首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 252 毫秒
1.
IS200: a Salmonella-specific insertion sequence   总被引:26,自引:0,他引:26  
S Lam  J R Roth 《Cell》1983,34(3):951-960
A new IS element (IS200) has been identified in Salmonella. The sequence was identified as an IS element by the following criteria: its insertion caused the mutation hisD984; six copies of the sequence are present in strain LT2 of S. typhimurium; and transposition of the sequence has been observed on several occasions. IS200 is found in almost all Salmonella species examined but is absent from most other enteric bacteria. The specificity of this element for Salmonella (and the absence of IS1-IS4 from Salmonella) suggest that transfer of insertion sequences between bacterial groups may be less extensive than is commonly believed. Alternatively, the distribution may suggest that these elements play a selectively important role in bacteria.  相似文献   

2.
E Schwartz  M Krger    B Rak 《Nucleic acids research》1988,16(14B):6789-6802
Recently we identified the new insertion (IS) sequence IS150 in various strains of Escherichia coli K-12. We have screened other strains of E. coli and Salmonella typhimurium for the presence of homologous sequences. The strains of E. coli K-12 and W tested contain one or more copies of homology to IS150. We have also determined the complete nucleotide sequence of a copy of IS150 inserted into IS1. Comparison of nucleotide and deduced amino acid sequences of IS150, IS2, IS3, IS51, IS600 and IS629 reveals significant homologies suggesting that these elements are members of a family of phylogenetically related insertion sequences.  相似文献   

3.
M Umeda  E Ohtsubo 《Gene》1991,98(1):1-5
The Escherichia coli K-12 chromosome contains six copies of insertion element IS1 at loci is1A-is1F. We determined their nucleotide (nt) sequences and found that they were classified into four types. Two copies of IS1 which flank a chromosomal segment containing the argF gene (IS1B and IS1C) have identical nt sequences. Another identical pair are IS1A and IS1E. Comparison of their nt sequences with the IS1 in plasmid R100 revealed seven nt mismatches for IS1A (or IS1E), two for IS1B (or IS1C), four for IS1D, and 75 for IS1F. The fact that the IS1s flanking the argF segment are identical supports the idea that the segment, together with the particular pair of IS1s, has constituted a composite transposon and transposed after genetic transfer from another bacterial species into E. coli K-12. Duplicated sequences were not observed in the regions flanking each of four copies of IS1, indicating that rearrangements have occurred in these chromosomal regions after IS1 elements had been inserted into several target sites. The four types of IS1 present in the E. coli K-12 chromosome were essentially similar to IS1s in plasmid R100 and in the chromosomes of Shigella strains. This and the above results suggest that they have been transferred horizontally from other Enterobacteriaceae, including Shigella, into E. coli K-12.  相似文献   

4.
The chromosome of an Escherichia coli K-12 strain W3110 contains seven copies of insertion element IS1, 12 copies of IS2 and six copies of IS3. We determined the approximate locations of six copies of IS1 (named is1A to is1F), ten copies of IS2 (named is2A to is2J), and five copies of IS3 (named is3A to is3E) on the W3110 chromosome by plaque hybridization using the "mini-set" of the lambda phage library that includes 476 clones carrying chromosomal segments that cover the W3110 chromosome almost entirely. Cleavage maps of the W3110 chromosome and cleavage analysis of phage DNAs carrying insertion elements allowed us to assign more precise locations to most of the insertion elements and to determine their orientations. Insertion elements were distributed randomly along the W3110 chromosome in one or other orientation. Several of these were located at the same positions on the chromosome of another E. coli K-12 strain, JE5519, and they were assumed to be the original complement of insertion elements in E. coli K-12 wild-type. Locations and orientations of such insertion elements were correlated well with Hfr points of origin and with crossover points for excision of some F' factors derived from several Hfrs. Insertion elements may be involved also in rearrangement of bacterial chromosomes.  相似文献   

