首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Microbial control of biogenic production of hydrogen sulfide in oil fields was studied in a model system consisting of pure cultures of the nitrate-reducing, sulfide-oxidizing bacterium (NR-SOB) Thiomicrospira sp. strain CVO and the sulfate-reducing bacterium (SRB) Desulfovibrio sp. strain Lac6, as well as in microbial cultures enriched from produced water of a Canadian oil reservoir. The presence of nitrate at concentrations up to 20 mM had little effect on the rate of sulfate reduction by a pure culture of Lac6. Addition of CVO imposed a strong inhibition effect on production of sulfide. In the absence of added nitrate SRB we were able to overcome this effect after an extended lag phase. Simultaneous addition of CVO and nitrate stopped the production of H2S immediately. The concentration of sulfide decreased to a negligible level due to nitrate-dependent sulfide oxidation activity of CVO. This was not prevented by raising the concentration of Na-lactate, the electron donor for sulfate reduction. Similar results were obtained with enrichment cultures. Enrichments of produced water with sulfide and nitrate were dominated by CVO, whereas enrichments with sulfate and Na-lactate were dominated by SRB. Addition of an NR-SOB enrichment to an SRB enrichment inhibited the production of sulfide. Subsequent addition of sufficient nitrate caused the sulfide concentration to drop to zero. A similar response was seen in the presence of nitrate alone, although after a pronounced lag time, it was needed for emergence of a sizable CVO population. The results of the present study show that two mechanisms are involved in microbial control of biogenic sulfide production. First, addition of NR-SOB imposes an inhibition effect, possibly by increasing the environmental redox potential to levels which are inhibitory for SRB. Second, in the presence of sufficient nitrate, NR-SOB oxidize sulfide, leading to its complete removal from the environment. Successful microbial control of H2S in an oil reservoir is crucially dependent on the simultaneous presence of NR-SOB (either indigenous population or injected) and nitrate in the environment.  相似文献   

2.
Summary A culture of SRB growing in lactate was incubated at different pH values in the range of 5.8 to 7.0. Highest growth rates were observed at pH 6.6. Under gás (H2S) stripping conditions the specific growth rate decreased with the undissociated acetic acid produced. An inhibition of SRB growth of 50% was observed for undissociated acetic acid concentrations of approximately 54 mg/L.  相似文献   

3.
Tabak HH  Govind R 《Biodegradation》2003,14(6):437-452
Several biotreatmemt techniques for sulfate conversion by the sulfate reducing bacteria (SRB) have been proposed in the past, however few of them have been practically applied to treat sulfate containing acid mine drainage (AMD). This research deals with development of an innovative polypropylene hollow fiber membrane bioreactor system for the treatment of acid mine water from the Berkeley Pit, Butte, MT, using hydrogen consuming SRB biofilms. The advantages of using the membrane bioreactor over the conventional tall liquid phase sparged gas bioreactor systems are: large microporous membrane surface to the liquid phase; formation of hydrogen sulfide outside the membrane, preventing the mixing with the pressurized hydrogen gas inside the membrane; no requirement of gas recycle compressor; membrane surface is suitable for immobilization of active SRB, resulting in the formation of biofilms, thus preventing washout problems associated with suspended culture reactors; and lower operating costs in membrane bioreactors, eliminating gas recompression and gas recycle costs. Information is provided on sulfate reduction rate studies and on biokinetic tests with suspended SRB in anaerobic digester sludge and sediment master culture reactors and with SRB biofilms in bench-scale SRB membrane bioreactors. Biokinetic parameters have been determined using biokinetic models for the master culture and membrane bioreactor systems. Data are presented on the effect of acid mine water sulfate loading at 25, 50, 75 and 100 ml/min in scale-up SRB membrane units, under varied temperatures (25, 35 and 40 °C) to determine and optimize sulfate conversions for an effective AMD biotreatment. Pilot-scale studies have generated data on the effect of flow rates of acid mine water (MGD) and varied inlet sulfate concentrations in the influents on the resultant outlet sulfate concentration in the effluents and on the number of SRB membrane modules needed for the desired sulfate conversion in those systems. The pilot-scale data indicate that the SRB membrane bioreactors systems can be applied toward field-scale biotreatment of AMD and for recovery of high purity metals and an agriculturally usable water.  相似文献   

