首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Amylin.   总被引:1,自引:0,他引:1  
B J Edwards  J E Morley 《Life sciences》1992,51(25):1899-1912
Amylin is a 37 amino-acid peptide which is secreted from the pancreatic islets of Langerhans. It has major sequence homology with calcitonin gene related peptide. Amylin can precipitate out in these cells to form amyloid. Amylin is secreted by similar stimuli to those that secrete insulin. Amylin has a number of effects that may counteract the effect of secreted insulin, i.e., decreased second phase insulin secretion, increased hepatic glucose output, and inhibition of insulin effects on skeletal muscle. It must, however, be recognized that in many cases the doses necessary to produce these effects appear to be supraphysiological. The putative role of amylin in the hyperglycemia of aging and Type II diabetes mellitus therefore remains controversial. Amylin has a number of other effects including inhibition of osteoclastic activity, vasodilatation, anorectic effects and enhanced memory retention. This review postulates a role for amylin in the pathogenesis of a number of age-related changes.  相似文献   

2.
J F Flood  J E Morley 《Peptides》1989,10(4):809-813
Ingestion of food in mice following training on T-maze footshock avoidance enhanced memory retention when tested 7 days later. This eating-induced improvement of retention was blocked by a specific cholecystokinin antagonist, L-364,718. The cholecystokinin antagonist prevented enhancement of memory retention resulting from posttraining administration of the gastrointestinal hormones, cholecystokinin, bombesin or gastrin releasing peptide. L-364,718 neither impaired or improved retention when given alone. Specificity of the effect of L-364,718 was demonstrated by the failure of L-364,718 to block improved memory retention resulting from administration of arecoline and D-amphetamine. The studies provide evidence that activation of cholecystokinin receptors plays a physiological role in the mediation of meal-induced enhancement of memory retention.  相似文献   

3.
Amylin, also known as islet amyloid polypeptide, identified in 1987, is a naturally occurring hormone, released by the β cells of the pancreas and consists of 37 amino acids. Amylin seems to decrease food intake through both central and peripheral mechanisms and indirectly by slowing gastric emptying. The mean basal amylin concentration is higher in obese than in lean human subjects. The amylin response to oral glucose is also greater in obese subjects, whether or not they have impaired glucose tolerance. The elevated amylin levels in obesity may lead to down-regulation of amylin receptors and lessen the impact of postprandial amylin secretion on satiety and gastric emptying. Amylin administration may overcome resistance at target tissues, delay gastric emptying, and have potential for inducing weight loss in obese individuals.  相似文献   

4.
Amylin decreases food intake in mice.   总被引:1,自引:0,他引:1  
J E Morley  J F Flood 《Peptides》1991,12(4):865-869
The isolation of amylin from pancreatic islets has stimulated interest in its potential role in the pathogenesis of type II diabetes mellitus and in its possible physiological roles. Amylin administered intraperitoneally decreased food intake in non-food-deprived and food-deprived diabetic and nondiabetic mice. Amylin also decreased feeding induced by insulin administration without significantly affecting blood glucose levels. Amylin also decreased food intake following intracerebroventricular administration. It is possible that amylin plays a physiological role in appetite regulation and may play a pathophysiological role in the altered appetites seen in some persons with type II diabetes mellitus.  相似文献   

5.
Does neuropeptide Y contribute to the anorectic action of amylin?   总被引:2,自引:0,他引:2  
Morris MJ  Nguyen T 《Peptides》2001,22(3):541-546
Neuropeptide Y (NPY) is a potent feeding stimulant acting at the level of the hypothalamus. Amylin, a peptide co-released with insulin from pancreatic beta cells, inhibits feeding following peripheral or central administration. However, the mechanism by which amylin exerts its anorectic effect is controversial. This study investigated the acute effect of amylin on food intake induced by NPY, and the effect of chronic amylin administration on food intake and body weight in male Sprague Dawley rats previously implanted with intracerebroventricular (icv) cannulae. Rats received 1 nmol NPY, followed by amylin (0.05, 0.1, 0.5 nmol) or 2 microl saline. Increasing doses of amylin resulted in a dose-dependent inhibition of NPY-induced feeding by 31%, 74% and 99%, respectively (P < 0.05). To determine the chronic effects of i.c.v. amylin administration on feeding, rats received 0.5 nmol amylin or saline daily, 30 min before dark phase, over 6 days. Amylin significantly reduced food intake at 1, 4, 16 and 24 hours; after 6 days, amylin-treated rats showed a significant reduction in body weight, having lost 17.3 +/- 6.1 g, while control animals gained 7.7 +/- 5.1 g (P < 0.05). Brain NPY concentrations were not elevated, despite the reduced food intake, suggesting amylin may regulate NPY production or release. Thus, amylin potently inhibits NPY-induced feeding and attenuates normal 24 hour food intake, leading to weight loss.  相似文献   