5.
IS30 is an insertion element common in E. coli strains but rare or absent in Salmonella. Transfer of the IS30-flanked transposon Tn2700 to Salmonella typhimurium was assayed using standard delivery procedures of bacterial genetics (conjugation and transduction). Tn2700 'hops' were rare and required transposase overproduction, suggesting the existence of host constraints for IS30 activity. Sequencing of three Tn2700 insertions in the genome of S. typhimurium revealed that the transposon had been inserted into sites with a low homology to the IS30 consensus target, suggesting that inefficient Tn2700 transposition to the Salmonella genome might be caused by a lack of hotspot targets. This view was confirmed by the introduction of an IS30 'hot target sequence', whose sole presence permitted Tn2700 transposition without transposase overproduction. Detection of IS30-induced DNA rearrangements in S. typhimurium provided further evidence that the element undergoes similar activities in E. coli and S. typhimurium. Thus, hotspot absence may be the main (if not the only) limitation for IS30 activity in the latter species. If these observations faithfully reproduce the scenario of natural populations, establishment of IS30 in the Salmonella genome may have been prevented by a lack of DNA sequences closely related to the unusually long (24 bp) IS30 consensus target.  相似文献   

6.
A reference collection of natural isolates of Escherichia coli has been studied in order to determine the distribution, abundance and joint occurrence of DNA insertion elements IS4 and IS5. Among these isolates, 36% were found to contain IS4 and 30% were found to contain IS5. Among strains containing IS4 the mean number of copies per strain was 4.4 +/- 0.8; the comparable figure for IS5 was 3.7 +/- 1.0. Although the presence of the elements among the isolates was independent, among those isolates containing both IS4 and IS5, there was a significant negative correlation in the number of copies of the elements. The reference collection was also studied for the presence of the DNA sequences flanking the single copy of IS4 in the chromosome of E. coli K12. Homologous sequences were found in only 26% of the isolates. The sequences flanking the IS4 invariably occur together, and their presence is significantly correlated with the presence of IS4. In eight of the strains that carry these flanking sequences, an IS4 is located between them, and the sequences are present at the homologous position as in the K12 strain. We suggest that IS4 and its flanking sequences share a common mechanism of dissemination, such as plasmids, and we present evidence that they are included in a much larger transposable element.  相似文献   

7.
K. R. Haack  J. R. Roth 《Genetics》1995,141(4):1245-1252
Spontaneous tandem chromosomal duplications are common in populations of Escherichia coli and Salmonella typhimurium. They range in frequency for a given locus from 10(-2) to 10(-4) and probably form by RecA-dependent unequal sister strand exchanges between repetitive sequences in direct order. Certain duplications have been observed previously to confer a growth advantage under specific selective conditions. Tandem chromosomal duplications are unstable and are lost at high frequencies, representing a readily reversible source of genomic variation. Six copies of a small mobile genetic element IS200 are evenly distributed around the chromosome of S. typhimurium strain LT2. A survey of 120 independent chromosomal duplications (20 for each of six loci) revealed that recombination between IS200 elements accounted for the majority of the duplications isolated for three of the loci tested. Duplications of the his operon were almost exclusively due to recombination between repeated IS200 elements. These data add further support to the idea that mobile genetic elements provide sequence repeats that play an important role in recombinational chromosome rearrangements, which may contribute to adaptation of bacteria to stressful conditions.  相似文献   

8.
The Evolution of Insertion Sequences within Enteric Bacteria   总被引:9,自引:0,他引:9       下载免费PDF全文
To identify mechanisms that influence the evolution of bacterial transposons, DNA sequence variation was evaluated among homologs of insertion sequences IS1, IS3 and IS30 from natural strains of Escherichia coli and related enteric bacteria. The nucleotide sequences within each class of IS were highly conserved among E. coli strains, over 99.7% similar to a consensus sequence. When compared to the range of nucleotide divergence among chromosomal genes, these data indicate high turnover and rapid movement of the transposons among clonal lineages of E. coli. In addition, length polymorphism among IS appears to be far less frequent than in eukaryotic transposons, indicating that nonfunctional elements comprise a smaller fraction of bacterial transposon populations than found in eukaryotes. IS present in other species of enteric bacteria are substantially divergent from E. coli elements, indicating that IS are mobilized among bacterial species at a reduced rate. However, homologs of IS1 and IS3 from diverse species provide evidence that recombination events and horizontal transfer of IS among species have both played major roles in the evolution of these elements. IS3 elements from E. coli and Shigella show multiple, nested, intragenic recombinations with a distantly related transposon, and IS1 homologs from diverse taxa reveal a mosaic structure indicative of multiple recombination and horizontal transfer events.  相似文献   