4.
A kinetic model has been developed and kinetic parameters of anaerobic degradation of glycerol, an abundant by-product of biofuel manufacturing, by a consortium of sulfate reducing bacteria (SRB) in a closed system have been determined. The following main species of SRB has been identified in the consortium: Desulfovibrio baarsii, Desulfomicrobium sp., and Desufatomaculum sp. The proposed model included processes of glycerol degradation, sulfate reduction, and inhibition by metabolic products, as well as effects of pH and temperature. The suggested equation for the anaerobic glycerol degradation was based on Edward and Andrew’s equation. The following kinetic parameters of the anaerobic glycerol degradation were obtained for the initial glycerol concentration from 0.15 to 4 ml/l and sulfate concentration of 2760 mg/l at 22°C: maximum specific growth rate of SRB μmax = 0.56 day−1, economic coefficient of ashless biomass from glycerol of 0.08 mol SRB/mol COC, and yield of ashless biomass from sulfate of 0.020 mol SRB/mol SO4. It was shown that the optimum molar ratio of $ {{C_{Gl} } \mathord{\left/ {\vphantom {{C_{Gl} } {C_{SO_4 } }}} \right. \kern-\nulldelimiterspace} {C_{SO_4 } }} $ {{C_{Gl} } \mathord{\left/ {\vphantom {{C_{Gl} } {C_{SO_4 } }}} \right. \kern-\nulldelimiterspace} {C_{SO_4 } }} for SRB growth was 0.8. Initial boundary concentration of inhibition by undissociated hydrogen sulfide was 70 mg/l. Dependence of the specific growth rate of bacteria on the temperature was approximated by the Arrhenius equation in the temperature range of 20–30°C with the goodness of fit R2 = 0.99.  相似文献   

5.
【目的】利用硫酸盐还原菌(SRB)厌氧活性污泥进行烟气脱硫,探索硫酸盐生物还原的最适条件及重金属离子对硫酸盐生物还原的影响,以提高硫酸盐还原阶段的效率。【方法】对取自污水处理厂的SRB厌氧活性污泥进行高浓度硫酸盐胁迫驯化。分析生物脱硫过程中SRB厌氧污泥还原硫酸盐的限制性因素及影响。【结果】在最适生长条件下(pH 6.5,32°C),经驯化获得的SRB厌氧活性污泥有较强的硫酸盐还原能力。Fe2+的适量添加对硫酸盐还原有一定促进作用。SRB厌氧污泥还原硫酸盐的ThCOD/SO42-最适值为3.00,ThCOD=3.33为最适理论化学需氧量,硫酸盐还原率可达72.15%。SRB厌氧污泥还原硫酸盐反应体系中抑制SRB活性的硫化物浓度为300 mg/L。Pb2+和Ni2+在较低的浓度下(1.0 mg/L和2.0 mg/L)对硫酸盐的还原产生较强的抑制作用,而Cu2+在稍高的浓度下(8.0 mg/L)显示出明显的抑制作用。【结论】经驯化,SRB厌氧活性污泥显示出较强的硫酸盐还原能力,具有应用于工业烟气生物脱硫的潜力。去除重金属离子Pb2+、Ni2+和Cu2+可有效解除对硫酸盐生物还原作用的抑制。  相似文献   

6.
Sulfate-reducing bacteria (SRB), which cause microbiologically influenced material corrosion under anoxic conditions, form one of the major groups of microorganisms responsible for the generation of hydrogen sulfide. In this study, which is aimed at reducing the presence of SRB, a novel alternative approach involving the addition of magnesium peroxide (MgO2) compounds involving the use of reagent-grade MgO2 and a commercial product (ORC™) was evaluated as a means of inhibiting SRB in laboratory batch columns. Different concentrations of MgO2 were added in the columns when black sulfide sediment had appeared in the columns. The experimental results showed that MgO2 is able to inhibit biogenic sulfide. The number of SRB, the sulfide concentration and the sulfate reducing rate (SRR) were decreased. ORC™ as an additive was able to decrease more effectively the concentration of sulfide in water and the SRB-control effect was maintained over a longer time period when ORC™ was used. The level of oxidation–reduction potential (ORP), which has a linear relationship to the sulfide/sulfate ratio, is a good indicator of SRB activity. As determined by fluorescence in-situ hybridization (FISH), most SRB growth was inhibited under increasing amounts of added MgO2. The concentration of sulfide reflected the abundance of the SRB. Utilization of organic matter greater than the theoretical SRB utilization rate indicated that facultative heterotrophs became dominant after MgO2 was added. The results of this study could supply the useful information for further study on evaluating the solution to biocorrosion problems in practical situations.  相似文献   