6.
Amylin is a member of the calcitonin family of hormones cosecreted with insulin by pancreatic beta cells. Cell culture assays suggest that amylin could affect bone formation and bone resorption, this latter function after its binding to the calcitonin receptor (CALCR). Here we show that Amylin inactivation leads to a low bone mass due to an increase in bone resorption, whereas bone formation is unaffected. In vitro, amylin inhibits fusion of mononucleated osteoclast precursors into multinucleated osteoclasts in an ERK1/2-dependent manner. Although Amylin +/- mice like Amylin-deficient mice display a low bone mass phenotype and increased bone resorption, Calcr +/- mice display a high bone mass due to an increase in bone formation. Moreover, compound heterozygote mice for Calcr and Amylin inactivation displayed bone abnormalities observed in both Calcr +/- and Amylin +/- mice, thereby ruling out that amylin uses CALCR to inhibit osteoclastogenesis in vivo. Thus, amylin is a physiological regulator of bone resorption that acts through an unidentified receptor.  相似文献   

7.
Amylin and adrenomedullin are related peptides with some homology to both calcitonin and calcitonin gene-related peptide (CGRP). All these peptides have in common a 6-amino acid ring structure at the amino-terminus created by a disulfide bond. In addition, the carboxy-termini are amidated. Both amylin and adrenomedullin have recently been found to stimulate the proliferation of osteoblasts in vitro, and to increase indices of bone formation in vivo when administered either locally or systemically. Both amylin and adrenomedullin have also been found to act on chondrocytes (Cornish et al., submitted for publication), stimulating their proliferation in culture and increasing tibial growth plate thickness when administered systemically to adult mice. Studies of structure-activity relationships have demonstrated that osteotropic effects of amylin and adrenomedullin can be retained in peptide fragments of the molecules. The full-length peptide of amylin has known effects on fuel metabolism, and systemic administration of amylin is also associated with increased fat mass. However, the octapeptide fragment of the molecule, amylin-(1-8), is osteotropic and yet has no activity on fuel metabolism. Similar fragments of adrenomedullin have also been defined, which retain activity on bone but lack the parent peptide's vasodilator properties. Both amylin-(1-8) and adrenomedullin-(27-52) act as anabolic agents on bone, increasing bone strength when administered systemically. Thus, these small peptides, or analogues of it, are potential candidates as anabolic therapies for osteoporosis. Both amylin and adrenomedullin may have effects on bone metabolism. Amylin is secreted following eating and may direct calcium and protein absorbed from the meal into new bone synthesis. Amylin circulates in high concentrations in obese individuals, and might contribute to the association between bone mass and fat mass. Our recent findings demonstrating the co-expression of adrenomedullin and adrenomedullin receptors in osteoblasts, along with the findings that the peptide and its receptor are easily detectable during rodent embryogenesis, suggest that this peptide is a local regulator of bone growth. Thus, the findings reviewed in this paper illustrate that amylin and adrenomedullin may be relevant to the normal regulation of bone mass and to the design of agents for the treatment of osteoporosis.  相似文献   

8.
Effects of leptin on memory processing   总被引:12,自引:0,他引:12  
Farr SA  Banks WA  Morley JE 《Peptides》2006,27(6):1420-1425
Leptin is a peptide hormone secreted by adipose tissue. Studies have shown that leptin crosses the blood-brain barrier (BBB) by a saturable transport system where it acts within the hypothalamus to regulate food intake and energy expenditure. Leptin also acts in the hippocampus where it facilitates the induction of long-term potentiation and enhances NMDA receptor-mediated transmission. This suggests that leptin plays a role in learning and memory. Obese mice and rats, which have leptin receptor deficiency, have impaired spatial learning. In disease states such as diabetes, humans and animals develop leptin resistance at the BBB. This suggests that low leptin levels in the brain may be involved in cognitive deficits associated with diabetes. In the current study, the effects of leptin on post-training memory processing in CD-1 mice were examined. Mice were trained in T-maze footshock avoidance and step down inhibitory avoidance. Immediately after training, mice received bilateral injections of leptin into the hippocampus. Retention was tested 1 week later in the T-maze and 1 day later in step down inhibitory avoidance. Leptin administration improved retention of T-maze footshock avoidance and step down inhibitory avoidance. Leptin administered 24 h after T-maze training did not improve retention when tested 1 week after training. SAMP8 mice at 12 months of age have elevated amyloid-beta protein and impaired learning and memory. We examined the effect of leptin on memory processing in the hippocampus of 4 and 12 months old SAMP8 mice. Leptin improved retention in both 4 and 12 months old SAMP8 mice; 12 month SAMP8 mice required a lower dose to improve memory compared to 4 months SAMP8 mice. The current results indicate that leptin in the hippocampus is involved in memory processing and suggests that low levels of leptin may be involved in cognitive deficits seen in disease states where leptin transport into the CNS is compromised.  相似文献   