9.
The evolution of DNA sequences in Escherichia coli   总被引:9,自引:0,他引:9  
It is proposed that certain families of transposable elements originally evolved in plasmids and functioned in forming replicon fusions to aid in the horizontal transmission of non-conjugational plasmids. This hypothesis is supported by the finding that the transposable elements Tn3 and gamma delta are found almost exclusively in plasmids, and also by the distribution of the unrelated insertion sequences IS4 and IS5 among a reference collection of 67 natural isolates of Escherichia coli. Each insertion sequence was found to be present in only about one-third of the strains. Among the ten strains found to contain both insertion sequences, the number of copies of the elements was negatively correlated. With respect to IS5, approximately half of the strains containing a chromosomal copy of the insertion element also contained copies within the plasmid complement of the strain.  相似文献   

10.
The numbers of chromosomal copies of the insertion sequence IS1 in strains of Salmonella typhimurium (0 to 8 copies), Shigella sonnei (56 copies), and Shigella flexneri (41 copies) isolated in Mexico City, Mexico, were similar to those reported for these genera isolated in other countries. Of the 11 Shigella strains studied, all carried several small plasmids; however, in only one of these strains did a small plasmid contain IS1, IS1 recombination, cointegrate formation mediated by IS1 or by the IS1-flanked transposon Tn9, and transposition of Tn9 occurred at a higher frequency in S. typhimurium than in either Escherichia coli or S. sonnei strains. The frequencies of IS1 recombination in S. typhimurium strains containing either zero or eight copies of IS1 were similar.  相似文献   

11.
Genetic Mapping of Is200 Copies in SALMONELLA TYPHIMURIM Strain Lt2   总被引:9,自引:2,他引:7       下载免费PDF全文
Stephen Lam  John R. Roth 《Genetics》1983,105(4):801-811
The wild-type Salmonella typhimurium strain LT2 contains six copies of the insertion sequence element IS200 which is unique to Salmonella. We have determined the chromosomal locations of all six copies of IS200 in strain LT2. This was done by mapping the positions of Tn10 elements inserted near each copy of IS200. Such Tn10 insertions were detected by Southern hybridization as IS200-containing restriction fragments with altered electrophoretic mobility. The copies are located at quite evenly spaced sites in the chromosome. Some are found in regions with many known genes; others are in regions with few known functions. There is no indication of a possible function for IS200. The method described here should be applicable to the mapping of IS elements in general.  相似文献   

12.
Only one species of Shigella, Shigella dysenteriae 1, has been demonstrated to produce Shiga toxin (Stx). Stx is closely related to the toxins produced by Shiga toxin-producing Escherichia coli (STEC). In STEC, these toxins are often encoded on lambdoid bacteriophages and are major virulence factors for these organisms. Although the bacteriophage-encoded stx genes of STEC are highly mobile, the stx genes in S. dysenteriae 1 have been believed to be chromosomally encoded and not transmissible. We have located the toxin genes of S. dysenteriae 1 to a region homologous to minute 30 of the E. coli chromosome, within a 22.4 kbp putative composite transposon bracketed by IS600 insertion sequences. This region is present in all the S. dysenteriae 1 strains examined. Tandem amplification occurs via the flanking insertion sequences, leading to increased toxin production. The global regulatory gene, fnr, is located within the stx region, allowing deletions of the toxin genes to be created by anaerobic growth on chlorate-containing medium. Deletions occur by recombination between the flanking IS600 elements. Lambdoid bacteriophage genes are found both upstream and within the region, and we demonstrate the lysogeny of Shigella species with STEC bacteriophages. These observations suggest that S. dysenteriae 1 originally carried a Stx-encoding lambdoid prophage, which became defective due to loss of bacteriophage sequences after IS element insertions and rearrangements. These insertion sequences have subsequently allowed the amplification and deletion of the stx region.  相似文献   