7.
Waste streams from industrial processes such as metal smelting or mining contain high concentrations of sulfate and metals with low pH. Dissimilatory sulfate reduction carried out by sulfate-reducing bacteria (SRB) at low pH can combine sulfate reduction with metal-sulfide precipitation and thus open possibilities for selective metal recovery. This study investigates the microbial diversity and population changes of a single-stage sulfidogenic gas-lift bioreactor treating synthetic zinc-rich waste water at pH 5.5 by denaturing gradient gel electrophoresis of 16S rRNA gene fragments and quantitative polymerase chain reaction. The results indicate the presence of a diverse range of phylogenetic groups with the predominant microbial populations belonging to the Desulfovibrionaceae from δ-Proteobacteria. Desulfovibrio desulfuricans-like populations were the most abundant among the SRB during the three stable phases of varying sulfide and zinc concentrations and increased from 13% to 54% of the total bacterial populations over time. The second largest group was Desulfovibrio marrakechensis-like SRB that increased from 1% to about 10% with decreasing sulfide concentrations. Desulfovibrio aminophilus-like populations were the only SRB to decrease in numbers with decreasing sulfide concentrations. However, their population was <1% of the total bacterial population in the reactor at all analyzed time points. The number of dissimilatory sulfate reductase (DsrA) gene copies per number of SRB cells decreased from 3.5 to 2 DsrA copies when the sulfide concentration was reduced, suggesting that the cells' sulfate-reducing capacity was also lowered. This study has identified the species present in a single-stage sulfidogenic bioreactor treating zinc-rich wastewater at low pH and provides insights into the microbial ecology of this biotechnological process.  相似文献   

8.
Studies on the biotransformation of phosphogypsum (a waste product formed in the course of the production of phosphorous fertilizers) with the use of sulfate reducing bacteria (SRB) demonstrated that it is a good source of sulfates and biogenic elements for these bacteria, though the addition of organic carbon and nitrogen is necessary. The aim of this study was to investigate the form of nitrogen and C:N ratio in the medium on the growth of SRB community in cultures containing phosphogypsum. Batch community cultures of sulfate reducing bacteria were maintained in medium with phosphogypsum (5.0 g/l), different concentrations of sodium lactate (1.6 - 9.4 g/l) and different forms (NH4CI, CO(NH2)2, KNO3) and concentrations (0 - 250 mg/l) of nitrogen. The growth of SRB was studied in the C:N ratio of from 2:1 to 300:1. It was found that: 1 - the best source of nitrogen for SRB is urea, followed by ammonium, the worst were nitrates; 2 - the bacteria were also able to grow in medium without nitrogen but their activity was then by approximately 15% lower than in optimal growth conditions; 3 - in medium with KNO3 inhibition of sulfate reduction by approx. 50% was observed; 4 - the highest reduction of nitrates (removal of nitrate) in media with phosphogypsum and nitrates was at limiting concentrations of sodium lactate. This is probably caused by the selection under these conditions (low concentration of hydrogen sulfide) of denitrifying bacteria or sulfate reducing bacteria capable of using nitrates as an electron acceptor.  相似文献   

9.
Desulfatiglans anilini is a sulfate-reducing bacterium (SRB) capable of oxidizing aniline, although growth and aniline turnover rates are slow, making it difficult to analyze the metabolism of the strain. Therefore, this study was designed to investigate the effect of sulfide on growth of D. anilini cultures, in order to improve its growth and aniline turnover rates, and study the biochemical mechanisms of sulfide inhibition. Hydrogen sulfide was found to inhibit growth of D. anilini, regardless of whether the strain was grown with aniline or phenol, and complete inhibition was observed at 20 mM hydrogen sulfide. For improving the growth of D. anilini with aniline, the sulfide-consuming phototrophic bacterium Thiocapsa roseopersicina was co-cultured in a synthetic microbial community with D. anilini using a co-cultivation device that continuously removed hydrogen sulfide from the culture. The doubling time of D. anilini with aniline was 15 days in the co-cultivation device, compared to 26 days in the absence of a sulfide-oxidizing partner. Moreover, the aniline degradation rate was significantly increased by a factor of 2.66 during co-cultivation of D. anilini with T. roseopersicina. The initial carboxylation reaction during aniline degradation was measured in cell-free extracts of D. anilini with carbon dioxide (CO2) as a co-substrate in the presence of aniline and ATP. The effects of hydrogen sulfide on this aniline carboxylating system and on phenylphosphate synthase activity for phenol activation were studied, and it was concluded that hydrogen sulfide severely inhibited these enzyme activities.  相似文献   