9.
Amylin is a pancreatic hormone cosecreted with insulin that exerts unique roles in metabolism and glucose homeostasis. The therapeutic restoration of postprandial and basal amylin levels is highly desirable in diabetes mellitus. Protein conjugation with the biocompatible polymer polyethylene glycol (PEG) has been shown to extend the biological effects of biopharmaceuticals. We have designed a PEGylated human amylin by using the aminoreactive compound methoxylpolyethylene glycol succinimidyl carbonate (mPEGsc). The synthesis in organic solvent resulted in high yields of monoPEGylated human amylin, which showed large stability against aggregation, an 8 times increase in half-life in vivo compared to the non-conjugated amylin, and pharmacological activity as shown by modulation of cAMP production in MCF–7 cell line, decrease in glucagon and modulation of glycemia following subcutaneous administration in mice. Altogether these data reveal the potential use of PEGylated human amylin for the restoration of fasting amylin levels.  相似文献   

10.
Type II diabetes increases the risk for cognitive decline via multiple traits. Amylin is a pancreatic hormone that has amyloidogenic and cytotoxic properties similar to the amyloid-β peptide. The amylin hormone is overexpressed in individuals with pre-diabetic insulin resistance or obesity leading to amylin oligomerization and deposition in pancreatic islets. Amylin oligomerization was implicated in the apoptosis of the insulin-producing β-cells. Recent studies showed that brain tissue from diabetic patients with cerebrovascular dementia or Alzheimer’s disease contains significant deposits of oligomerized amylin. It has also been reported that the brain amylin deposition reduced exploratory drive, recognition memory and vestibulomotor function in a rat model that overexpresses human amylin in the pancreas. These novel findings are reviewed here and the hypothesis that type II diabetes is linked with cognitive decline by amylin accumulation in the brain is proposed. Deciphering the impact of hyperamylinemia on the brain is critical for both etiology and treatment of dementia.  相似文献   

11.
Amylin, the major peptide component of the islet amyloid commonly found in the pancreases of patients with type 2 (non-insulin-dependent) diabetes mellitus (NIDDM), is a recently discovered islet polypeptide. This peptide has many structural and functional features suggesting that it is a novel hormone, which may control carbohydrate metabolism in partnership with insulin and other glucoregulatory factors. Amylin is synthesised in, and probably secreted from, the beta-cells of the islets of Langerhans, where it has recently been immunolocalised to secretory granules. DNA cloning studies indicate that in the human and the rat, amylin is generated from a precursor, preproamylin, which displays a typical signal peptide followed by a small prohormone-like sequence containing the amylin sequence. The presence of the signal peptide suggests that amylin is secreted and plays a physiological role. Amylin is probably generated by proteolytic processing similar to that for proinsulin and other islet prohormones. The human amylin gene encodes the complete polypeptide precursor in two exons which are separated by an intron of approx. 5 kb, and is located on chromosome 12. Amylin is a potent modulator of glycogen synthesis and glucose uptake in skeletal muscle, and is capable of inducing an insulin-resistant state in this tissue in vitro, and perhaps also in the liver in vivo. In normal metabolism, amylin could act in concert with insulin as a signal for the body to switch the site of carbohydrate disposal from glycogen to longer-term stores in adipose tissue, by making skeletal muscle relatively insulin-resistant, whilst at the same time leaving rates of insulin-stimulated carbohydrate metabolism in adipose tissue unaltered. Several lines of evidence now implicate elevated amylin levels in the pathogenic mechanisms underlying NIDDM, and suggest to us that the obesity which frequently accompanies this syndrome is a result of, rather than a risk factor for, NIDDM. Following the beta-cell destruction which occurs in type 1 (insulin-dependent) diabetes mellitus (IDDM), it is probable that amylin secretion disappears in addition to that of insulin. As patients with insulin-treated IDDM frequently experience problems with hypoglycaemia, and as amylin acts to modulate the action of insulin in various tissues, it is possible that amylin deficiency may contribute to morbidity in insulin-treated IDDM, perhaps through the loss of a natural damping mechanism which guards against hypoglycaemia under conditions of normal physiology.  相似文献   

