased to a less extent than that of the asymmetric membrane with increasing glucose concentration. But, the result with various yeast cell concentrations turned out to be contrary. Fouling was more serious for asymmetric membrane during the filtration of fermentation supernatant. This was thought to be due to different fouling mechanisms for the two types of membrane.  相似文献   

20.
In the present work, a rotating disk filter was designed for mammalian cell separation with the aim of avoiding both cell damage and membrane fouling. Different geometric and operational variables of the rotating disk filter were studied using computational fluid dynamics (CFD) by varying rotor radius, rotor angle, membrane-rotor distance, and angular velocity. The combinations of these variables followed a statistical design, so that an analysis of the CFD results provided correlations describing the average shear stress on the membrane surface and the maximum shear stress in the whole module as a function of the variables studied. Based on these correlations, and on the shear resistance levels of Chinese hamster ovary (CHO) and baby hamster kidney (BHK) cell lines, which were investigated using a cone-and-plate viscosimeter, it was possible to determine the geometry and angular velocity that would minimize both cell damage and membrane fouling. After construction, the filter was tested in filtration experiments at increasing permeate fluxes. Cell viability remained >90% for the duration of the experiments (2.5 h), and no indication of fouling was observed. It was shown that the designed dynamic filter is able to effectively avoid both cell damage and membrane fouling, and thus can be used for mammalian cell harvesting and perfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号