10.
Summary The continuously operated suspended growth anaerobic contact system was utilized to estimate the effect of sulfate reduction on the thermophilic (55°C) methane fermentation process. Results indicated that reduction in methanogenesis in the presence of sulfate was due to two separate, but related, processes;i.e. competitive and sulfide inhibition. Although prevention of competitive inhibition would be difficult under normal fermenter operation, sulfide inhibition could be minimized by environmental selection of sulfide tolerant microbial populations through biomass recycle and pH control. Stable fermenter operation was achieved at soluble sulfide concentrations as high as 330 mg/l soluble sulfide. Using batch fermenters, a maximum thermophilic sulfate reduction rate of 3.7 mg SO4 2––S/g volatile solids (VS)-day was estimated. The importance of reporting sulfate reduction rates on a biomass basis is demonstrated by a simple population adjustment kinetic model.This research study was conducted at the Department of Agricultural Engineering, Cornell University, Riley Robb Hall, Ithaca, NY 14853, U.S.A.  相似文献   

11.
Oil production by water injection can cause souring in which sulfate in the injection water is reduced to sulfide by resident sulfate-reducing bacteria (SRB). Sulfate (2 mM) in medium injected at a rate of 1 pore volume per day into upflow bioreactors containing residual heavy oil from the Medicine Hat Glauconitic C field was nearly completely reduced to sulfide, and this was associated with the generation of 3 to 4 mM acetate. Inclusion of 4 mM nitrate inhibited souring for 60 days, after which complete sulfate reduction and associated acetate production were once again observed. Sulfate reduction was permanently inhibited when 100 mM nitrate was injected by the nitrite formed under these conditions. Pulsed injection of 4 or 100 mM nitrate inhibited sulfate reduction temporarily. Sulfate reduction resumed once nitrate injection was stopped and was associated with the production of acetate in all cases. The stoichiometry of acetate formation (3 to 4 mM formed per 2 mM sulfate reduced) is consistent with a mechanism in which oil alkanes and water are metabolized to acetate and hydrogen by fermentative and syntrophic bacteria (K. Zengler et al., Nature 401:266–269, 1999), with the hydrogen being used by SRB to reduce sulfate to sulfide. In support of this model, microbial community analyses by pyrosequencing indicated SRB of the genus Desulfovibrio, which use hydrogen but not acetate as an electron donor for sulfate reduction, to be a major community component. The model explains the high concentrations of acetate that are sometimes found in waters produced from water-injected oil fields.  相似文献   

12.
The use of sulfate-reducing bacteria (SRB) in passive treatments of acidic effluents containing heavy metals has become an attractive alternative biotechnology. Treatment efficiency may be linked with the effluent conditions (pH and metal concentration) and also to the amount and nature of the organic substrate. Variations on organic substrate and sulfate ratios clearly interfere with the biological removal of this ion by mixed cultures of SRB. This study aimed to cultivate a mixed culture of SRB using different lactate concentrations at pH 7.0 in the presence of Ni, Mn and Cu. The highest sulfate removal efficiency obtained was 98 %, at a COD/sulfate ratio of 2.0. The organic acid analyses indicated an acetate accumulation as a consequence of lactate degradation. Different concentrations of metals were added to the system at neutral pH conditions. Cell proliferation and sulfate consumption in the presence of nickel (4, 20 and 50 mg l?1), manganese (1.5, 10 and 25 mg l?1) and copper (1.5, 10 and 25 mg l?1) were measured. The presence of metals interfered in the sulfate biological removal however the concentration of sulfide produced was high enough to remove over 90 % of the metals in the environment. The molecular characterization of the bacterial consortium based on dsrB gene sequencing indicated the presence of Desulfovibrio desulfuricans, Desulfomonas pigra and Desulfobulbus sp. The results here presented indicate that this SRB culture may be employed for mine effluent bioremediation due to its potential for removing sulfate and metals, simultaneously.  相似文献   