12.
Amylin is a 37 amino-acid peptide secreted from the pancreatic beta-cells. It has actions on carbohydrate metabolism in vivo, including elevation of blood glucose. In this study, the hyperglycemic effect of intravenous bolus injections of amylin was compared with similar injections of glucagon in 20-hour fasted rats lightly anesthetized with halothane. Administered doses ranged from 0.01 micrograms to 1000 micrograms (about 7 pmol/kg--750 nmol/kg for amylin and 8 pmol/kg--800 pmol/kg for glucagon). Control animals received an equal volume of saline. A single intravenous injection of amylin or glucagon led to an increase of plasma glucose levels, which peaked approximately at 1 hour after treatment. The calculated ED50 for amylin was 1.48 nmol whereas that for glucagon was 7.46 nmol; the maximum glucose increment was 4.3 mM for amylin, and 2.9 mM for glucagon. These results show that amylin is a more potent and more effective hyperglycemic agent than glucagon under these experimental conditions.  相似文献   

13.
J F Flood  J E Morley  K Tatemoto 《Peptides》1988,9(5):1077-1080
Pancreastatin, a peptide isolated from the pancreas, was shown to enhance memory retention after peripheral administration in mice when administration following T-maze footshock avoidance training. The effect of pancreastatin on memory retention, one week after training, was time dependent showing enhancement of retention when pancreastatin was administered 0 and 30 min but not 60 min after training. Pancreastatin reversed the amnesia produced by scopolamine. The pancreastatin fragment (33-49) also enhanced memory. Pancreastatin did not increase glucose in vivo. We conclude that peripherally administered pancreastatin modulates memory processing.  相似文献   

14.
Amylin, an islet amyloid peptide secreted by the pancreatic beta cell, has been proposed as a humoral regulator of islet insulin secretion. Four separate preparations of amylin were tested for effects on hormone secretion in both freshly isolated and cultured rat islets and in HIT-T15, hamster insulinoma cells. With all three experimental models, exposure to human amylin acid and human and rat amylin at concentrations as high as 100 nM had no significant effect on rates of insulin or glucagon secretion. These observations suggest that amylin, even at concentrations appreciably higher than those measured in peripheral plasma, is not a significant humoral regulator of islet hormone secretion.  相似文献   

15.
The effect of synthetic rat amylin (10,100,1000 pmol/l) on glucose (10 mmol/) and arginine (10 mmol/l) -stimulated islet hormone release from the isolated perfused rat pancreas and on amylase release from isolated pancreatic acini was investigated. Amylin stimulated the insulin release during the first (+76%) and the second secretion period (+42%) at 1 nmol/l. The first phase of the glucagon release was inhibited concentration dependently by amylin and completely suppressed during the second phase. Amylin diminished the somatostatin release in a concentration dependent manner. This effect was more pronounced at the first than the second secretion period (1 nmol amylin: 1 phase: -60%, 2.phase: -22%). Amylin was without any effect on basal and CCK stimulated amylase release from isolated rat pancreatic acini. Our data suggest amylin, a secretory product of pancreatic B-cells, as a peptide with approximately strong paracrine effects within the Langerhans islet. Therefore, amylin might be involved in the regulation of glucose homeostasis.  相似文献   

16.
Amylin appears to interfere with the action of insulin in muscle and possibly in liver. We have attempted to detect a direct antagonism between amylin and insulin in cultured rat hepatocytes. The stimulation of glucokinase gene expression was used as a marker of insulin action. Amylin proved ineffective in suppressing subsequent accumulation of glucokinase mRNA in response to maximal or submaximal doses of insulin. When applied to cells already induced by prior incubation with insulin alone, amylin failed to reverse induction, in contrast to the effectiveness of glucagon under the same conditions. Thus, amylin is not a physiological antagonist of insulin in the control of hepatic glucokinase gene expression.  相似文献   

17.
Amylin has been co-secreted from pancreatic islet beta-cells in constant proportion with insulin in some studies. We measured basal and glucose-stimulated amylin and insulin secretion from isolated perfused pancreases of normal and diabetic fatty Zucker rats. Glucose concentrations in the perfusion buffer were increased then decreased in small steps to mimic physiologic changes occurring after a meal. The absolute rate of amylin secretion and the molar ratio of amylin to insulin secreted from diabetic pancreases increased dramatically when infused glucose concentrations fell. Similar changes also occurred in normal pancreases, although the absolute change in amylin secretion was smaller. These studies provide the first evidence that (i) there is a mechanism within the pancreas whereby independent secretion of amylin and insulin can occur; (ii) the molar ratio of amylin to insulin secreted from both normal and diabetic pancreases can vary over a wide range; and (iii) there are important differences in the kinetics of amylin and insulin secretion or their coupling to stimulation by glucose between the isolated pancreases of normal rats and those with genetically transmitted insulin resistance and diabetes mellitus.  相似文献   