13.
Repetitive sequences were isolated and characterized as double-stranded DNA fragments by treatment with S1 nuclease after denaturation and renaturation of the total DNA of Enterobacter cloacae MD36. One repetitive sequence was identical to the nucleotide sequence of IS10-right (IS10R), which is the active element in the plasmid-associated transposon Tn10. Unexpectedly, 15 copies of IS10R were found in the chromosomal DNA of E. cloacae MD36. One copy of the central region of Tn10 was found in the total DNA of E. cloacae MD36. IS10Rs in restriction fragments isolated from the E. cloacae MD36 total DNA showed 9-bp duplications adjacent to the terminal sequences that are characteristic of Tn10 transposition. This result suggests that many copies of IS10R in E. cloacae MD36 are due to transposition of IS10R alone, not due to transposition of Tn10 or to DNA rearrangement. I also found nine copies of IS10 in Shigella sonnei HH109, two and four copies in two different natural isolates of Escherichia coli, and two copies in E. coli K-12 strain JM109 from the 60 bacterial strains that were examined. All dam sites in the IS10s in E. cloacae MD36 and S. sonnei HH109 were methylated. Tn10 and IS10 transpose by a mechanism in which the element is excised from the donor site and inserted into the new target site without significant replication of the transposing segment; thus, the copy numbers of the elements in the cell are thought to be unchanged in most circumstances. Accumulation of IS10 copies in E. cloacae MD36 has interesting evolutionary implications.  相似文献   

14.
A method to select for transposable elements from Streptomyces spp. by using insertional inactivation of a repressor gene that functions in Escherichia coli was developed. Plasmid pCZA126, which can replicate in Streptomyces spp. or E. coli, contains a gene coding for the lambda cI857 repressor and a gene, under repressor control, coding for apramycin resistance. E. coli cells containing the plasmid are apramycin sensitive but become apramycin resistant if the cI857 repressor gene is disrupted. Plasmids propagated in Streptomyces spp. can be screened for transposable elements that have disrupted the cI857 gene by transforming E. coli cells to apramycin resistance. This method was used to isolate a new 1.6-kilobase insertion sequence, IS493, from Streptomyces lividans CT2. IS493 duplicated host DNA at the target site, had inverted repeats at its ends, and contained two tandem open reading frames on each strand. IS493 was present in three copies in the same genomic locations in several S. lividans strains. Two of the copies appeared to be present in regions of similar DNA context that extended at least 11.5 kilobases. Several other Streptomyces spp. did not appear to contain copies of IS493.  相似文献   

15.
We identified phage clones containing insertion element IS5 in a set of 476 lambda phage clones carrying chromosomal segments that cover almost the entire chromosome of Escherichia coli K-12 W3110. Precise locations and orientations of IS5 were then determined by cleavage analysis of phage DNAs containing them. We mapped 23 copies of IS5 (named is5A to is5W) on the W3110 chromosome. Among them, ten were identified as the common elements present at the same locations in both chromosomes of W3110 and another E. coli K-12 strain, JE5519. While most of the mapped IS5 elements were scattered over the W3110 chromosome, four copies of IS5 (designated is5L, is5M, is5N and is5O) were in a region representing tandem duplication of a DNA segment flanked by two copies of IS5. Interestingly, one unit of this DNA segment as well as a portion of it was seen also in a tandem array in a different region where two copies of IS5 (designated is5P and is5Q) were present. In particular two pairs of the mapped IS5 elements may have been involved in inversion of the chromosomal segments in two of the E. coli K-12 derivatives.  相似文献   