13.
The model of anaerobic digestion described earlier by the authors was used for analysis of the different phases of the process. It was shown that at the glucose conversion a coexistence of hydrogen-producing acidogenic bacteria and hydrogen-utilizing non-methanogenic bacteria causes a hydrogen partial pressure decrease at an increase of solids retention time (i), the intensity of the negative feed-back effect in sulfate-reduction through hydrogen sulfide formation is regulated by the pH level during an oscillation dynamics in acetate/sulfate system (ii), under the toxicity influence the processes of methanogenesis and acetogenesis together with hydrolysis may be rate-limiting steps in the anaerobic system with particulate substrate degradation (iii).Abbreviations B1, B2 two groups of acidogens - DS total dissolved sulfide concentration - HRT hydraulic retention time - MPB methane-producing bacteria - SRB sulfate-reducing bacteria - SRT solids retention time - VFA's volatile fatty acids  相似文献   

14.
Seawater injection into oil reservoirs for purposes of secondary oil recovery is frequently accompanied by souring (increased sulfide concentrations). Production of hydrogen sulfide causes various problems, such as microbiologically influenced corrosion (MIC) and deterioration of crude oil. Sulfate-reducing bacteria (SRB) are considered to be major players in souring. Volatile fatty acids (VFAs) in oil-field water are believed to be produced by microbial degradation of crude oil. The objective of this research was to investigate mechanisms of souring, focusing specifically on VFA production via crude oil biodegradation. To this end, a microbial consortium collected from an oil–water separator was suspended in seawater; crude oil or liquid n-alkane mixture was added to the culture medium as the sole carbon source, and the culture was incubated under anaerobic conditions for 190 days. Physicochemical analysis showed that preferential toluene degradation and sulfate reduction occurred concomitantly in the culture containing crude oil. Sulfide concentrations were much lower in the alkane-supplemented culture than in the crude oil-supplemented culture. These observations suggest that SRB are related to the toluene activation and VFA consumption steps of crude oil degradation. Therefore, the electron donors for SRB are not only VFA, but many components of crude oil, especially toluene. Alkanes were also degraded by microorganisms, but did not contribute to reservoir souring.  相似文献   

15.
16.
Seasonal variations in anaerobic respiration pathways were investigated at three saltmarsh sites using chemical data, sulfate reduction rate measurements, enumerations of culturable populations of anaerobic iron-reducing bacteria (FeRB), and quantification of in situ 16S rRNA hybridization signals targeted for sulfate-reducing bacteria (SRB). Bacterial sulfate reduction in the sediments followed seasonal changes in temperature and primary production of the saltmarsh, with activity levels lowest in winter and highest in summer. In contrast, a dramatic decrease in the FeRB population size was observed during summer at all sites. The collapse of FeRB populations during summer was ascribed to high rates of sulfide production by SRB, resulting in abiotic reduction of bioavailable Fe(III) (hydr)oxides. To test this hypothesis, sediment slurry incubations at 10, 20 and 30 °C were carried out. Increases in temperature and labile organic carbon availability (acetate or lactate additions) increased rates of sulfate reduction while decreasing the abundance of culturable anaerobic FeRB. These trends were not reversed by the addition of amorphous Fe(III) (hydr)oxides to the slurries. However, when sulfate reduction was inhibited by molybdate, no decline in FeRB growth was observed with increasing temperature. Addition of dissolved sulfide adversely impacted propagation of FeRB whether molybdate was added or not. Both field and laboratory data therefore support a sulfide-mediated limitation of microbial iron respiration by SRB. When total sediment respiration rates reach their highest levels during summer, SRB force a decline in the FeRB populations. As sulfate reduction activity slows down after the summer, the FeRB are able to recover.  相似文献   

17.
The effects of sulfate and nitrogen concentrations of the rate and stoichiometry of microbial sulfate reduction were investigated for Desulfovibrio desulfuricans grown on lactate and sulfate in a chemostat at pH 7.0. Maximum specific growth rates (mu(max)), half-saturation coefficients (K(sul)), and cell yield (Y(c/Lac)) of 0.344 +/- 0.007 and 0.352 +/- 0.003 h (-1), 1.8 +/- 0.3 and 1.0 +/- 0.2 mg/L, and 0.020 +/- 0.003 and 0.017 +/- 0.003 g cell/g lactate, respectively, were obtained under sulfate-limiting conditions at 35 degrees C and 43 degrees C. Maintenance energy requirements for D. desulfuricans were significant under sulfate-limiting conditions. The extent of extracellular polymeric substance (EPS) produced was related to the carbon: nitrogen ratio in the medium. EPS production rate increased with decreased nitrogen loading rate. Nitrogen starvation also resulted in decreased cell size of D. desulfuricans. The limiting C : N ratio (w/w) for D. desulfuricans was in the range of 45 : 1 to 120 : 1. Effects of sulfide on microbial sulfate reduction, cell size, and biomass production were also ivestigated at pH 7.0. Fifty percent inhibition of lactate utilization occurred at a total sulfide concentration of approximately 500 mg/L. The cell size of D. desulfuricans decreased with increasing total sulfide concentration. Sulfide inhibition of D. desulfuricans was observed to be a reversible process. (c) 1992 John Wiley & Sons, Inc.  相似文献   