18.
Amylin is a peptide hormone that is co-released with insulin from pancreatic β-cells following a meal. Intracerebroventricular (icv) administration of amylin (1–100 pmol), or an amylin agonist, salmon calcitonin, elicited dose-dependent thermogenic, tachycardic, and hyperthermic responses in urethane-anesthetized rats. Intravenous (iv) administration of higher doses of amylin (100 pmol–20 nmol) also induced similar responses, although the amplitudes of these responses were significantly smaller than those elicited by icv administration, suggesting the primary action of amylin to be in the brain. However, the iv administration of amylin induced the responses slightly faster than the icv injection, the former responses occurring <4 min and the latter, at 8–10 min, after the administration. The iv but not the icv injection of amylin increased the respiratory exchange ratio transiently (<20 min), though the thermogenic response lasted for a longer period after both injections, indicating a shift from mixed fuel to predominantly carbohydrate utilization in the initial phase of thermogenesis induced by the iv injection of amylin. The differences in substrate utilization and latency of the responses suggest that the actions of amylin include partly different targets when administered centrally and peripherally. Moreover, pretreatment with a β-adrenergic blocker, propranolol (5 mg kg−1, iv), blocked all responses elicited by either icv or iv administration of amylin, whereas ablation of the area postrema in the hindbrain did not influence the effects of icv-administered amylin. These results suggest the involvement of amylin in postprandial energy expenditure, mediated by peripheral β-adrenoceptors.  相似文献   

19.
Ectopic overexpression of the murine agouti gene results in yellow coat color, obesity, hyperinsulinemia, and type II diabetes. We have shown the human homologue of agouti (agouti signaling protein; ASP) to regulate human adipocyte metabolism and lipid storage via a Ca(2+)-dependent mechanism. We have also demonstrated agouti expression in human pancreas, and that ASP stimulates insulin release via a similar Ca(2+)-dependent mechanism. Plasma amylin is also elevated in agouti mutant mice. Amylin is cosecreted with insulin from beta-cells, and overexpression of human amylin in beta-cells in yellow agouti mutant mice resulted in accelerated pancreatic amyloid deposition, severely impaired beta-cell function, and a diabetic phenotype. We report here that ASP stimulates amylin release in both the HIT-T15 beta-cell line and human pancreatic islets in the presence of a wide range of glucose concentrations (0-16.7 mmol/L), similar to its effect on insulin release; this effect was blocked by 30 mumol/L nitrendipine, confirming a Ca(2+)-dependent mechanism. Accordingly, ASP stimulation of amylin release may serve as a compensatory system to regulate blood glucose in yellow agouti mutants.  相似文献   

20.
Amylin receptor blockade stimulates food intake in rats   总被引:1,自引:0,他引:1  
Amylin is postulated to act as a hormonal signal from the pancreas to the brain to inhibit food intake and regulate energy reserves. Amylin potently reduces food intake, body weight, and adiposity when administered systemically or into the brain. Whether selective blockade of endogenous amylin action increases food intake and adiposity remains to be clearly established. In the present study, the amylin receptor antagonist acetyl-[Asn(30), Tyr(32)] sCT-(8-32) (AC187) was used to assess whether action of endogenous amylin is essential for normal satiation to occur. Non-food-deprived rats received a 3- to 4-h intravenous infusion of AC187 (60-2,000 pmol.kg(-1).min(-1)), either alone or coadministered with a 3-h intravenous infusion of amylin (2.5 or 5 pmol.kg(-1).min(-1)) or a 2-h intragastric infusion of an elemental liquid diet (4 kcal/h). Infusions began just before dark onset. Food intake and meal patterns during the first 4 h of the dark period were determined from continuous computer recordings of changes in food bowl weight. Amylin inhibited food intake by approximately 50%, and AC187 attenuated this response by approximately 50%. AC187 dose-dependently stimulated food intake (maximal increases from 76 to 171%), whether administered alone or with an intragastric infusion of liquid diet. Amylin reduced mean meal size and meal frequency, AC187 attenuated these responses, and AC187 administration alone increased mean meal size and meal frequency. These results support the hypothesis that endogenous amylin plays an essential role in reducing meal size and increasing the postmeal interval of satiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号