16.
Enterobacterial repetitive intergenic consensus (ERIC) sequences are 127-bp imperfect palindromes that occur in multiple copies in the genomes of enteric bacteria and vibrios. Here we investigate the distribution of these elements in the complete genome sequences of nine Escherichia coli (including Shigella species) strains. There is a significant tendency for copies to be adjacent to more highly expressed genes. There is considerable variation among strains with respect to the presence of an element in any particular intergenic region, but some copies appear to have been conserved since before the divergence of E. coli and Salmonella enterica. In comparisons of orthologous copies between these species, ERIC sequences are surprisingly conserved, implying that they have acquired some function, perhaps related to mRNA stability. The relationships among copies within E. coli are consistent with a master copy mode of generation. Insertion of new copies seems to occur at, and involve duplication of, the dinucleotide TA. Two classes of inserts of about 70 bp each occur at different specific sites within ERIC sequences; these inserts evolve independently of the ERIC sequences. The small number of ERIC sequences in E. coli genomes indicates that a widely used bacterial fingerprinting method using primers based on ERIC sequences (ERIC-PCR) does not rely on the presence of ERIC sequences.  相似文献   

17.
18.
G B Smirnov  T S Il'ina 《Genetika》1977,13(4):696-709
The data concerning the biological functions and properties of short specific polynucleotide sequences (so called insertion sequences--IS) are reviewed. IS elements integrated in a genome can lead to strongly polar mutations in Escherichia coli, its bacteriophages and plasmids, while some IS (IS2) being integrated in inverted orientation turn on the gene activity. Several copies of the IS elements are present in the E. coli chromosome. A characteristic feature of IS is their ability to recA-independent migration along the bacterial chromosome. Possible mechanisms of IS integration are discussed. IS elements play the key role in the majority of recA-independent recombinational events: F-prime and partially Hfr-formation, plasmid recombination and dissociation, some cases of deletion formation etc. IS elements participate in recombination in the form of direct or inverted repeats. Direct repeats probably determine the processes of dissociation of the complete multicomponent R-factors and other plasmids. Inverted repeats (some of them are palindromes) are responsible for the migration of several drug-resistance determinants called transposons. Possible mechanisms of IS-dependent and probably IS-controlled recombination are discussed.  相似文献   

19.
Shigella flexneri, which causes shigellosis in humans, evolved from Escherichia coli. The sequencing of Shigella genomes has revealed that a large number of insertion sequence (IS) elements (over 200 elements) reside in the genome. Although the presence of these elements has been noted previously and summarized, more detailed analyses are required to understand their evolutionary significance. Here, the genome of S. flexneri strain 2457T is used to investigate the spatial distribution of IS copies around the chromosome and the location of elements with respect to genes. It is found that most IS isoforms occur essentially randomly around the genome. Two exceptions are IS91 and IS911, which appear to cluster due to local hopping. The location of IS elements with respect to genes is biased, however, revealing the action of natural selection. The non-coding regions of the genome (no more than 21%) carry disproportionally more IS elements (at least 28%) than the coding regions, implying that selection acts against insertion into genes. Of the genes disrupted by ISs, those involved in signal transduction, intracellular trafficking, and cell motility are most commonly targeted, suggesting selection against genes in these categories.  相似文献   

20.
IS476 is an endogenous insertion sequence present in copper-tolerant strains of Xanthomonas campestris pv. vesicatoria. Sequence analysis has revealed that the element is 1,225 base pairs in length, has 26-base-pair inverted repeats, and causes a 4-base-pair target site duplication upon insertion into the avirulence gene avrBs1. Comparison of the full-length sequence with sequences in the National Biomedical Research Foundation and National Institutes of Health data bases showed that one of the predicted IS476 proteins is partially homologous to the putative transposase of IS3 from Escherichia coli, and the inverted repeats of IS476 have significant homology to the inverted repeats of the IS51 insertion sequence of Pseudomonas syringae pv. savastanoi. A transposition assay based on the insertional inactivation of the sacRB locus of Bacillus subtilis was used to demonstrate that one of the three copies of IS476 residing on the 200-kilobase copper plasmid pXVCU1 is capable of transposition in several strains of Xanthomonas campestris. The position of IS476 insertion in several avrBs1 mutants was established and was shown to influence both induction of hypersensitivity and bacterial growth in planta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号