18.
Sulfate-reducing bacteria (SRB) are thought to be actively involved in the cycling of sulfur in acidic mine tailings. However, most studies have used circumstantial evidence to assess microbial sulfate activity in such environments. In order to fully ascertain the role of sulfate-reducing bacteria (SRB) in sulfur cycling in acidic mine tailings, we measured sulfate reduction rates, sulfur isotopic composition of reduced sulfide fractions, porewaters and solid-phase geochemistry and SRB populations in four different Cu-Zn tailings located in Timmins, Ontario, Canada. The tailings were sampled in the summer and in the spring, shortly after snowmelt. The results first indicate that all four sites showed very high sulfate reduction rates in the summer (~100–1000 nmol cm? 3d?1), which corresponded to the presence of sulfide in the porewaters and to high SRB populations. In some of the sites, zones of microbial sulfate reduction also corresponded to a decline of organic carbon and to an apparent pyrite (with slightly negative δ34S values) enrichment around the same depth. Microbial sulfate reduction was also important in permanently acidic (pH 2–3) mine tailings sites, suggesting that SRB can be active under very acidic conditions. Secondly, the results showed that microbial sulfate reduction was greatly reduced in the spring, suggesting that temperature might be a key factor in the activity of SRB. However, a closer look at the results indicated that temperature was not the sole factor and that acidic conditions and limited substrate availability in the spring appeared to be important as well in limiting microbial sulfate par reduction in sulfidic mine tailings. Finally, the results indicate that sulfur undergoes rapid cycling throughout the year and that microbial sulfate reduction and metal sulfide precipitation do not appear to be a permanent sink for metals.  相似文献   

19.
The oxidation of dimethylsulfide and methanethiol by sulfate-reducing bacteria (SRB) was investigated in Tanzanian mangrove sediments. The rate of dimethylsulfide and methanethiol accumulation in nonamended sediment slurry (control) incubations was very low while in the presence of the inhibitors tungstate and bromoethanesulfonic acid (BES), the accumulation rates ranged from 0.02–0.34 to 0.2–0.4 nmol g FW sediment−1 h−1, respectively. Degradation rates of methanethiol and dimethylsulfide added were 2–10-fold higher. These results point to a balance of production and degradation. Degradation was inhibited much stronger by tungstate than by BES, which implied that SRB were more important. In addition, a new species of SRB, designated strain SD1, was isolated. The isolate was a short rod able to utilize a narrow range of substrates including dimethylsulfide, methanethiol, pyruvate and butyrate. Strain SD1 oxidized dimethylsulfide and methanethiol to carbon dioxide and hydrogen sulfide with sulfate as the electron acceptor and exhibited a low specific growth rate of 0.010 ± 0.002 h−1, but a high affinity for its substrates. The isolated microorganism could be placed in the genus Desulfosarcina (the most closely related cultured species was Desulfosarcina variabilis , 97% identity). Strain SD1 represents a member of the dimethylsulfide/methanethiol-consuming SRB population in mangrove sediments.  相似文献   

20.
The microbial diversity of a deep saline aquifer used for geothermal heat storage in the North German Basin was investigated. Genetic fingerprinting analyses revealed distinct microbial communities in fluids produced from the cold and warm side of the aquifer. Direct cell counting and quantification of 16S rRNA genes and dissimilatory sulfite reductase (dsrA) genes by real-time PCR proved different population sizes in fluids, showing higher abundance of bacteria and sulfate reducing bacteria (SRB) in cold fluids compared with warm fluids. The operation-dependent temperature increase at the warm well probably enhanced organic matter availability, favoring the growth of fermentative bacteria and SRB in the topside facility after the reduction of fluid temperature. In the cold well, SRB predominated and probably accounted for corrosion damage to the submersible well pump and iron sulfide precipitates in the near wellbore area and topside facility filters. This corresponded to lower sulfate content in fluids produced from the cold well as well as higher content of hydrogen gas that was probably released from corrosion, and maybe favored growth of hydrogenotrophic SRB. This study reflects the high influence of microbial populations for geothermal plant operation, because microbiologically induced precipitative and corrosive processes adversely affect plant reliability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号